用户名: 密码: 验证码:
血管性和老年性认知损害患者基于Stroop任务的fMRI研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     应用基于Stroop任务的功能磁共振(blood oxygen level dependency-functional magnetic resonance imaging, Bold-fMRI)技术探讨血管性认知损害(vascular cognitive impairment, VCI)和老年性认知损害患者注意相关脑区功能变化特点,主要目的包括:
     1.探讨皮质下缺血性血管性认知损害(subcortical ischemic vascular cognitive impairment, SIVCI)患者注意相关脑区功能变化特点,评价皮质下小血管病变对注意认知环路的影响,促进对血管性认知损害病理机制的认识;
     2.定量分析皮质下缺血性血管性认知损害非痴呆(subcortical ischemic vascular cognitive impairment no dementia,SIVCIND)和皮质下缺血性血管性痴呆(subcortical ischemic vascular dementia,SIVD)患者脑功能图谱特点,探索fMRI在SIVCI诊断中的价值,期望为早期诊断提出客观评价指标;
     3.分析阿尔茨海默病(Alzheimer disease, AD)、轻度认知功能损害(mild cognitive impairment, MCI)患者脑功能图谱特点,评价老年性认知损害不同阶段功能区变化特点;并与皮质下缺血性血管性认知损害进行比较,探索两种不同认知损害脑功能区变化机制的不同,以及fMRI在两种不同认知损害鉴别诊断中的意义和指标,促进血管性认知损害诊断水平的提高。
     对象和方法
     本研究分为两部分,共纳入研究对象51例。
     1.对10例SIVCIND患者和10例SIVD患者,运用蒙特利尔认知测评量表(Montreal Cognitive Assessment,MoCA,Beijing Version)和简易精神状态检查量表(mini-mental state examination, MMSE)检测总体认知功能,与10例年龄、性别及教育程度匹配的健康对照者比较,探讨VCI患者认知功能损害特点;采用计算机辅助的Stroop测验,红、绿、蓝色字刺激,字体颜色和字义相冲突并随机呈现,要求受试者判断色字的颜色,分析其错误率、漏报率和反应时间,探讨VCI患者行为学反应特点;采用SIEMENS Magnetom Sonata 1.5 T超导型全身磁共振成像系统和fMRI技术采集脑功能图像数据。FMRI采用单因素单水平组块(block)设计,组块由激活状态(activation state)与控制状态(control state)交替组成。采用快速自旋回波(turbo spin echo, TSE)序列采集横断位20层T1WI结构图像(TE=13 msec, TR=500 msec, field of view=40×40 cm, 256×192 data matrix),EPI(echoplanar imaging)序列采集血氧依赖性功能成像数据(64 x 64 matrix, 220 x 220mm field of view, echo time (TE) 40 ms, volume repetition time (TR)3000 ms, flip angle 90°)。采用MPRAGE序列作失状位薄层扫描采集三维解剖图像。数据的处理和分析采用AFNI(analysis of functional neuroimages)软件。首先进行头动和层面间的校正,以除外受试者轻微头动造成的影响。然后采用半高宽3mm进行三维空间平滑。采用相关分析法,对功能图像的时间进程进行区域内的相关分析,选定刺激任务的时间曲线设定成理想的参考波形(3个方波),将每一像素的时间强度曲线与参考波形进行对照分析,计算每一个体素与理想曲线的相关系数,作为脑组织BOLD信号和目标任务的相关强度,凡相关系数大于或等于设定阈值的像素作为显著活动,得到时间-信号强度动态曲线图和脑功能激活图像。将脑功能激活图像及三维立体解剖图像转入Talairach坐标系,获得标准化后的脑结构和功能图像。统计分析SIVCIND、SIVD患者和正常对照组脑激活功能区的部位、范围和体积的差异,评价SIVCI不同阶段脑功能区变化特点并探索早期诊断的敏感指标。
     2.对年龄、性别和教育程度相匹配的11例AD和10例MCI患者进行汉语Stroop任务操作和脑功能成像,实验参数和方法与前完全相同。分析测定AD和MCI行为学测验错误率、漏报率、反应时间,评价老年性认知损害与皮质下血管性认知损害行为学反应的异同;分析AD、MCI脑激活功能区的部位、范围和体积改变情况,评价老年性认知损害不同阶段功能区变化特点;并与血管性认知损害进行比较,探索两种不同认知损害脑功能区变化机制的不同,以及fMRI在两种不同认知损害鉴别诊断中的意义和指标,促进认知损害诊断水平的提高。
     结果
     1.皮质下缺血性血管性认知损害患者总体认知功能评价SIVD组MOCA各分项评分与年龄、性别和教育程度匹配正常对照组比较发现,执行、注意、延迟回忆、抽象、定向等认知功能水平降低(P<0.05),命名能力等认知功能水平无明显改变(P>0.05)。SIVCIND组与正常对照组比较,执行、注意、语言和延迟回忆等认知功能水平降低(P<0.05),抽象、定向、命名能力等认知功能水平无明显降低(P>0.05)。
     2.皮质下缺血性血管性认知损害患者行为学测验
     SIVD组与年龄、性别和教育程度匹配正常对照组比较发现,Stroop操作反应时延长(P<0.05),漏报率增加(P<0.05),错误率增高(P<0.05)。SIVCIND组患者与正常对照组比较,反应时延长(P<0.05),漏报率增加(P<0.05),错误率无明显改变(P>0.05)。
     3.皮质下缺血性血管性认知损害患者功能区损害情况
     SIVCI患者主要激活双侧前扣带回、背外侧前额叶(额上回、额中回),腹内侧前额叶(额下回、岛叶)、后顶叶(顶下小叶)、中央前回、基底节区及枕叶视觉区。SIVCIND组脑激活部位计数与对照组无显著差异(χ2检验或Fisher精确检验,P>0.05);SIVD组在右侧基底节区激活计数少于对照组(χ2检验或Fisher精确检验,P<0.05)。脑功能区激活体积定量分析发现,SIVCIND组双侧背外侧前额叶(dosolateral prefrontal cortex, DLPFC),腹内侧前额叶(ventralateral prefrontal cortex, VLPFC)和右侧后顶叶激活体积显著大于对照组(两独立样本Mann-Whitney U检验,P<0.05),左侧后顶叶与对照组无显著差异(两独立样本Mann-Whitney U检验,P>0.05);SIVD组在双侧DLPFC、VLPFC、后顶叶激活体积显著小于对照组(两独立样本Mann-Whitney U检验,P<0.05)。
     4.侧性化及相关性分析
     SIVCIND组大脑激活部位计数及功能区激活体积无明显左右侧差异(χ2检验或Fisher精确检验,P>0.05;两独立样本Mann-Whitney U检验,P>0.05);SIVD组脑激活部位计数无明显左右侧差异(χ2检验或Fisher精确检验,P>0.05),左侧后顶叶激活体积显著大于右侧(两独立样本Mann-Whitney U检验,P<0.05),提示SIVD脑功能区存在侧性化。经pearson correlation\Spearman等级相关分析,SIVCI组双侧DLPFC、VLPFC和后顶叶激活体积与MoCA总分、视空间与执行、注意分项得分明显相关(P<0.05)。双侧DLPFC和左侧VLPFC激活体积与语言分项评分明显相关(P<0.05);双侧DLPFC、双侧后顶叶激活体积与延迟回忆分项评分明显相关(P<0.05);右侧DLPFC、左侧VLPFC和右侧后顶叶激活体积与定向分项评分明显相关(P<0.05)。
     5.老年性认知损害患者行为学反应
     MCI组患者与年龄、性别、教育程度相匹配的对照组比较,反应时延长(P>0.05),漏报率增加(P<0.05);AD组患者与对照组比较,反应时延长(P<0.05),漏报率增加(P<0.05),错误率增高(P<0.05)。SIVCIND和MCI组相比组错误率(P>0.05)、漏报率(P>0.05)、反应时(P>0.05)相比均无显著差异。SIVD和AD相比错误率(P>0.05)、漏报率(P>0.05)、反应时(P>0.05)均无显著差异。
     6.老年性认知损害患者脑功能区损害情况
     MCI和AD患者主要激活双侧前扣带回、背外侧前额叶(额上回、额中回),腹内侧前额叶(额下回、岛叶),后顶叶(顶下小叶)、中央前回、基底节区及枕叶视觉区。MCI组脑激活部位计数与对照组无显著差异(χ2检验或Fisher精确检验,P>0.05),AD组在右侧基底节区计数少于对照组(χ2检验或Fisher精确检验,P<0.01)。脑功能区激活体积定量分析发现,MCI组在双侧DLPFC、双侧后顶叶激活体积明显大于对照组(两独立样本Mann-Whitney U检验,P<0.05),双侧VLPFC与对照组无显著差异(两独立样本Mann-Whitney U检验,P>0.05);AD组双侧DLPFC、VLPFC激活体积明显小于对照组(两独立样本Mann-Whitney U检验,P<0.01),双侧后顶叶与对照组无显著差异(两独立样本Mann-Whitney U检验,P>0.05)。侧性化分析表明,MCI、AD组双侧脑功能区激活部位计数无显著性差异(χ2检验或Fisher精确检验,P>0.05);MCI组左侧后顶叶激活体积显著大于右侧(两独立样本Mann-Whitney U检验,P<0.05);双侧DLPFC、VLPFC激活体积无显著差异(两独立样本Mann-Whitney U检验,P>0.05);AD组左侧VLPFC激活体积显著大于右侧(两独立样本Mann-Whitney U检验,P<0.05),双侧DLPFC、后顶叶激活体积无显著差异(两独立样本Mann-Whitney U检验,P>0.05)。
     7.两种不同认知损害的fMRI比较
     在大脑激活定位方面, MCI与SIVCIND组相比无显著差异(χ2检验或Fisher精确检验,P>0.05),AD与SIVD组相比无显著差异(χ2检验或Fisher精确检验,P>0.05);脑功能区激活体积定量分析方面,MCI与SIVCIND组相比无显著差异(两独立样本Mann-Whitney U检验,P>0.05),AD组双侧后顶叶激活体积大于SIVD组,有显著差异(两独立样本Mann-Whitney U检验,P<0.05),双侧DLPFC、VLPFC激活体积与SIVD组无显著性差异(两独立样本Mann-Whitney U检验,P>0.05)。提示fMRI对MCI与SIVCIND的鉴别无明显意义,但对AD与SIVD的鉴别有较大价值,主要鉴别指标为双侧后顶叶的激活体积和范围。
     结论
     1.总体认知功能评价研究发现皮质下缺血性血管性认知损害早期患者(SIVCIND)以执行、注意、语言、延迟回忆等认知损害较突出,而晚期患者(SIVD)主要表现执行、注意、语言、延迟回忆、抽象和定向等认知水平降低。
     2.计算机辅助Stroop操作研究发现,皮质下缺血性血管性认知损害早期患者(SIVCIND)和老年性认知损害早期患者(MCI)以漏报率增高、反应时延长为主要表现,而皮质下缺血性血管性认知损害晚期患者(SIVD)和阿尔茨海默病患者以漏报率增高、反应时延长、错误率增高为表现。但老年性认知损害和血管性认知损害配对患者的错误率、漏报率、反应时均无显著差异,提示它们不是鉴别两种不同认知损害的指标。
     3.注意和执行功能的脑功能区主要包括双侧前扣带回、DLPFC、VLPFC、后顶叶和基底节区。皮质下缺血性血管性认知损害早期(SIVCIND)脑功能区改变主要以双侧DLPFC、VLPFC代偿增加为主;晚期(SIVD)主要以右侧基底节区、双侧DLPFC、VLPFC、后顶叶全方位功能损害为主。SIVCI不同阶段具有不同的fMRI表现,fMRI对SIVCI的早期诊断具有较大的意义。
     4. SIVCIND大脑注意和执行功能区不存在侧性化;SIVD存在侧性化,右侧损害比左侧更加严重。SIVCI患者双侧DLPFC、VLPFC和后顶叶功能区激活体积与MoCA总分、视空间与执行、注意分项得分显著相关。提示Stroop任务操作中脑功能区的激活体积可较好的反映SIVCI患者的认知功能,功能磁共振是一种评价和反映SIVCI认知功能的良好的方法。
     5.老年性认知损害早期(MCI)脑功能区改变主要以双侧DLPFC、后顶叶代偿为主;晚期(AD)以右侧基底节区、双侧DLPFC、VLPFC功能损害为主。MCI和AD大脑均存在侧性化,MCI左侧半球代偿明显,AD右侧半球损害明显。
     6.MCI和SIVCIND脑功能区fMRI表现无显著差异, fMRI不能对两者进行鉴别。AD和SIVD具有不同的脑功能损害特征及fMRI表现,fMRI可以对其进行鉴别诊断,后顶叶的激活体积是两者的鉴别指标。
Purpose
     In this study, used Bold-fMRI(blood oxygen level dependency - function magnetic resonance imaging) technology we observed and analyzed the cortex activation evoked by Stroop task in patients with SIVCI(subcortical ischemic vascular cognitive impairments), in order to inspect the influence on attention nerve circuit loop by ischemic impairment from small subcortical vessel lesion to enhance the understanding for the pathomechanism of subcortical ischemic vascular impairment and to find new indexes to reflect attention impairment in earlier period of vascular cognitive impairment. We studied the relationship and differences between brain activations of vascular, senile cognitive impairment patients and normal controls, in order to investigate the different pathomechanism between vascular and senile cognitive impairments and to appreciate the value of fMRI in the differential diagnosis of different cognitive impairments for improving their diagnostic quality.
     Methods
     The study was divided into two parts:
     1. The subjects included 10 patients with SIVCIND (subcortical ischemic vascular cognitive impairment no dementia), 10 patients with SIVD (subcortical ischemic vascular dementia) and 10 age, sex, and education-matched normal controls. The general cognitive functions of the subjects were assessed by Montreal cognitive assessment (MoCA) Beijing Version and mini-mental state examination (MMSE). Subjects performed the incongruent Stroop color-word task. In the test subjects were presented with a list of words“red”,“green”, and“blue”, however, the ink color of the words was discordant with the presented word. The control task was a solid white cross centered on the black background. The response time, incorrect response rate and no response rate were analyzed. All the patients and healthy volunteers underwent fMRI used the mode of stimulus-rest-stimulus when performing Stroop test. All images were taken with a Siemens Sonuta 1.5 Tesla MR scanner. Twenty T1-weighted axial slices (TE=13 msec, TR=500 msec, field of view=40×40 cm, 256×192 data matrix) were obtained parallel to the anterior–post commissure, which was identified with the aid of a sagittal localizer anatomical image. The functional image data were acquired with an echo-planar imaging sequence(64 x 64 matrix, 22 x 22cm field of view, echo time (TE) 40 ms, volume repetition time (TR)3000 ms, flip angle 90°). High-resolution structural imaging of the whole brain was performed with 3D gradient-echo, T1-weighted sequence, with the following parameters: 256x 256 matrix, inversion time (TI) 50.5 s, TE 56.3 ms, TR 511.7ms, flip angle 11°. Image processing and analyses were performed online with“T-test”and offline with Analysis of Functional Neuro Images (AFNI) software. The fMRI data were slice time-corrected. Echo planar images were coregistered to the image that minimized image translation and rotation relative to all other images. Corrected images were spatially filtered by using a Gaussian filter with a full width half maximum of 3 mm. The block design time-series was convolved to account for the ideal hemodynamic response function. For each voxel, a correlation coefficient was calculated, indicating the strength of relationship between the subjects’BOLD signal and the target reference function. The time-signal intensity curves and the functional images were obtained. After the functional and anatomical images for each participant were transformed into the Talairach and Tournoux coordinate system, the activation locations and areas of the SIVCIND, SIVD patients and normal control subjects were measured and analyzed.
     2. The subjects included 10 patients with mild cognitive impairment and 11 patients with Alzheimer's disease, who were age, sex, and education-matched with the subcortical ischemic vascular cognitive impairment no dementia and subcortical ischemic vascular dementia. The Stroop task performance and fMRI examination were the same as part 1. The response time, incorrect response rate and no response rate were analyzed. The activation areas and locations evoked by Stroop task were measured and analyzed. The relationship and differences between SIVCI, MCI and AD were analyzed.
     Results
     1. Subcortical ischemic vascular dementia patients had obvious cognitive disorder in visualspatial and executive function, attention, delayed memory, abstract, verbalization and orientation (P<0.05), and no cognitive disorder in naming compared with normal controls (P>0.05). Subcortical ischemic vascular cognitive impairment no dementia patients had obvious cognitive disorder in visualspatial and executive function, verbalization, attention and delayed memory (P<0.05), and no cognitive disorder in abstract, orientation and naming compared with normal controls (P>0.05).
     2. On Stroop color-word task SIVD patients showed higher incorrect response rate (P<0.05), higher omission rate (P<0.05) and longer reaction time (P<0.05) than those of normal control subjects. SIVCIND patients showed higher omission rate (P<0.05) and longer reaction time (P<0.05) than those of normal control subjects.
     3. For SIVCI groups bilateral anterior cingulate, DLPFC(dosolateral prefrontal cortex), VLPFC(ventralateral prefrontal cortex), inferior parietal lobe, occipital lobe and basal ganglia were activated. There was no difference of activation locations between SIVCIND and normal control subjects (P>0.05). The right basal ganglias for SIVD were less activated than those of normal controls (P<0.05). Compared to controls, SIVCIND patients showed distinctly increased prefrontal cortex activation, including bilateral DLPFC, VLPFC and right inferior parietal lobe (P<0.05), no difference in left inferior parietal lobe (P>0.05). SIVD patients exhibited decreased fMRI responses in bilateral DLPFC, VLPFC and inferior parietal lobe (P<0.05).
     4. There was no cortex activation difference between two hemispheres of normal control and SIVCIND subjects (P>0.05). However, for SIVD patients the activation areas of right inferior parietal lobe was less than that of the left (P<0.05). Pearson correlation\Spearman rank correlation analysis revealed that for SIVCI patients there were significant correlations between cortex activation areas of bilateral DLPFC, VLPFC, inferior parietal lobe and MoCA scores of total, attention, and visualspatial(P<0.05). There were significant correlations between cortex activation areas of bilateral DLPFC, left VLPFC and MoCA scores of language (P<0.05). There were significant correlations between cortex activation areas of bilateral DLPFC, inferior parietal lobe and MoCA scores of delay memory (P<0.05). There were significant correlations between cortex activation areas of right DLPFC, left VLPFC, right inferior parietal lobe and MoCA scores of orientation (P<0.05).
     5. On Stroop color-word task AD patients showed higher incorrect response rate (P<0.05), higher omission response rate (P<0.05) and longer reaction time (P<0.05) than those of normal control subjects. The MCI patients showed higher omission rate (P<0.05) and longer reaction time (P<0.05) than those of normal control subjects. However, there was no difference of incorrect response rate, omission rate and reaction time between MCI and SIVCIND, AD and SIVD patients (P>0.05).
     6. For AD and MCI groups bilateral anterior cingulate, DLPFC, VLPFC, inferior parietal lobe, occipital lobe and basal ganglia were activated. There was no difference of activation locations between MCI and normal control subjects (P>0.05). The right basal ganglias for AD were less activated than those of normal controls (P<0.01). Compared to controls, MCI patients showed distinctly increased cortex activation, including bilateral DLPFC and inferior parietal lobe (P<0.05), no difference in bilateral VLPFC (P>0.05). AD patients exhibited decreased fMRI responses in the regions of bilateral DLPFC and VLPFC (P<0.01), no difference in bilateral inferior parietal lobe (P>0.05). The activation areas of the two hemispheres for MCI and AD patients were not symmetrical. For MCI patients the activation areas of right inferior parietal lobe was less than that of the left (P<0.05). And for AD patients the activation areas of right VLPFC were less than that of the left (P<0.05).
     7. There was no difference of cortex activation locations evoked by Stroop task between MCI and SIVCIND, AD and SIVD patients (P>0.05). There was no difference of activation areas between MCI and SIVCIND patients (P>0.05). However, the activation areas of bilateral inferior parietal lobe for SIVD patients were less than that of the AD patients (P<0.05). So fMRI can not discriminate MCI and SIVCIND but can discriminate AD and SIVD by the activation areas of bilateral inferior parietal lobe.
     Conclusion
     1. SIVCI patients have obvious disorders in general assessment of cognitive function. Executive function, verbalization, attention and delayed memory are predominant in cognitive impairment of SIVCIND patients. SIVD patients have obvious cognitive impairment in executive function, attention, verbalization, delayed memory, abstract and orientation, but no cognitive disorder in naming.
     2. The results of computer-assisted Stroop test reveal that SIVCIND and MCI patients show higher omission rate and longer reaction time than those of normal control subjects. AD and SIVD patients show higher omission rate, incorrect response rate and longer reaction time than those of normal control subjects. However, the omission rate, incorrect response rate and reaction time can not discriminate SIVCIND and MCI, SIVD and AD.
     3. Our results suggest that for Stroop task the cortex activation areas include bilateral anterior cingulate, DLPFC, VLPFC, inferior parietal lobe, occipital lobe and basal ganglia. There is a bilateral DLPFC, VLPFC compensation in SIVCIND, and right basal ganglia, bilateral DLPFC, VLPFC and inferior parietal lobe dysfunction in SIVD, which suggests different neurophysiological characteristics between SIVCIND and SIVD. SIVCIND and SIVD have different fMRI characteristics and fMRI is a usefull tool in the examination and appreciation of the earlier period of vascular cognitive impairment.
     4. There was no cortex activation difference between two hemispheres of normal control and SIVCIND subjects. For SIVD patients the damage is not symmetrical and the left is the dominant hemisphere. There are significant correlations between cortex activation areas of bilateral DLPFC, VLPFC, inferior parietal lobe and MoCA scores of total, attention and visualspatial for SIVCI patients. The cortex activation of SIVCI during Stroop task performance in fMRI can reflect the cogniton of them well.
     5. There is a right basal ganglia, bilateral DLPFC and VLPFC cortex dysfunction in AD, and bilateral DLPFC and inferior parietal lobe compensation in MCI, which suggests different neurophysiological characteristics between AD and MCI. For MCI and AD the damage and compensation of the two hemispheres is not symmetrical and the left is the dominant hemisphere.
     6. There is no difference of cortex activation between MCI and SIVCIND patients. FMRI can not discriminate them. However, fMRI can discriminate AD and SIVD by the activation areas of bilateral inferior parietal lobe. The fMRI examination may have some potential value in the discrimination and assessment of different type of dementia.
引文
1. Small GW, Rabins PV, Barry PP, et al. Diagnosis and treatment of Alzheimer disease and related disorders: consensus statement of the American Association for Geriatric Psychiaty, the Alzheimer’s Association, and the American Geriatics Society. JAMA, 1997, 2(78) :1363~1371.
    2.田金洲.血管性痴呆.北京:人民卫生出版社. 2003.1-3.
    3. Hachinski V, Bowler JV. Vascular dementia: diagnosis criteria for research studies. Neurology, 1993, 43: 2159-2160.
    4. Rockwood K, Howard K, MacKnight C, et al. Spectrum of disease in vascular cognitive impairment. Neuroepidemiology, 1999, 18: 248-254.
    5. Wentzel C, Rockwood K, MacKnight C, et al. Progression of impairment in patients with vascular cognitive impairment without dementia. Neurology. United States, 2001, 714-716.
    6. Bowler JV, Gorelick PB. Advances in vascular cognitive impairment 2006. Stroke, 2007, 38: 241-244.
    7. Erikinjuntti T, Inzitari D, Pantoni L, et al. Research criteria for subcortical vascular dementia in clinical trials. Neural Transm Suppl, 2000, 59(1):23-30.
    8. Richard J, Peter W, John R. The nature and staging of attention dysfunction in early(minimal and mild) Alzheimer's disease: relationship to episodic and semantic memory impairment. J Neuropsychologia, 2000, 38(3): 252.
    9. Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment: Clinical characterization and outcome. Arch Neurol, 1999, 56(3): 303.
    10. Elbel G, Kaufmann C, Schaefers S, et al. Refractive anomalies and visual activation in functional magnetic resonance imaging (fMRI): a versatile and low-cost MR- compatible device to correct a potential confound. J-Magn-Reson-Imaging, 2002, 15(1): 101-107.
    11. Urrila AS, Hakkarainen A, Heikkinen S. Metabolic imaging of human cognition: an fMRI/1H-MRS study of brain lactate response to silent word generation. J-Cereb-Blood-Flow-Metab, 2003, 23(8): 942-948.
    12. Pochon B, Levy R, Fossati P, et al. The neural system that bridges reward and cognition in humans: an fMRI study. Proc-Natl-Acad-Sci-U-S-A, 2002, 99(8): 5669-5674.
    13. Spreen O, Strauss E. A compendium of neuropsychological tests (Second edition). New York: Oxford University Press, 1998: 213 - 219.
    14. Roman GC, Tatemichi TK, Erkinjuntti T, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology, 1993, 43(2):250-260.
    15. Erkinjuntti. Research criteria for subcortical vascular dementia in clinical trials. J Neural Transm, 2000, (59): 23-30.
    16. Rockwood K. Vascular cognitive impairment and vascular dementia. J Neurological Sciences, 2002, 15(203-204): 23-27.
    17. Heyman A, Fillenbaum GG, Welsh-Bohmer KA, et al. Cerebral infarcts in patients with autopsy-proven Alzheimer’s disease: CERAD, part XVIII, Consortium to establish a registry for Alzheimer’s disease. Neurology, 1998, 51:159-162.
    18. MacLeod CM. Half a century of research on the Stroop effect: an integrative review. Psychol-Bull, 1991, 109(2): 163-203.
    19. Scott AL, Kristy AN, Stephen MR. fMRI of healthy older adults during Stroop interference. Neuroimage, 2004, 21(1): 192–200.
    20. Leung HC, Skudlarski P, Gatenby JC, et al. An event-related functional MRI study of the Stroop color word interference task. Cereb Cortex, 2000, 10(6): 552–560.
    21. Blumberg HP, Stern E, Ricketts S, Martinez D, et al. Rostral and orbital prefrontal cortex dysfunction in the manic state of bipolardisorder. Am J Psychiatry, 1999, 156(12): 1986–1988.
    22. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res, 1996, 29(3):162–173.
    23. Friston KJ, Holmes AP, Worsley KJ, et al. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Map, 1995, 2(3): 189–210.
    24. Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. New York: Thieme; 1988.
    25. Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment: Clinical characterization and outcome. Arch Neurol, 1999, 56(3): 303.
    26. Richard JP, John RH. Attention and executive deficits in Alzheimer's disease: A critical review. Brain, 1999, 122: 383.
    27. Bowler JV, Hachinski V. Vascular cognitive impairment: a new approach to vascular dementia. Baillieres Clin Neurol, 1995, 4: 357-376.
    28.赵仁亮,谭纪萍,王拥军等. 2006年NINDS/CNS关于血管性认知功能障碍统一标准的建议.中国卒中杂志, 2007, 2 (6): 513-21.
    29. Fox PT, Raichle ME, MintunMA, et al. Nonoxidative glucose consumption during focal physiologic neural activity. Science, 1988, 241(4864): 462-464.
    30. Ogawa S, Tank DW, Menon R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc-Natl-Acad-Sci-U-S-A, 1992, 89(13): 5951-5955.
    31. Duyu J H, Mone C W, Van G H, et al. Inflow versus deoxy- Hemogtobin effects in BOLD functional magnetic resonance Imaging using gradient echoes at 1.5T NMR. BioMed, 1994, 7(2): 83- 95.
    32. Diamond A, Taylor C. Development of an aspect of executive control: Development of the abilities to remember what I said and to“do as I say, not as I do.”Dev. Psychobiol, 1996, 29(4): 315–334.
    33. Gerstadt CL., Hong YJ, Diamond A. The relationship between cognition and action: Performance of children 1/2–7years old on a Stroop-like day-night test. Cognition,2003, 53(2):129–153.
    34.郭起浩,洪震,吕传真,等. Stroop色词测验在早期识别阿尔茨海默病中的作用.中华神经医学杂志, 2005, 4(7) :701 - 704.
    35. Richard JP, John RH. Attention and executive deficits in Alzheimer's disease: A critical review. Brain, 1999, 122: 383.
    36. Sarter M, Givens B, Bruno JP. The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res Rev, 2001, 35 (2): 146.
    37. Smith EE, Jonides J. Storage and executive processes in the frontal lobes. Science, 1999, 283 (5408): 1657-1661.
    38. Andre K, Wido L H, Luciano F, et al. Stroop interference and disorders of selective attention. Europsy-chologia, 1996, 34: 273-281.
    39. Carter C S. Anterior cingulate gyrus dysfunction and selective attention deficits in schizophrenia: [sup-1-sup-5O] H-sub-2O PET study during single - trial Stroop task performance. American Journal of Psychiatry, 1997, 12: 1670-1675.
    40. Bechara A: Neurobiology of decision-making: risk and reward. Semin Clin Neuropsychiatry, 2001, 205–216.
    41. Breiter HC, Aharon I, Kahneman D, et al. Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron, 2001, 30: 619–639.
    42. Elliott R, Dolan RJ, Frith CD, et al. Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. Cereb Cortex, 2000, 10: 308–317.
    43. Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M. A. & Raichle, M. E. (1988) Nature (London) 331, 585-589.
    44. Petersen, S. E., Fox, P. T., Posner, M. 1. & Raichle, M. E. (1989) J. Cognit. Neurosci. 1, 153-170.
    45. Kwan LT, Reed BR, Eberling JL, et al. Effects of subcortical cerebral infarction on cortical glucose metabolism and cognitive function. ArchNeurol, 1999, 56(7): 809 - 814.
    46. Weiss U, Bacher R, Vonbank H, et al. Congnitive impairment: assessment with brain magnetic resonance imaging and proton magnetic resonance spectroscopy. Clin Psychiatry, 2003, 64 (3): 235 - 242.
    47. Herminghaus S, Frolich L, Gorriz C, et al. Brain metabolism in Alzheimer’s disease and vascular dementia assessed by in vivo proton magnetic resonance spectroscopy. Psychiatry Research Neuroimaging, 2003, 123 (3): 183 - 190.
    48.张龙江,尹建忠,祁吉.利用fMRI研究正常人执行Stroop任务的脑功能网络.放射学实践, 2008, 6(23): 590-592.
    49. Kawas CH, Corrada MM. Alzheimer's and dementia in the oldest-old: a century of challenges. Curr-Alzheimer-Res, 2006, 3(5): 411-419.
    50. Petersen RC, Stevens JC, Ganguli M, et al. Practice parameter: early detection of dementia: mild cognitive impairment (an evidence based review). Neurology, 2001, 56(9):1133–1142.
    51. SaykinAJ, Flashman LA, Frutiger SA, et al. Neuroanatomic substrates of semantic memory impairment in Alzheimer’disease: patterns of functional MRI activation. Int Neuropsychol Soc, 1999, 5(5):377-392.
    52.王荫华,周爱红,周晓林,等.轻度阿尔茨海默病患者的注意功能反应时研究.中华神经科杂志, 2006, 2(39): 80-83.
    53. Richard J P, Peter W, John RH. The nature and staging of attention dysfunction in early (minimal and mild) Alzheimer’s disease: relationship to episodic and semantic memory impairment. Neuropsychologia, 2000, 38 (3): 252.
    54. Grady CL, Haxby JV, Horwitz B, et al. Longitudinal study of the early neuropsychological and cerebral metabolic changes in dementia of the Alzheimer type. J Clini Exp Neuropsychol, 1988, 10 (5):576.
    55. Michael P, Milham R, Kirk I, et al. Attentional control in the aging brain: Insights from an fMRI study of the Stroop task. Brain and Cognition, 2002, 49(1):277 -296.
    56. Bondi MW, Serody AB, Chan AS, et al. Cognitive and neuropathologic correlates of Stroop Color-Word Test performance in Alzheimer's disease. Neuropsychology, 2002(3), 16: 335-343.
    57. Machulda MM, Ward HA, Borowski B, et al. Comparison of memory fMRI response among normal, MCI, and Alzheimer′s patients. Neurology, 2003, 61(4): 500-561.
    58. Sperling RA, Bates JF, Chua EF, et al. Fmri studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. Neurosurg Psychiatry, 2003, 74(1): 44-50.
    59. Kato T, Knopman D, Liu H. Dissociation of regional activation in mild AD during visual encoding: a functional MRI study. Neurology, 2001, 57(5):812-816.
    60. Elgh E, Larsson A, Eriksson S, et al. Altered prefrontal brain activity in persons at risk for Alzheimer′s disease: an fMRI study. Int Psychogeriatr, 2003, 15 (2): 121-131.
    61. Sperling RA, Bates JF, Chua EF, et al. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer′s disease. Neurol Neurosurg Psychiatry, 2003, 74(1):44-50.
    1. Jellinger KA. The pathology of ischemic vascular dementia: an update. J Neurol Sci, 2002, 203-204: 153 - 157.
    2. Chui H. Dementia due to subcortical ischemic vascular disease. Clin Cornerstone, 2001, 3: 40 - 51.
    3. Pohjasvara T, Erkinjuntti T, Ylikoski R, et al. Clinical determinants of post stroke dementia. Stroke, 1998, 28: 75.
    4. Skoog I,Nilsson L,Palmertz B,et al. A population based study of dementia in 85-year-olds. N Engl J Med, 1993, 328: 153-158.
    5. Yoshitake T, Kiyohara Y, Kato I, et al. Incidence and risk factors of vascular dementia and Alzheimer’s disease in a defined elderly Japanese population:the hisayama study. Neurolgy, 1995, 45: 1161-1168.
    6. Ross GW,Petrovitch H,White LR,et al. Characterization of risk factor for vascular dementia:the Honolulu-Asia aging study. Neurolgoy, 1999, 337-343.
    7. Verghese J,Lipton RB,Hall CB,et al. Low blood pressure and the risk of dementia in very old individuals. Neurology, 2003, 1667-1672.
    8.谭纪萍,王莹,王鲁宁.血管性痴呆的危险因素探讨.中华老年心脑血管病杂志, 2005, 7: 118-120.
    9. Tatemichi TK,Desmond DW,Paik M,et al. Clinical determinants of dementia related to stroke. Ann Neurol, 1993, 33: 568-575.
    10.毛善平,叶心国,唐尊立,等.从卒中到VD的动态CT分析.武汉大学学报(医学版) , 2002 , 23(3) : 234 - 237.
    11. Szirmai I, Vastagh I, Szombathelyi E, et al. Strategic infarcts of the thalamus in vascular dementia. Neurological Sciences, 2002, 203 - 204(15): 91 - 97.
    12. Barber R, Scheltens P, Gholkar A, et al. White mater lesions on magnetic resonance imaging in dementia with Lewy bodies, Alzheimer’sdisease, vascular dementia and normal aging. J Neurol Neurosurg Psychiatry, 1999, 67(1): 66- 72.
    13. Schmidt R. Comparison of magnentic resonance imaging in Alzheimer’s disease, vascular dementia and normal aging. Eur Neurol, l999, 32(2): l64- 169.
    14. Price CC, Jefferon AL, Merino JG, et al. Subcortical vascular dementia intergrating neuropsychological and neuroradiologic data. Neurology, 2005, 65(3): 376- 382.
    15.陈俊抛,陈木有,黄柳和.多发性脑梗死痴呆45例临床报告.中国实用内科杂志, 1993 , 13 (11) : 670~671.
    16.李国峰,廖宝霞,褚以德。西宁地区老年期血管性痴呆的MRI诊断与临床关系青海医药杂志, 2001, 2(31): 10-11.
    17. Yoshikawa T, Murase K, Oku N, et al. Statistical image analysis ofcerebral blood flow in vascular dementia with small - vessel disease. Nuclear Medicine, 2003, 44(4): 505 - 511.
    18. Sarangi S, San Pedro EC, Mount JM. Anterior choroidal artery infarction presenting as a progressive cognitive deficit. Clin Nucl Med, 2000, 25(3): 187 - 190.
    19. Lojkowska W, Ryglewicz D, Jedrzejczak T, et al. SPECT as a diagnostic test in the investigation of dementia. Neurological Sciences, 2002, 203 - 204 (15): 215 - 219.
    20. Yang DW, Kim BS, Park JK, et al. Analysis of cerebral blood flow of subcortical vascular dementia with single photon emission computed to2mography: adaptation ofstatistical parametric mapping. Neurological Sciences, 2002, 203 - 204 (15): 199 - 205.
    21. Kwan LT, Reed BR, Eberling JL, et al. Effects of subcortical cerebral infarction on cortical glucose metabolism and cognitive function. ArchNeurol, 1999, 56(7): 809 - 814.
    22. Weiss U, Bacher R, Vonbank H, et al. Cognitive impairment: assessment with brain magnetic resonance imaging and proton magnetic resonance spectroscopy. Clin Psychiatry, 2003, 64 (3): 235 - 242.
    23. Herminghaus S, Frolich L, Gorriz C, et al. Brain metabolism in Alzheimer’s disease and vascular dementia assessed by in vivoproton magnetic resonance spectroscopy. Psychiatry Research Neuroimaging, 2003, 123 (3): 183 - 190.
    24. Subri O, Ringelstein EB, Hewwing D, et al. Neuropsychological impairment correlates with hypoperfusion and hypoperfusion and hypometabolisment severity of white matter lesions on MRI in patients with cerebral microangiopathy. Stroke, 1999, 30(2): 393- 397.
    25. Choi SH, Na DL, ChungCS, et al. Diffusion- weighted MRI in vascular dementia. Neurology, 2000, 54(1):83- 89.
    26. Tullberg M, Fletcher E, DeCarli C, et al. White matter lesions impair frontal lobe function regardless of their location. Neurology, 2004, 63(2): 246- 253.
    27. Sullian MO, Morris RG, Huckstep B, et al. Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemicleukoaraiosis. J Neurol Neurosurg Psychiatry, 2004, 75(3):441-447.
    28. Elbel G, Kaufmann C, Schaefers S, et al. Refractive anomalies and visual activation in functional magnetic resonance imaging (fMRI): a versatile and low-cost MR- compatible device to correct a potential confound. J-Magn-Reson-Imaging, 2002, 15(1): 101-107.
    29. Belliveau JW, Cohen MS, Weisskoff RM, et al. Functional studies of the human brain using high-speed magnetic resonance imaging. J-Neuroimaging 1991, 1(1):36-41.
    30. Cabeza R, Nyberg L. Imaging cognition II: An empirical review of 275 PET and fMRI studies. J-Cogn-Neurosci, 2000, 12(1): 1-47.
    31. Yihong Y, Wolfgang E, Hong P, et al. A CBF based event-related brain activation paradigm: characterization of impulse response function and comparision to BOLD. Neuroimage, 2000, 12(3): 287-297.
    32. Rosen BR, Buckner RL, Dale AM. Event related functional MRI: past, present and future. Proc Natl Sci USA, 1998, 95(3): 773-780.
    33. Urrila AS, Hakkarainen A, Heikkinen S, et al. Metabolic imaging of human cognition: an fMRI/1H-MRS study of brain lactate response to silent word generation. J-Cereb- Blood- Flow-Metab, 2003, 23(8): 942-948.
    34.王荫华,白静,翁旭初,等.轻度认知障碍患者记忆力的功能磁共振研究.中国康复理论与实践, 2004, 10(3): 132-135.
    35.白静,王荫华,翁旭初,等.轻度认知障碍患者计算能力的fMRI研究.中国康复理论与实践, 2003, 9(5): 303-306.
    36.李凤鹏,郑健.血管性痴呆与脑梗死患者认知功能障碍的特征分析.中国临床康复, 2004, 8(10): 1804-1805.
    37. Rombouts A, van-Swieten C, Pijnenburg A, et al. Loss of frontal fMRI activation in early front temporal dementia compared to early AD. Neurology, 2003, 60(12): 1904-1908.
    1. Small GW, Rabins PV, Barry PP, et al. Diagnosis and treatment of Alzheimer disease and related disorders: consensus statement of the American Association for Geriatric Psychiaty, the Alzheimer’s Association, and the American Geriatics Society. JAMA, 1997, 2(78) :1363~1371.
    2. Goedert M. Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci, 1993, 16(11): 460-465.
    3.王琨,丁新生,程虹.老年期痴呆患者脑脊液C0J蛋白与各临床指标的相关性研究.中国临床康复, 2002, 6(21): 3174-3175.
    4.张深山,李乐华.阿尔茨海默病与血管性痴呆患者认知功能的比较研究.中华临床心理杂志, 2004, 12(3): 272-273.
    5. Csernansky JG, Hamstra J, Wang L, et al. Correlations between antemortem hippocampal volume and postmortem neuropathology in AD subjects. Alzheimer Dis Assoc Disord, 2004, 18(4): 190- 195.
    6. Preboske GM, Gunter JL, Ward CP, et al. Common MRI acquisition non-idealities significantly impact the output of the boundary shift integral method of measuring brain atrophy on serial MRI. Neuroimage, 2006, 30(4): 1196-1202.
    7.李岳峙,王明时.脑电在老年性痴呆诊断中的应用.国外医学生物医学工程分册, 1998, 21 (1): 8-11.
    8. Goodin D, Squires K, Starr A. A long latency event-related component of the auditory evoked potential in dementia. Brain, 1978, 101: 635-648.
    9. Goodin D, Starr A, Chippendale T, et al. Sequential changes in the P3 component of the auditory evoked potential in confusional states and dementing illness. Neurology, 1983, 33: 1215-1218.
    10. Yihong Y, Wolfgang E, Hong P, et al. A CBF based event-related brain activation paradigm: characterization of impulse response function and comparision to BOLD. Neuroimage, 2000, 12(3):287-297.
    11. Rosen BR, Buckner RL, Dale AM. Event related functional MRI: past, present andfuture. Proc Natl Sci USA, 1998, 95(3): 773-780.
    12. Urrila AS, Hakkarainen A, Heikkinen S, et al. Metabolic imaging of human cognition: an fMRI/1H-MRS study of brain lactate response to silent word generation. J-Cereb- Blood- Flow-Metab, 2003, 23(8): 942-948.
    13. Cabeza R, Nyberg L. Imaging cognition II: An empirical review of 275 PET and fMRI studies. J-Cogn-Neurosci, 2000, 12(1): 1-47.
    14. Daselaar M, Veltman J, Rombouts A, et al. Medial temporal lobe activity during semantic classification using a flexible fMRI design. Behav-Brain-Res, 2002, 36(2): 399-404.
    15. Daselaar M, Rombouts A, Veltman J, et al. Parahippocampal activation during successful recognition of words: a self-paced event-related fMRI study. Neuroimage, 2001, 13(6 Pt 1): 1113-1120.
    16. Pochon B, Levy R, Fossati P, et al. The neural system that bridges reward and cognition in humans: an fMRI study. Proc-Natl-Acad-Sci-U-S-A, 2002, 99(8): 5669-5674.
    17.王荫华,白静,翁旭初,等.轻度认知障碍患者记忆力的功能磁共振研究.中国康复理论与实践, 2004, 10(3): 132-135.
    18. Grossman M, Koenig P, Glosser G, et al. Neural basis for semantic memory difficulty in Alzheimer’s disease: an fMRI study. Brain, 2003, 126 (Pt 2): 292-311.
    19. Grossman M, Koenig P, DeVita C, et al. Neural basis for verb processing in Alzheimer’s disease: an fMRI study. Neuropsychology, 2003, 17(4): 658-674.
    20.白静,王荫华,翁旭初,等.轻度认知障碍患者计算能力的fMRI研究.中国康复理论与实践, 2003, 9(5): 303-306.
    21. Remy F, Mirrashed F, CampbellB, et al. Mental calculation impairment in Alzheimer’s disease: a functional magnetic resonance imaging study. Neurosci Lett, 2004, 358 (1): 25-28.
    22. Jessen F, Manka C, Scheef L, et al. Novelty detection and repetition suppression in a passive picture viewing task: a possible app roach for the evaluation of neuropsychiatric disorders. Hum Brain Map, 2002, 17 (4): 230-236.
    23. Prvulovic D, Hub D, Sack AT, et al. Functional imaging of visuospatial processing in Alzheimer’s disease. Neuroimage, 2002, 17 (3): 1403-1404.
    24. Rombouts SA, Barkhof F, VanMeel CS, et al. Alterations in brain activation duringcholinergic enhancement with rivastigmine in Alzheimer’s disease. J Neuro Neurosurg Psychiat, 2002, 73 (6): 665-671.
    25. Kato T, Knopman D, Liu H. Dissociation of regional activation in mild AD during visual encoding: a functional MR I study. Neurology, 2001, 57 (5): 812-816.
    26. Machulda MM, Ward HA, Borowski B, et al. Comparison of memory fMRI response among normal, MCI, and Alzheimer′s patients. Neurology, 2003, 61 (4): 500-561.
    27. Elgh E, Larsson A, Eriksson S, et al. Altered prefrontal brain activity in persons at risk for Alzheimer′s disease: an fMRI study. Int Psychogeriatr, 2003, 5(2): 121-131.
    28.闻红斌,张建军,吴光耀,等.轻度认知障碍工作记忆的fMRI研究.中国临床神经科学, 2004, 12 (4): 337-341.
    29. Sperling RA, Bates JF, Chua EF, et al. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer′s disease. Neurol Neurosurg Psychiatry, 2003, 74(1): 44-50.
    30. Johnson SC, Saykin AJ, Baxter LC, et al. The relationship between fMRI activation and cerebral atrophy: comparison of normal aging and alzheimer disease. Neuroimage, 2000, 11(3): 179-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700