用户名: 密码: 验证码:
PinX1抑制胃癌细胞增殖、增强其对5-FU敏感性及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     端粒、端粒酶在瘤肿细胞的永生化和演进中扮演重要角色,端粒酶在人类肿瘤细胞中高表达而在人正常细胞中无表达或仅在生殖细胞中低表达,因此在治疗上常作为治疗靶标。端粒酶逆转录酶(hTERT)是端粒酶活性关键的限速酶。研究表明,恶性肿瘤端粒酶活性不仅受hTERT调节,而且受其它因子的调节。PinX1为2001年报导,以细胞周期蛋白Pin2为诱饵,应用酵母双杂交方法,在人类宫颈癌细胞中发现的一种新基因。研究发现,PinX1及其端粒酶抑制域TID域可以直接结合于人端粒酶,进而抑制端粒酶活性,是端粒酶活性的强力抑制剂,但其抑制端粒酶活性的确切机制仍不清楚。我们利用分子克隆技术、RNA干涉技术及脂质体转染技术,将PinX1基因转染入本身无该基因表达的胃癌MKN28细胞,观察转染前后MKN28细胞生物学行为及对化疗药物5-FU的敏感性变化;将针对PinX1编码区的干涉序列转染入高表达该基因的胃癌BGC823细胞。检测转染前后各组细胞中端粒酶活性及Mad1/c-Myc水平的改变。探讨PinX1抑制端粒酶活性可能的新机制,初步为该基因应用于临床胃癌的治疗提供实验依据。
     方法:
     1利用分子克隆技术,构建包含全长人PinX1序列的真核表达载体;同时根据RNA干涉序列的设计原则,在线设计3条针对PinX1编码区的干涉序列,并通过BLAST设计了阴性对照序列,构建PinX1的RNA干涉真核表达载体以及阴性对照载体。2 RT-PCR、Western Blotting分别检测3种分化程度不同的胃癌细胞系(高分化MKN28细胞、中分化SGC7901细胞、低分化BGC823细胞)中PinX1表达水平;将构建成功的真核表达载体及干涉载体利用脂质体分别转染胃癌MKN28及BGC823细胞,经G418抗性筛选获得稳定表达的细胞株。3半定量RT-PCR、Western Blotting检测转染前后各细胞系中PinX1表达变化。4、通过HE染色、透射电镜等观察转染前后细胞形态特征的变化。5、通过MTT法观察转染前后细胞的增殖能力的变化,绘制细胞生长曲线。6通过MTT法检测转染前后胃癌MKN28细胞对化疗药物5-FU的敏感性变化。7通过流式细胞仪检测细胞凋亡和细胞周期的改变。8通过半定量RT-PCR及Western Blotting检测转染前后各细胞系中Mad1/c-Myc水平的改变。9、采用荧光素标记的端粒酶重复序列扩增法(TRAP)法检测转染前后各细胞系端粒酶活性的变化。
     结果:
     1经酶切及测序证明,成功构建重组PinX1真核表达载体及针对PinX1编码区的的RNA干涉真核表达载体与阴性对照载体;2、检测表明:高分化的MKN28细胞中无PinX1表达,低分化的BGC823细胞PinX1高表达,中分化的SGC7901细胞PinX1中等表达;3成功地将构建好的重组真核表达载体及干涉载体通过脂质体分别转染胃癌MKN28与BGC823细胞,经G418抗性筛选获得稳定表达的细胞株;检测表明,PinX1基因成功地转染入MKN28细胞;有2条干扰序列对PinX1有干扰效果;4细胞形态特征:HE染色可见转染PinX1基因的MKN28细胞为多边形,但是大小不一更为明显,大而扁平的细胞更为常见,巨细胞比例明显增加,最大的细胞体积可以达到小细胞的5~10倍,多核细胞常见;未转染的MKN28细胞呈梭形、短梭形,大小不一。透射电镜特征:转染PinX1基因的MKN28细胞内可见凋亡小体,小体内可见半月形异染色质;而未转染或仅转染空载体的胃癌MKN28细胞内可见细胞器减少,幼稚,线粒体呈杆状,核浆比例增大,核仁突出;5 MTT检测表明:转染PinX1基因的MKN28细胞较之未转染或仅转染空载体的胃癌MKN28细胞生长明显减慢(P<0.05);6 MTT检测表明:转染PinX1基因的MKN28细胞对5-FU的半数抑制浓度(IC50)值为0.253±0.021mg/L,明显低于未转染或仅转染空载体的胃癌MKN28细胞的IC50值(分别为0.560±0.017及0.590±0.026 mg/L)(P<0.05);7流式细胞仪检测细胞周期和细胞凋亡表明:转染PinX1基因的MKN28细胞的G0/G1期细胞数(%)为84.76±3.92,明显高于未转染或仅转染空载体的胃癌MKN28细胞的G0/G1期细胞数(分别为68.74±6.96及65.91±3.00)(P<0.05);而转染PinX1基因的MKN28细胞的增殖指数(%)为15.24±0.61,明显低于未转染或仅转染空载体的胃癌MKN28细胞(分别为31.28±0.53及34.08±0.80)(P<0.05);转染PinX1基因的MKN28细胞的凋亡率(%)为11.41±2.85,明显高于未转染或仅转染空载体的胃癌MKN28细胞的凋亡率(分别为0.85±0.10及2.40±1.31)(P<0.05);8通过半定量RT-PCR及Western Blotting技术分别检测基因(Mad1及c-Myc)的mRNA及蛋白水平发现,转染PinX1基因后,Mad1的表达水平明显上升而c-Myc的表达水平明显下降;相反,通过iRNA技术抑制PinX1基因的表达后,Mad1的表达水平明显下降而c-Myc的表达水平明显上升;9利用TRAP对各组细胞进行端粒酶活性检测,结果表明:转染PinX1基因后,细胞端粒酶活性明显降低;相反,抑制PinX1的表达后,细胞端粒酶活性相应升高。
     结论:
     1.成功构建PinX1的真核和干涉表达载体,并获得它们稳定转染的细胞株。
     2.筛选出2条特异性针对PinX1的干涉序列,其中干扰2序列的干扰效果更强。
     3.转染入PinX1基因后,细胞生长速度明显减慢,细胞阻滞于G0/G1期,且出现早期凋亡改变。
     4. PinX1基因转染能增强胃癌MKN28细胞对化疗药物5-FU治疗的敏感性。
     5. PinX1基因可抑制胃癌细胞端粒酶活性,是端粒酶活性抑制因子。
     6. PinX1通过Mad1/c-Myc途径抑制端粒酶活性。
Objective Since telomeres and telomerase play crucial roles in maintaining cell immortalization and cancer progression, they may be targets for anticancer treatment. The telomerase level is high in most human cancer while it is low or no in the somal cells. The telomerase reverse transcriptase (hTERT) is the key of telomerase activity regulation. PinX1 was reported in 2001 in human cervical cancer using the yeast two-hybrid method. The previous studies showed that PinX1 is a potent inhibitor of telomerase activity and its TID domain could suppress telomerase activity by coupling telomerase directly. However, the role of PinX1 in telomere regulation, as well as in cancer, is still poorly understood. We transfected PinX1 gene into the gastric carcinoma line MKN28 without expression of PinX1 and transfected PinX1 siRNA plasmids into the gastric carcinoma line BGC823 with a high level expression of PinX1. drug-resistant clones were screened with G418 in the study. Then we observed the biological behaviour and Mad1/c-Myc expressions in MKN28 cells before and after gene transfection, and explored the possible novel mechanism.
     Methods 1.we constructed the eukaryotic expression vector pIRES2-EGFP contained PinX1 gene by molecular cloning technology. We also constructed PinX1 RNAi plasmids including interference sequence and negative control sequence. 2. we examined the expression of PinX1 in three different gastric carcinoma cell lines including MKN28,SGC7901 and BGC823 using RT-PCR and Western Blotting. Then, we transferred the recombinant plasmids into gastric carcinoma cell lines using lipofectamineTM 2000. drug-resistant clones were screened with G418. 3. We observed the change of PinX1 expression level before and after gene transfection by semi-quantitative RT-PCR and Western Blotting. 4. The Cell morphology was observed by HE staining and transmission electron microscopy. 5. MTT assay was used to observe cell growth and to test the sensitivety of gastric carcinoma cell lines to 5-FU. 6. Cell cycle and cell apoptosis were analyzed by FCM. 7. Mad1/c-Myc expressions were detected with semi-quantitative RT-PCR and Western Blotting. 8. Telomerase activity was detected by telomeric repeat amplification protocol (TRAP).
     Results 1. Sequencing suggested that the recombinant eukaryotic expression vector and siRNA vectors targeting PinX1 was correct. 2. PINX1 expression was negative in MKN28 cells,weak positive in SGC7901 cells,but strong positive in BGC823 cells. 3. we transfected PinX1 into MKN28 cell and the void vector was transfected as control. we also transfected siRNA eukaryotic expression vectors into BGC823 and the negative sequence vector was transfected as control. Drug-resistant clones were screened with G418 and established their stable transfected cell line. The PinX1 expression was detected by semi-quantitative RT-PCR and western blotting. It was indicated that the PinX1 was transfected into MKN28 successfully. Two siRNA vectors could suppress the expressive level of PinX1 and the interference 2 was more effective. 4. PinX1-transfected cells became larger in size and the coenocyte was common. Apoptotic body with meniscus heterochromatin could be seen in the tranfected cells under transmission electron microscope. At the same time, the karyoplasm proportion was increased and the nucleolus was prominent before gene transfection. 5. PinX1-transfected MKN28 cells grew more slowly than the cells not transfected or transfected with void vectors by MTT examination (P<0.05). 6. The IC50 value(0.253±0.021mg/L) decreased markedly in PinX1-transfected cells than that in the PinX1-untransfected cells or transfected with void vectors(0.560±0.017\0.590±0.026 mg/L)by MTT examination (P<0.05). 7. The apoptosis rate was higher in PinX1-transfected MKN28 than that in PinX1-untransfected cells or transfected with void vectors only by FCM. The growth of PinX1-transfected cells was retarded, and was blocked into G0/G1 stage. 8. PinX1-transfected MKN28 showed up-regulation of Mad1 and, down-regulation of c-Myc, whereas RNAi led to down -regulation of Mad1 and up-regulation of c-Myc in BGC823 cells. 9. The telomerase activity reduced obviously after PinX1 transfection while it was elevated when PinX1 gene was suppressed by PinX1 RNAi.
     Conclusions 1. we constructed the recombinant eukaryotic expression vector and siRNA vectors targeting PinX1 gene and which were tranfected in to gastric cancer cells successfully. 2. Two RNAi vectors were indentified to suppress the expression of PinX1 specifically and the interference 2 was more effective. 3. Flow cytometric analysis displayed that PinX1 transfanction inhibited gastric cancer MKN28 cells growth,and induced them apoptosis and an arrests of G0/G1 phase. 4. The IC50 value decreased markedly in PinX1-transfected cells,suggesting that PinX1 transfection enhances the sensitivity of MKN28 cells to 5-FU. 5. The PinX1 gene mayasuppressor of telomerase activity. 6. PinX1 may suppress telomerase activity through Mad1/c-Myc pathway.
引文
1. Lin J, Blackburn EH. Nucleolar protein PinX1p regulates telomerase by sequestering its protein catalytic subunit in an inactive complex lacking telomerase RNA. Genes Dev, 2004,18(4):387–396.
    2. Banik SS, Counter CM. Characterization of interactions between PinX1 and human telomerase subunits hTERT and Htr. J Biol Chem, 2004, 279(50):51745–51748.
    3. Lin J, Jin R, Zhang B, et al. Characterization of a noval effect of hPinX1 on hTERT nucleolar location. Biochem Biophys Res Commun, 2007,353(4):946-952.
    4. Kondo T, Oue N, Mitani Y, et al. Loss of heterozygosity and histone hypoacetylation of the PinX1 gene are associated with reduced expression in gastric carcinoma. Oncogene, 2005,24(1):157–164.
    5. Shao Y, Chan CY, Maliyekkel A, et al. Effect of target secondary structure on RNAi efficiency. RNA, 2007, 13 (10):1631-1640.
    6. Chang H. RNAi-mediated knockdown of target genes: apromising strategy for pancreatic cancer research. Cancer Gene Ther, 2007, 14(8):677-685.
    7. Liu G, Wong-Staal F, Li QX. Development of new RNAi therapeutics. Histol Histopathol, 2007, 22(2):211-217.
    8. Grimm D, Kay MA. Combinatorial RNAi: a winning strategy for the race against evolving targets. Mol Ther, 2007, 15(5):878-888.
    9. Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet, 2007, 8(3):173-184.
    10. Couzin J. Nobel Prize in Physiology or Medicine. Method to silence genes earns loudpraise. Science, 2006, 314(5796):34.
    11. Zamore PD. RNA interference: big applause for silencing in Stockholm. Cell, 2006, 127(6):1083-1086.
    12. Zamore PD, Tuschl T, Sharp PA, et al. RNAi: double stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000, 101(1):25-33.
    13. Hutvagner G, Zamore PD. RNAi: nature abhors a double strand. Curr Opin Genet Dev, 2002, 12(2):225-232.
    14. Aagaard L, Rossi JJ. RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev, 2007, 59(2-3):75-86.
    15. DiFiglia M, Sena-Esteves M, Chase K. et al. Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci USA, 2007, 104(43):17204–17209.
    16. Rand TA, Ginalski K, Grishin NV, et al. Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc Natl Acad Sci USA, 2004, 101(40):14385–14389.
    17. Ameres SL, Martinez J, Schroeder R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell, 2007, 130(1):101–112.
    18. Knight SW, Bass BL. A role for the RNase III Enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science, 2001, 293 (5538): 2269- 2271.
    19. Trevor Stokes. RNAi-Based gene expression manipulation. Genetic Engineering News, 2007, 27(2):28.
    20. Eki T, Ishihara T, Katsura I, et al. A Genome-wide Survey and Systematic RNAi-based Characterization of Helicase-like Genes in Caenorhabditis Elegans. DNA Research, 2007, 14(4): 183-199.
    21. Williams BR, Bateman JR, Novikov ND, et al. Disruption of Topoisomerase II Perturbs Pairing in Drosophila Cell Culture. Genetics, 2007, 177(1):31-46.
    22. Klase Z, Kale P, Winograd R, et al. HIV-1 TAR element is processed by dicer to yield aviral microRNA involved in chromatin remodeling of the viral LTR. BMC Mol Biol, 2007, 8: 63.
    23. The Thomson Corporation, Thomson Scientific’s review of phase changes in the pharmaceutical pipeline. The Ones to Watch, 2007:3 - 4.
    24. Devincenzo J, Cehelsky JE, Alvarez R, et al. Evaluation of the safety, tolerability and pharmacokinetics of ALN- RSV01, a novel RNAi antiviral therapeutic directed against respiratory syncytial virus (RSV). Antiviral Res, 2008, 77(3):225–231.
    25. Aagaard L, Rossi JJ. RNAi therapeutics: Principles, prospects and challenges. Adv Drug Deliv Rev, 2007, 59(2-3):75-86.
    26. Svoboda P. Off-targeting and other non-specific effects of RNAi experiments in mammalian cells. Curr Opin Mol Ther, 2007, 9(3):248-257.
    27. Wu RH, Cheng TL, Lo SR, et al. A tightly regulated and reversibly inducible siRNA exp ression system for conditional RNAi-mediated gene silencing in mammalian cells.J Gene Med, 2007, 9(7):620-634.
    28. Malm H, Pahlman C, VeressB. Combined cosrimulation blockade prevents rejection of allogeneic islets in mice. Scand J Immunology, 2006, 64(4):398-403.
    29. Frank-Kamenetsky M, Grefhorst A, Anderson NN, et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates.Proc Natl Acad Sci USA, 2008, 105(33):11915–11920.
    30. Sato Y, Murase K, Kato J, et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol, 2008, 26(4):431–442.
    31. Okumura A, Pitha PM,Harty RN. ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity. Proc Natl Acad Sci. USA, 2008, 105(10):3974–3979.
    32. Kim SH, Jeong JH, Lee SH, et al. Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J Control Release, 2008, 129(2): 107–116.
    33. Xia CF, Zhang Y, Zhang Y, et al. Intravenous siRNA of brain cancer with receptortargeting and avidin–biotin technology. Pharm Res, 2007, 24(12):2309–2316.
    34. Kleinman ME, Yamada K, Takeda A, et al. Sequence and target independent angiogenesis suppression by siRNA via TLR3. Nature, 2008, 452(7178):591–597.
    35. Gartel AL, Kandel ES. RNA interference in cancer. Biomol Eng, 2006,23(1): 17-34.
    36. Chen M, Du Q, Zhang HY, et al. High-throughput screening using siRNA(RNAi) libraries. Expert Rev Mol Diagn, 2007, 7(3):281-291.
    37. Leung RK, Whittaker PA. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther, 2005, 107(2):222-239.
    38. De-Paula D, Bentley MV, Mahato RI. Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting. RNA, 2007, 13(4):431-456.
    39. Svoboda P. Off-targeting and other non-specific effects of RNAi experiments in mammalian cells. Curr Opin Mol Ther, 2007, 9(3):248-257.
    40. John M, Constien R, Akinc A, et al. Effective RNAi-mediated gene silencing without interruption of the endogenous microRNA pathway. Nature, 2007, 449(7163): 745- 747.
    41. Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference.Nature Biotechno, 2004, 22(3):326-330.
    42. Shah JK, Garner HR, White MA, et al. sIR: siRNA Information Resource, a web-based tool for siRNA sequence design and analysis and an open access siRNA database. BMC Bioinformatics, 2007, 8:178.
    43. March JC, Bentley WE. Methods for gene silencing with RNAi. Methods Mol Biol, 2007, 388:427-434.
    1. Zhou XZ, Lu KP. The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell, 2001, 107(3):347-359.
    2. Lin J, Blackburn EH. Nucleolar protein PinX1p regulates telomerase by sequestering its protein catalytic subunit in an inactive complex lacking telomerase RNA. Genes Dev, 2004, 18(4):387–396.
    3. Banik SS, Counter CM. Characterization of interactions between PinX1 and human telomerase subunits hTERT and Htr. J Biol Chem, 2004, 279(50):51745–51748.
    4. Lin J, Jin R, Zhang B, et al. Characterization of a noval effect of hPinX1 on hTERT nucleolar location. Biochem Biophys Res Commun, 2007, 353(4):946-952.
    5. Kondo T, Oue N, Mitani Y, et al. Loss of heterozygosity and histone hypoacetylation of the PinX1 gene are associated with reduced expression in gastric carcinoma. Oncogene, 2005, 24(1):157–164.
    6. Oh BK, Chae KJ, Park C, et al. Molecular analysis of PinX1 in human hepatocellular carcinoma. Oncol Rep, 2004, 12(4):861-866.
    7. Hawkins GA, Chang BL, Zheng SL, et al. Mutational analysis of PINX1 in hereditary prostate cancer. Prostate, 2004, 60(4):298-302.
    8. Chang Q, Pang JC, Li J, et al. Molecular analysis of PinX1 in medulloblastomas. Int J Cancer, 2004, 109(2):309-314.
    9. Sun J, Huang H, Zhu Y, et al. The expression of telomeric proteins and their probable regulation of telomerase during the differentiation of all-trans-retinoic acid-responsive and resistant acute promyelocytic leukemia cells. Int J Hematol, 2005, 82(3):215-223.
    10. Akiyama, Y, Maesawa C, Wada K. et al. Human PinX1, a potent telomerase inhibitor, is not involved in human gastrointestinal tract carcinoma. Oncol Rep, 2004, 11 (4):871-874.
    11. Guglielmi B, Werner M. The yeast homolog of human PinX1 is involved in rRNA and small nucleolar RNA maturation, not in telomere elongation inhibition. J Biol Chem, 2002, 277(38): 35712-35719.
    12. Benjamin Lewin. GenesⅧ. New Jersey: Pearson Prentice Hall, 2004,843-844.
    1. Lingner J, Hughes TR, Shevchenko A, et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science, 1997, 276(5312):561-567.
    2. Poole JC, Andrews LG, Tollefsbol TO. Activity, function, and gene regulation of the catalytic subunit of telomerase(hTERT).Gene, 2001, 269(1-2):1-12.
    3. Lin SY, Elledge SJ. Multiple tumor suppressor pathways negatively regulate telomerase. Cell, 2003, 113(7):881-889.
    4. Xu D, Popov N, Hou M, et al. Switch from Myc/Max to Mad1/Max binding and decrease in histone acetylation at the telomerase reverse transcriptase promoter during differentiation of HL60 cells. Proc Natl Acad Sci USA, 2001, 98(7):3826-3831.
    5. Cong YS, Bacchetti S. Histone deacetylation is involved in the transcriptional repression of hTERT in normal human cells. J Biol Chem, 2000, 275(46):35665 -35668.
    6. Gunes C, Lichtsteiner S, Vasserot AP, et al. expression of the hTERT gene is regulated at the level of transcriptional initiation and repressed by mad1,Cancer Res, 2000, 60 (8):2116-2121.
    7. Comijn J, Berx G, Vermassen P, et al. The two-handed E box binding zinc finger protein SIP1 down regulates E-cadherin and induces invasion. Mol Cell, 2001, 7(6):1267-1278.
    8. Kim NW, Platyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immotal cells and cancer. Science, 1994, 266(5193):2011-2015.
    9. Zhou XZ, Lu KP. The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell, 2001, 107(3):347-59.
    10. Lin J, Blackburn EH. Nucleolar protein PinX1p regulates telomerase by sequestering its protein catalytic subunit in an inactive complex lacking telomerase RNA. Genes Dev 2004, 18(4):387–396.
    11. Banik SS, Counter CM. Characterization of interactions between PinX1 and human telomerase subunits hTERT and Htr. J Biol Chem, 2004, 279(50):51745–51748.
    12. Lin J, Jin R, Zhang B, et al. Characterization of a noval effect of hPinX1 on hTERT nucleolar location. Biochem Biophys Res Commun, 2007, 353(4):946-952.
    13. Kondo T, Oue N, Mitani Y, et al. Loss of heterozygosity and histone hypoacetylation of the PinX1 gene are associated with reduced expression in gastric carcinoma. Oncogene, 2005, 24(1):157–164.
    1. Wu L, Xu X, Shen J, et al. MDR1 gene polymorphisms and risk of recurrence in patients with hepatocellular carcinoma after liver transplantation. J Surg Oncol, 2007, 96 (1): 62-68.
    2. Borowski E, Bontemps-Gracz MM, Piwkowska A. Strategies for overcoming ABC-transporters mediated multidrug reslstance(MDR) of tumor cells.Acta BioehimPol,2005,52(3):609-627.
    3. Richardson A, Kaye S B. Drug resistance in ovarian cancer: the emerging importance of gene transcription and spatiotemporal regulation of resistance. Drug Resist Updates, 2005, 8(5):311-321.
    4. Deininger M. Resistance to imatinib: mechanisms and management. J Natl Compr Canc Netw, 2005, 3(6):757-768.
    5. Zhou Y, Eppenberger-Castori S, Eppenberger U. The NF kappaB pathway and endocrine -resistant breast cancer. Endocr Relat Cancer, 2005, 12(Suppl 1):S37-46.
    6. Le LH, Moore MJ, Siu LL, et al. Phase I study of the multidrug resistance inhibitor zosuquidar administered in combination with vinorelbine in patients with advanced solid tumours. Cancer Chemother Pharmacol, 2005, 56 (2):154-160.
    7. Kinuya S, Bai J, Shiba K, et al. 99m Tc-sestamibi to monitor treatment wit h antisense oligodeoxynucleotide complementary to MRP mRNA in human breast cancer cells. Ann Nucl Med, 2006, 20(1):29-34.
    8. Xing H, Wang S, Weng D, et al. Knock-down of P-glycoprotein reverses taxol resistance in ovarian cancer multicellular spheroids. Oncol Rep, 2007, 17 (1):117-122.
    9. Li B, Ye T, Zhao L, et al. Effects of multidrug resistance, anti-sense RNA on the chemosensitivity of hepatocellular carcinoma cells. Hepatobiliary Pancreat Dis Int, 2006, 5 (4):552-559.
    10. Gao P, Zhou GY, Zhang QH, et al. Reversal MDR in breast carcinoma cells by Transfection of ribozyme designed according the secondary st ructure of mdr1 mRNA. Chin J Physiol, 2006, 49(2):96-103.
    11. Lim MN,Lau NS,Chang KM,et a1.Modulating multidrug resistance gene in leukaemia cells by short interfering RNA.Singapore Med J, 2007, 48(10):932-934.
    12. Hou XZ, Lu KP. The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell, 2001, 107(3):347-359.
    1. Makarov VL, Hirose Y, Langmore JP ,et al. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell, 1997, 88(5):657-666.
    2. Griffith JD, Comeau L, Rosenfield S, et al. Mammalian telomeres end in a large duplex loop. Cell, 1999, 97(4):503-514.
    3. Nikitina T, Woodcock CL. Closed chromatin loops at the ends of chromosomes. J Cell Biol, 2004, 66(2):161-165.
    4. Stansel RM,Subramanian D,Griffith JD. p53 binds telomeric single strand overhangs and t-loop junctions in vitro. J Biol Chem, 2002, 277(14):11625-11628.
    5. Olaussen KA, Dubrana K, Domont J, et al. Telomeres and telomerase as targets for anticancer drug development. Crit Rev Oncol Hematol, 2006, 57(3):191–214.
    6. Hong Y,Haussler M,Lam JW,et al. Label-free fluorescent probing of G-quadruplex formation and real-time monitoring of DNA folding by a quaternized tetraphenylethenesalt with aggregation-induced emission characteristics. Chemistry, 2008, 14(21): 6428-6437.
    7. de Lange T. Telomere-related gonome instability in cancer. Cold Spring Harb Symp Quant Biol, 2005, 70: 197-204.
    8. Stewart SA,Weinberg RA.Telomeres:cancer to human aging.Annu Rev Cell Dev Biol,2006, 22:531-557.
    9. Feng J, Funk WD, Wang SS, et al. The RNA component of human telomerase. Science, 1995, 269(5228):1236-1241.
    10. Cairney CJ, Keith WN. Telomerase redefined: Integrated regulation of hTR and hTERT for telomere maintenance and telomerase activity. Biochimie, 2008, 90(1):13-23.
    11. Masutomi K, Possemato R, Wong JM, et al. The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc Natl Acad Sci USA, 2005,102(23):8222–8227.
    12. Lingner J, Hughes TR, Shevchenko A, et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science, 1997, 276(5312):561-567.
    13. Poole JC, Andrews LG, Tollefsbol TO. Activity, function, and gene regulation of the catalytic subunit of telomerase(hTERT).Gene, 2001, 269(1-2):1-12.
    14. Blasco MA.Telomeres and human disease:ageing,cancer and beyond.Nat Rev Genet,2005, 6(8):611-622.
    15. Hara H, Yamashita K, Shinada J, et al. Clinicopathologic significance of telomerase activity and hTERT mRNA expression in non-small cell lung cancer. Lung cancer, 2001,
    34(2):219-226.
    16. Fukushima M, Shinomura N, Nakamura K, et al. Demonstration of human telomerase reverse transcriptase by in situ hybridizatio in lung carcinoma. Oncol Rep, 2004, 12(6):1227-1232.
    17. Sung YH, Choi YS, Cheong C, Lee HW. The pleiotropy of telomerase against cell death. Mol Cell, 2005, 19(3):303–309.
    18. Wright WE, Pereira-Smith OM, Shay JW. Reversible cellular senescence: implications for immortalization of normal human diploid fibroblasts. Mol Cell Biol, 1989,9(7):3088-3092.
    19. Shay JW, Wright WE. Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis, 2005,26(5):867–874.
    20. Kyo S, Takakura M, Taira T, et al. Sp1 cooperates with c-Myc to activate t ranscription of the human telomerase reverse t ranscriptase gene (hTERT). Nucleic Acids Res, 2000, 28 (3): 669-677.
    21. Kyo S, Takakura M, Kanaya T, et al. Estrogen activates telomerase. Cancer Res, 1999, 59 (23) : 5917-5921.
    22. Xu D, Popov N, Hou M, et al. Switch from Myc/Max to Mad1/Max binding and decrease in histone acetylation at the telomerase reverse transcriptase promoter during differentiation of HL60 cells. Proc Natl Acad Sci, 2001, 98(7):3826-3831.
    23. Cong YS, Bacchetti S. Histone deacetylation is involved in the transcriptional repression of hTERT in normal human cells. J Biol Chem, 2000, 275(46):35665 -35668.
    24. Goueli BS, Janknecht R. Regulation of telomerase reverse transcriptase gene activity by up- stream stimulatory factor. Oncogene, 2003, 22 (39):8042-8047.
    25. Horikawa I, Barrett JC. Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms. Carcinogenesis, 2003, 24 (7): 1167-1176.
    26. Sekaric P, Cherry JJ, Androphy EJ. Binding of HPV 16 E6 to E6AP is not required for activation of hTERT. J Virol, 2008, 82(1) : 71–76.
    27. James MA, Lee JH, Klingelhutz AJ. HPV16-E6 associated hTERT promoter acetylation is E6AP dependent, increased in later passage cells and enhanced by loss of p300. Int J Cancer, 2006, 119(8) : 1878–1885.
    28. Oh S, Song YH, Yim J, et al. Identification of Mad as a repressor of the human telomerase (hTERT) gene. Oncogene, 2000, 19 (11): 1485-1490.
    29. Rottmann S,Luscher B. The Mad side of the Max network: antagonizing the function of Myc and more. Curr Top Microbiol Immunol, 2006, 302: 63-122.
    30. Rottmann S,Speckgens S,Luscher-Firzlaff J,et al. Inhibition of apoptosis by MAD1 is mediated by repression of the PTEN tumor suppressor gene. FASEB J, 2008, 22(4): 1124-1134.
    31. Gunes C, Lichtsteiner S, Vasserot AP, et al. expression of the htert gene is regulated at the level of transcriptional initiation and repressed by mad1, cancer res, 2000, 60(8):2116-2121.
    32. Comijn J, Berx G, Vermassen P, et al. The two-handed E box binding zinc finger protein SIP1 down regulates E-cadherin and induces invasion. Mol Cell, 2001, 7(6):1267-1278.
    33. Yang H, Kyo S, Takatura M, et al. Autocrine transforming growth factor beta suppresses telomerase activity and transcription of human telomerase reverse transcriptase in human cancer cells. Cell Growth Differ, 2001, 12(2): 119-127.
    34. Lin SY, Elledge SJ. Multiple tumor suppressor pathways negatively regulate telomerase, Cell, 2003, 113(7):881-889.
    35. De-Cian A,Lacroix L,Douarre C,et al. Targeting telomeres and telomerase. Biochimie, 2008, 90(1): 131-155.
    36. El-Daly H, Kull M, Zimmermann S, et al. Selective cytotoxicity and telomere damage in leukemia cells using the telomerase inhibitor BIBR1532. Blood, 2005, 105(4): 1742–1749.
    37. Yeo M, Rha SY, Jeung HC, et al. Attenuation of telomerase activity by hammerhead ribozyme targeting human telomerase RNA induces growth retardation and apoptosis in human breast tumor cells. Int J Cancer, 2005, 114(3):484–489.
    38. Burger AM, Dai F, Schultes CM, et al. The G-quadruplexinteractive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res, 2005, 65(4):1489–1496.
    39. Pennarun G, Granotier C, Gauthier LR, et al. Apoptosis related to telomere instability and cell cycle alterations in human glioma cells treated by new highly selective G-quadruplex ligands. Oncogene, 2005, 24(18): 2917-2928.
    40. Lantuejoul S, Soria JC, Morat L, et al. Telomere shortening and telomerase reverse transcriptase expression in preinvasive bronchial lesions. Clin Cancer Res, 2005, 11(5):2074–2082.
    41. Seimiya H, Muramatsu Y, Ohishi T, et al. Tankyrase 1 as a target for telomere-directed molecular cancer therapeutics. Cancer Cell, 2005, 7(1):25–37.
    42. Jacob D, Davis JJ, Zhang L, et al. Suppression of pancreatic tumor growth in the liver by systemic administration of the TRAIL gene driven by the hTERT promoter. Cancer Gene Ther, 2005, 12(2):109–115.
    43. Wang Y,Huang F,Cai H,et al. Potent antitumor effect of TRAIL mediated by a novel adeno-associated viral vector targeting to telomerase activity for human hepatocellular carcinoma. J Gene Med, 2008, 10(5): 518-526.
    44. Zhang Y,Ma H,Zhang J,et al. AAV-mediated TRAIL gene expression driven by hTERT promoter suppressed human hepatocellular carcinoma growth in mice. Life Sci, 2008, 82(23-24): 1154-1161.
    45. Agrawal S, Kandimalla ER. Antisense and/or immunostimulatory oligonu-cleotide therapeutics. Curr Cancer Drug Targets, 2001, 1(3):197-209.
    46. Pooga M, Langel U. Targeting of cancer-related proteins with PNA oligo- mers .Curr Cancer Drug Targets, 2001, 1(3):231-239.
    47. Opalinska JB, Gewirtz AM. Nucleic-acid therapeutics: basic principles and recent applications. Nat Rev Drug Discov, 2002, 1(7):503-514.
    48. Duggan BJ, Gray S, Johnston SR, et al. The role of antisense oligonucleotides in the treatment of bladder cancer. Urol Res, 2002, 30(3): 137-147.
    1. Nagai H, Pineau P, Tiollais P, et al. Comprehensive allelotyping of human hepatocellular carcinoma. Oncogene, 1997, 14 (24) :2927-2933.
    2. Zhou XZ, Lu KP. The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell, 2001, 107(3):347-359.
    3. Lin J, Blackburn EH. Nucleolar protein PinX1p regulates telomerase by sequestering its protein catalytic subunit in an inactive complex lacking telomerase RNA. Genes Dev, 2004, 18(4):387–396.
    4. Banik SS, Counter CM. Characterization of interactions between PinX1 and human telomerase subunits hTERT and Htr. J Biol Chem, 2004, 279(50):51745–51748.
    5. Oh BK, Yoon SM, Lee CH,et al. Rat homolog of PinX1 is a nucleolar protein involved in the regulation of telomere length. Gene, 2007, 400(1-2):35-43.
    6. Sun C, Wu Z, Jia F,et al. Identification of zebrafish LPTS: A gene with similarities to human LPTS/PinX1 that inhibits telomerase activity. Gene, 2008, 420(1): 90–98.
    7. Lin J, Jin R, Zhang B, et al. Characterization of a noval effect of hPinX1 on hTERT nucleolar location. Biochem Biophys Res Commun, 2007, 353(4):946-952.
    8. Kondo T, Oue N, Mitani Y, et al. Loss of heterozygosity and histone hypoacetylation of the PinX1 gene are associated with reduced expression in gastric carcinoma. Oncogene, 2005, 24(1):157–164.
    9. Song H, Li Y, Chen G, et al. Human MCRS2, a cell-cycle-dependent protein, associates with LPTS/PinX1 and reduces the telomere length. Biochem Biophys Res Commun, 2004, 316(4):1116-1123.
    10. Herrmann G, Kais S, Hoffbauer J, et al. Conserved interactions of the splicing factor Ntr1/Spp382 with proteins involved in DNA double-strand break repair and telomere metabolism. Nucleic Acids Research, 2007, 35(7): 2321–2332.
    11. Oh BK, Chae KJ, Park C, et al. Molecular analysis of PinX1 in human hepatocellular carcinoma. Oncol Rep, 2004, 12(4):861-866.
    12. Hawkins GA, Chang BL, Zheng SL, et al. Mutational analysis of PINX1 in hereditary prostate cancer. Prostate, 2004, 60(4):298-302.
    13. Chang Q, Pang JC, Li J, et al. Molecular analysis of PinX1 in medulloblastomas. Int JCancer, 2004, 109(2):309-314.
    14. Sun J, Huang H, Zhu Y, et al. The expression of telomeric proteins and their probable regulation of telomerase during the differentiation of all-trans-retinoic acid-responsive and resistant acute promyelocytic leukemia cells. Int J Hematol, 2005, 82 (3):215-223.
    15. Akiyama Y, Maesawa C, Wada K. et al. Human PinX1, a potent telomerase inhibitor, is not involved in human gastrointestinal tract carcinoma. Oncol Rep, 2004, 11(4):871-874.
    16. Guglielmi B, Werner M. The yeast homolog of human PinX1 is involved in rRNA and small nucleolar RNA maturation, not in telomere elongation inhibition. J Biol Chem, 2002, 277(38): 35712-35719.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700