用户名: 密码: 验证码:
高寒藏药材麻花艽及其体细胞杂种齐墩果酸合成关键酶-β-amyrin合成酶基因克隆及其功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
次生代谢产物关键酶基因的克隆及转化是植物次生代谢工程的研究热点。通过超量表达相关限速酶基因,来提高目标代谢物产量是植物代谢工程的主要策略之一。由于大多数植物次生代谢途径网络关系复杂;克隆基因及其功能鉴定的有效方法还较少,且非常耗时、效率低,结果所获得的次生代谢途径中的相关基因较少。目前,在基因水平上萜类合成途径研究较为清楚,三萜类代谢途径中的一些基因已被克隆,但有关中药材有效成分合成相关基因的发掘才刚刚开始。
     高寒藏药材—麻花艽主治黄疸性肝炎、胆结石等疾病,其野生资源匮乏。狭叶柴胡是著名的抗病毒感冒中药材。利用不对称体细胞杂交可转移并提高药效成分含量,实现药用成分合成基因在不同科、属、种间的相互转移。本实验室已获得齐墩果酸含量高的狭叶柴胡与麻花艽体细胞杂种,克隆了杂种的齐墩果酸合成关键酶—β-amyrin合成酶基因片段(蔡云飞博士论文,2006),但是,有关β-amyrin合成酶全长基因的克隆及其在体细胞杂种中的存在形式尚未有系统深入的研究。
     齐墩果酸是齐墩果烷型五环三萜化合物,是抗肝炎的有效成分之一。β-amyrin是齐墩果酸合成的前体物质,β-amyrin经氧化和羧化反应使28位C-上的烷基变为羧基,形成齐墩果酸,二者仅存在一个基团的差异。β-amyrin合成酶为氧化角鲨烯环化酶(OSCs)家族的一员,是合成β-amyrin及其下游产物齐墩果酸的关键酶。
     本研究以麻花艽、狭叶柴胡及其体细胞杂种为材料,开展抗肝炎有效成分齐墩果酸合成关键酶—β-amyrin合成酶基因的克隆、功能鉴定及其在体细胞杂种中的存在形式的研究。首次分离了麻花艽、狭叶柴胡及其体细胞杂种的9个β-amyrin合成酶的全长新基因;完成了β-amyrin合成酶GsAS1和GsAS2在原核大肠杆菌、真核酵母中的功能验证;实现了GsAS1和GsAS2对麻花艽胚性愈伤组织的转化,获得了齐墩果酸含量高的转基因植株,为进一步研究转基因植株及后代齐墩果酸代谢的分子机制奠定了基础。
     另一方面,本文系统地分析了β-amyrin合成酶基因在狭叶柴胡与麻花艽体细胞杂种中的存在方式、表达模式及其与齐墩果酸含量的关系,发现体细胞杂种的β-amyrin合成酶基因均来源于麻花艽,其表达水平与齐墩果酸含量关系密切,为进一步深入研究体细胞杂种中齐墩果酸代谢的调控机理提供了理论依据。分析了在诱导子茉莉酸甲酯(MeJA)处理下,齐墩果酸代谢途径中相关酶基因表达水平的差异,发现了MeJA通过诱导β-amyrin合成酶基因的过量表达来提高齐墩果酸的含量,从而证明了该基因为麻花艽及其体细胞杂种齐墩果酸合成的关键酶基因。利用改进的气相色谱-质谱(P&T-GC-MS)联用技术分离并鉴定了中药材水母雪兔子和盐地风毛菊的挥发性有机化合物成分,首次在盐地风毛菊中发现了2个未知成分,为中药材资源的进一步开发和利用奠定了基础。
     主要研究过程及实验结果包括:
     1.齐墩果酸合成关键酶—β-amyrin合成酶基因的克隆
     采用RACE-PCR技术,从麻花艽、狭叶柴胡及其体细胞杂种2Q、3Q、3Q1'中分离了9个β-amyrin合成酶基因的全长cDNA,分别命名为:GsAS1(Genbank号为FJ790411)、GsAS2、Bs AS、GsAS1a、GsAS1b、GsAS1c、GsAS2a、GsAS2b、GsAS2c。序列分析表明,它们的ORF核苷酸长度分别为:2268bp、2277bp、2289bp、2268bp、2277bp、2268bp、2277bp、2268bp、2277bp。分别编码755、758、762、755、758、755、758、755、758个氨基酸,蛋白质分子量均为88kDa。它们的蛋白质序列中均含有氧化角鲨烯环化酶家族成员的特征序列:即4个拷贝的QW阅读框[(K/R)(G/A)XX(F/Y/W)(L/I/V)XXXQXXXGXW]和1个DCTAE阅读框。其核苷酸和氨基酸同源性分别为:GsAS1/GsAS2为81.73%和81.13%;BsAS/GsAS1为78.90%和79.79%;BsAS/GsAS2为83.49%和89.11%:GsAS1a/GsAS1b/GsAS1c为100%;GsAS2a/GsAS2b/GsAS2c为99.96%和100%。上述9个基因的核苷酸和蛋白质序列同源性分别为91.3%和90.4%。
     系统树分析表明,上述基因均属于双子叶植物单功能的β-amyrin合成酶基因,氨基酸序列在进化上与人参、白桦、青蒿和紫菀等具有较高的同源性。用上述基因引物对柴胡、麻花艽及其杂种的基因组DNA进行PCR扩增,首次发现GsAS2、GsAS2a、GsAS2b、GsAS2c为没有内含子的β-amyrin合成酶基因。
     核苷酸序列比对发现,来自杂种的GsAS1a、GsAS1b、GsAS1c与麻花艽GsAS1序列完全一致;GsAS2b与麻花艽GsAS2序列完全一致;GsAS2a和GsAS2c与麻花艽GsAS2序列分别有1个和2个碱基的突变,但其编码的氨基酸序列一致,表明杂种的上述基因来源于供体,这些基因渐渗到了柴胡基因组中,并在杂种中表达。
     2.齐墩果酸代谢途径中相关基因的表达分析
     1)β-amyrin合成酶基因在麻花艽中的表达分析
     半定量RT-PCR和Real-time PCR分析表明,GsAS1和GsAS2在麻花艽叶片中高表达,在根和茎中的表达量甚微。GsAS1在叶中的表达量是根中的2.8倍,茎中的4.5倍;GsAS2在叶中的表达量是根中的5.1倍,茎中的4.2倍。
     2)麻花艽体细胞杂种及其双亲齐墩果酸合成相关基因表达及其与齐墩果酸含量关系
     选用β-amyrin合成酶、FPP合成酶、鲨烯合成酶、鲨烯环氧酶和环阿屯醇合成酶基因对杂种2Q、3Q、3Q1'及其双亲进行半定量RT-PCR分析,结果表明,β-amyrin合成酶和鲨烯合成酶基因的表达水平为:杂种3Q和3Q1'高于双亲,2Q低于双亲及3Q和3Q1'。环阿屯醇合成酶基因(分支途径基因)表达水平:2Q高于双亲及3Q和3Q1',3Q1'低于双亲及3Q和2Q,表明,3Q和3Q1'合成β-amyrin能力高于2Q。不同杂种中齐墩果酸合成相关基因表达水平存在明显差异,同一基因表达水平在不同杂种中亦存在明显差异。HPLC分析表明,麻花艽、狭叶柴胡及其杂种2Q、3Q、3Q1'齐墩果酸含量分别为0.195、0.129、0.108、0.473、0.350 mg/g,其中,2Q含量最低(低于双亲及3Q、3Q1'),3Q最高,3Q和3Q1'高于双亲。表明,3Q和3Q1'的β-amyrin合成酶基因表达水平高,其齐墩果酸含量高,2Q的β-amyrin合成酶基因表达水平低,其含量亦低。由此而知,杂种齐墩果酸合成相关基因表达与其含量呈正相关。
     3)诱导子MeJA对麻花艽齐墩果酸合成相关基因的表达及齐墩果酸含量的影响
     克隆齐墩果酸代谢途径相关的10个基因:HMG-CoA合酶、HMG-CoA还原酶、GPP合成酶、FPP合成酶、IPP异构酶、鲨烯合成酶、鲨烯环氧酶、环阿屯醇合成酶、羽扇豆醇合成酶和β-amyrin合成酶基因片段,分析MeJA处理下,上述基因的表达变化。
     (1)不同浓度MeJA诱导的目标基因表达模式:选用0、20、50、100、200和500 uM的MeJA处理麻花艽愈伤组织,取处理24h的材料进行半定量RT-PCR分析,结果表明,在20和50 uM下基因表达量高,为适宜的处理浓度。MeJA处理可显著提高β-amyrin合成酶基因及其上游途径的GPP合成酶、FPP合成酶、IPP异构酶、鲨烯合成酶和鲨烯环氧酶基因表达,对分支途径的羽扇豆醇合成酶和环阿屯醇合成酶基因影响不大。
     (2)不同时间MeJA诱导的目标基因表达模式:选用50 uM的MeJA处理麻花艽悬浮细胞系及其愈伤组织,分别取0h、6 h、12 h、24h、48h、3 d、5d的悬浮系及0h、6 h、12 h、24h、48h、4 d、7 d、10 d、14 d和21 d的愈伤组织进行半定量RT-PCR和Real-time PCR分析,结果表明,悬浮细胞系在MeJA处理6 h,β-amyrin合成酶、FPP合成酶和鲨烯合成酶基因表达上调,12 h达到最高,以后呈下降趋势。愈伤组织在MeJA处理6 h,β-amyrin合成酶基因表达明显上调,24 h达到最大,一直维持到10 d;鲨烯环氧酶基因表达亦略有上调,并维持到14 d;在MeJA处理24h,GPP合成酶、FPP合成酶、IPP异构酶基因表达明显上调,亦一直维持到14 d。环阿屯醇合成酶和羽扇豆醇合成酶基因的表达在6 h亦有略微上调,表明,MeJA对β-amyrin合成酶基因表达的影响最大,证实了该基因是齐墩果酸合成途径的重要关键酶基因。
     (3)MeJA处理麻花艽愈伤组织对齐墩果酸含量的影响:麻花艽愈伤组织在0.1 mMMeJA处理不同时间下的HPLC分析表明,随着处理时间的延长,齐墩果酸含量持续增加,在24 h-48 h间其增长率最高,到21 d时达到最高,为0.964 mg/g,比对照(未处理)增加5倍多。表明,MeJA能够显著提高齐墩果酸含量。
     (4)MeJA处理下β-amyrin合成酶基因表达与齐墩果酸含量的关系:MeJA处理12 h后,β-amyrin合成酶基因表达水平高,齐墩果酸含量亦增加,表明,β-amyrin合成酶基因表达水平与齐墩果酸含量呈正相关。
     4)水杨酸对麻花艽齐墩果酸合成相关基因表达的影响
     取50 uM水杨酸处理不同时间的麻花艽液体悬浮细胞系,对齐墩果酸代谢途径中主要的酶基因HMG-CoA合酶、IPP异构酶、FPP合成酶、鲨烯环氧酶、β-amyrin合成酶和环阿屯醇合成酶基因进行半定量RT-PCR分析。结果表明,仅有FPP合成酶基因表达在处理6 h时略有上调,其它基因表达没有变化,表明,水杨酸对齐墩果酸代谢途径相关基因表达没有影响。
     3.β-amyrin合成酶基因的功能鉴定
     1)原核细胞大肠杆菌的表达验证:构建了带有GsAS1与GsAS2的大肠杆菌表达载体(pET28(a)-GsAS1和pET28(a)-GsAS2),转化到表达型菌株BL21中,阳性克隆经IPTG诱导,提取蛋白进行SDS-PAGE分析,均获得了分子量大小为88.0 kDa的β-amyrin合成酶谱带。Western-blot分析表明,亦获得了一条β-amyrin合成酶谱带。
     2)酵母真核细胞的表达验证:构建了酵母表达载体pPICZA-GsAS1和pPICZA-GsAS2,转入毕赤酵母X-33中,SDS-PAGE分析发现,转GsAS1和GsAS2的酵母菌与对照相比均含有β-amyrin合成酶谱带,分子量大小为88.0kDa,证明该基因为可靠的β-amyrin合成酶基因。气相-质谱法(GC-MS)测定转GsAS1和GsAS2酵母表达产物发现,酵母转化菌同β-amyrin标准品均在15.20 min处存在一个峰,该峰具有β-amyrin所具有的五环三萜结构:218(C环结构峰);203[m/z 218-CH3],证明GsAS1和GsAS2能够表达,其产物具有β-amyrin合成酶活性,可在酵母中直接催化底物2,3-氧化角鲨烯生成β-amyrin,而未转基因酵母未检测出β-amyrin。
     3)麻花艽胚性愈伤组织的基因转化:采用gateway技术,构建了GsAS1和GsAS2的过表达载体(pK7WG2D-GsAS1和pK7WG2D-GsAS2)和RNAi载体(pK7GWIWG-GsAS1和pK7GWIWG-GsAS2)。利用基因枪法,将上述载体分别转入培养7d的麻花艽胚性愈伤组织(分化频率高,达90%以上),暗培养24h,在高浓度(50 mg/L)Kan下筛选出抗性愈伤组织。抗性愈伤组织在IB分化培养基上分化成苗后,用25 mg/L Kan进一步筛选再生植株,获得了111株抗性植株(GsAS1过表达系27株、GsAS2过表达系34株、GsAS1的RNAi系29株、GsAS2的RNAi系21株)。抗性植株总DNA用35S启动子引物进行PCR检测,GsAS1和GsAS2的过表达和RNAi植株转化频率分别为2.86%、3.13%、4.00%、2.94%。HPLC测定表明,GsAS1过表达植株齐墩果酸含量为对照植株的1.17-2.03倍,GsAS2过表达植株齐墩果酸含量为对照植株的1.67-2.46倍,GsAS2过表达植株齐墩果酸含量高于GsAS1过表达植株,而GsAS1和GsAS2的RNAi株系齐墩果酸含量比对照植株低很多。由此可见,GsAS1和GsAS2的过表达均促进了转基因植株齐墩果酸的积累,GsAS2的贡献较GsAS1大。
     4.中药材干植株材料化学成分的代谢谱研究
     水母雪兔子(雪莲)(Saussurea involucrate)和盐地风毛菊(Saussurea lacostei)的水溶性物质代谢图谱分析表明,水母雪兔子中共检出29种挥发性有机化合物(VOCs),盐地风毛菊中共检出24种VOCs,15种VOCs同时存在于两种材料中。首次在盐地风毛菊中发现2种新VOCs(a,a-二甲基-苯甲醇和1,8-亚乙基萘)。
Recently,the research hot spot of plant secondary metabolic engineering is turned into cloning and transfomation of genes coding key enzymes,of which the overexpression has been one of major strategies to increase the yield of target metabolin in this area.However,the related genes in the pathway were still known a little,according to the complexity of the relationship between metabolic pathways,the limited modus operandi to character functional gene.At present, the biosynthetic pathway of terpene was investigated at gene level and several genes were cloned. However,it is just started the research of gene discovery in Chinese crude drug.
     Gentiana straminea Maxim.(Mahuaqinjiao) is an important medicinal plant in China,and has anti-hepatitis activity,while its natural resources were threatened by excessive exploitation. Bupleurum scoronerifolium is one of the famous Chinese medicinal materials with an anti-cold activity.Somatic hybridization has been proven to increase the contents of effective components in the somatic hybrids and realize the transfer of the genes related with the medicinal components in interspecific,intergeneric or even inter-familial plants.The somatic hybrids of B.scoronerifolium and G.straminea with higher content of oleanolic acid had already been obtained in our lab.Theβ-amyrin synthase gene,which plays an important role in the synthesis of oleanolic acid,has a different expression in the parents and the hybrid(B.scoronerifolium with one copy,G.straminea with two and hybrid with two).However,cloning,function and existing way ofβ-amyrin synthase gene in the parents and the hybrids had short of systemic and comparative analysis.
     Oleanolic acid,having anti-hepatitis activity,belongs to oleanane type of pentacyclic triterpenoid.β-amyrin should be oxygenized and carboxylated at the C-28 position to form oleanolic acid.β-amyrin synthase,a member of oxidative squqlene family,is the key enzyme to synthesizeβ-amyrin and its downstream product oleanolic acid.
     In this work,the clone and functional analysis ofβ-amyrin synthase gene in the biparents and hybrids between B.scoronerifolium and G.straminea was studied.We isolated and clonedβ-amyrin synthase genes from the biparents and hybrid clones for the first time;verified the functiona of GsAS1and GsAS2 by E.coli,yeast;realized the transformation of GsAS1and GsAS2 in embryogenic calli of G.straminea;obtained many transgenic plants with higher content of oleanolic acid.It was laid a theoretical foundation for the advanced research about the regulation mechanism of oleanolic acid metabolism.
     On the other hand,we analyzed systematically the form existed and expression pattern ofβ-amyrin synthase gene in the somatic hybrids;investigated the relation between the gene expression level and the content of oleanolic acid;compared the difference of expression of the genes related with the oleanolic acid metabolic pathway under methyl jasmonic acid treatment; found the overexpression ofβ-amyrin synthase gene with the accumulation of oleanolic acid under methyl jasmonic acid treatment.In addition,we separated and identified the volatiles organic compounds in Chinese herb Saussurea involucrate and Saussurea lacostei.Two unknown components were detected by modified P&T-GC-MS which was laid a foundation for the exploitation of Chinese crude drug resources.
     The main process and results of this research were as follows:
     1.Cloning ofβ-amyrin synthase gene related with oleanollc acid metabolism
     Nine full-length DNA ofβ-amyrin synthase genes were isolated by RACE-PCR from G. straminea,B.scoronerifolium and their somatic hybrids(2Q、3Q、3Q1'),named GsAS1(GI: FJ790411),GsAS2,Bs AS,GsAS1a,GsAS1b,GsAS1c,GsAS2a,GsAS2b and GsAS2c respectively. Their open reading frame consists of 2268bp、2277bp、2289bp、2268bp、2277bp、2268bp、2277bp、2268bp、2277bp respectively,and predicted to encode a 755,758,762,755,758,755, 758,755,758 residue protein with molecular mass 88.0 kD.Their protein sequences shared the characteristic sequence of oxidative squqlene family,which contains 4 copy of QW reading frame[(K/R)(G/A)XX(F/Y/W)(L/I/V)XXXQXXXGXW]and 1 copy of DCTAE reading frame. Their nucleotide and amino acids sequence homology were as following:GsAS1/GsAS2 were 81.73%and 81.13%,BsAS/GsAS1 were 78.9%and 79.79%,BsAS/GsAS2 were 83.49%and 89.11%,GsAS1a/GsAS1b/GsAS1c were 100%,GsAS2a/GsAS2b/GsAS2c were 99.6%and 100.0%.Compared with the nucleotide and amino acids sequence of the 9 genes above, nucleotide and amino acids homology were 91.3%and 90.4%respectively.
     The phylogenetic analysis showed that all genes above are closely related to other plant OSCs,and particularly to the mono-functionalβ-amyrin synthases,while their amino acids sequence had higher homologous with Panax ginseng、Bupleurum Chinense、Artemisia annua and Aster sedifolius.GsAS2,GsAS2a,GsAS2b,GsAS2c didn't contain any intron by PCR,with their genomic DNA as the template using primers mentioned above.
     The analysis of nucleotide sequence indicated that GsAS1a/GsAS1b/GsAS1c(from hybrids) were consistent with GsAS1,GsAS2b were consistent with GsAS2(from G.straminea) respectively,while GsAS2a and GsAS2c had small mutation in GsAS2 with 1 and 2 bases respectively.Therefore,the nucleotide sequence homology analysis among above genes mentioned indicated that they all have the function ofβ-amyrin synthase.
     2.Expression profiling of the genes related with oleanolic acid synthesis pathway
     1) Expression pattern of GsAS1 and GsAS2
     The results of RT-PCR and Real-time PCR analyse showed that the expression of both GsAS1 and GsAS2 in the leaf was higher than in the roots and shoots.GsAS1 and GsAS2 are expressed in a tissue-specific manner,with its expression in the leaves being~2.8-fold and~5.1-fold than that in the roots,and~4.5-fold and~4.2-fold than that in the stems.
     2) Expression of the genes related and the content of oleanolic acid in the hybrids and the biparents
     The expression levels ofβ-amyrin synthase(AS),farnesyl pyrophosphate synthase(FPPS), squalene synthase(SQS),squalene epoxidase(SE) and cycloartenol synthase(CAS) in hybrids 3Q,3Q1',2Q and both parent lines were analyzed by RT-PCR.The results showed that the expression level of AS and SQS is 2Q< biparent lines<3Q=3Q1' and the expression level of CAS is 3Q1'     3) Expression of genes related and the content of oleanolic acid following elicitation by MeJA.
     Ten genes(HMG-CoA synthase,HMG-CoA reductase,GPP synthase,FPP synthase,IPP isomerase,squalene synthase,squalene epoxidase,cycloartenol synthase,lupeol synthase andβ-amyrin synthase) related with the oleanolic acid synthesis was cloned and their expression levels under MeJA treatment were analyzed by RT-PCR.
     (1) Gene expression pattern under different concentrations of MeJA treatment
     The genes expression levels of G.Straminea callus was analyzed by RT-PCR under 0uM、20 uM、50 uM、100 uM、200 uM and 500uM MeJA.The results indicated that the expression ofβ-amyrin synthase and GPP synthase,FPP synthase,IPP isomerase,squalene synthase,squalene epoxidase in G.Straminea Callus were up-regulated,cycloartenol synthase and lupeol synthase expression were not changed significantly by treated with 20 and 50 uM MeJA.
     (2) Genes expression pattern under different time of MeJA treatment
     The genes expression levels of G.Straminea suspension cell after 0、6h、12h、24h、48h、3d、5d under 50 uM MeJA treatment and G.Straminea callus after 0、6h、12h、24h、48h、4d、7d、10d、14d and 21d under 50 um MeJA treatment were analyzed by RT-PCR.The expression ofβ-amyrin synthase,FPP synthase and squalene synthase in suspension cell was up-regulated after 6h MeJA treatment and reached the highest expression level at 12h before decline.After 6h MeJA treatment,the expression ofβ-amyrin synthase in callus was enhanced markedly and the expression of squalene epoxidase,cycloartenol synthase and lupeol synthase was slightly enhanced.β-amyrin synthase reached the highest expression level at 24h and held the line to 10d. The higher expression of squalene epoxidase maintained to 14d.After 1d MeJA treatment,GPP synthase,FPP synthase and IPP isomerase had a significant up-regulation and also held the levl towards 14d.The results above suggested that MeJA has a remarkable effect onβ-amyrin synthesis and proved theβ-amyrin synthase is a key gene in oleanolic acid metabolic pathway.
     (3) The content of oleanolic acid content in G.straminea callus following elicitation by MeJA
     The oleanolic acid content of G.straminea callus treated after different time under 0.1 mM MeJA was continuously increased by HPLC.It reached the highest increase rate during 24h and 48h.It had the highest content 0.964mg/g at 21d which was 5 times as the control line, demonstrated that the MeJA treatment can remarkably increase the oleanolic acid content.
     (4) The relationship between the expression level ofβ-amyrin synthase and the content of oleanolic acid under the MeJA treatment
     After 12h MeJA treatment,the expression ofβ-amyrin synthase elevated and the content of oleanolic acid also increased,demonstrated that the expression level ofβ-amyrin synthase was positive correlated with the content of oleanolic acid.
     4) Expression of the genes related with oleanolic acid synthesis under Salicyli acid(SA) treatment
     HMG-CoA synthase,FPP synthase,IPP isomerase,squalene epoxidase,cycloartenol synthase andβ-amyrin synthase are the key genes in oleanolic acid metabolic pathway.Their expression levels of G.straminea suspension cell after 0h,6h,12h,24h,48h,4d and 7d under 50 um SA treatment wer analyzed by RT-PCR.The result only shows a slightly up-regulation on the FPP synthase at 6h,suggesting that SA has no affection on the expression of the genes related with oleanolic acid synthesis.
     3.Functional verification of GsAS1 and GsAS2
     1) Functional verification in prokaryotic cells(E.coli)
     The E.coli expression vectors pET28a-GsAS1 and pET28a-GsAS2 were constructed and transformed into E.coli BL21.The protein of the positive clone was extracted after induced by IPTG then analyzed by SDS-PAGE.A 88kDa band was detected which is identity withβ-amyrin synthase.Western-blot analysis determined that GsAS1 is a His-tag protein and its molecular weight is bigger(>90kDa) than expected due to some post-translational modification.
     2) Functional verification in Pichia pastoris
     The yeast expression vectors pPICZA-GsAS1 and pPICZA-GsAS2 were constructed and transformed into Pichia pastoris X-33.SDS-PAGE analyze detected an 88kDa band in transformed P.pastoris strains which identity toβ-amyrin synthase,proved that GsAS1 and GsAS2 are functionalβ-amyrin synthase gene.GC-MS analysis showed the positive transformed P.pastoris strains had an identical product at 15.20min withβ-amyrin synthase and shared the same construction withβ-amyrin synthase(m/z 426[M+];411[M+-CH3];393 [M+-H2O-CH3];218(C-ring fragment peak);203[m/z 218-CH3]),while the control strain did not have this product.The results proved GsAS1and GsAS2 can be expressed in P.pastoris and its product has the identity bioactivity withβ-amyrin which is synthesisβ-amyrin synthase which can catalyse epoxy squalane intoβ-amyrin.
     3) Functional identification by expressed in G.Straminea
     Plant overexpression vector(pK7WG2D) and RNAi vector(pK7GWIWG) were constructed using gateway technique and transferred into 7d grown callus of Gentiana Straminea by particle gun.After 24hours dark cultivation,the calli was selected in the culture medium with 50mg/L kanamycin.Surviving calli were then transferred to differentiation medium(IB).Rooted seedlings were continuely selected by kanamycin in the differentiation medium.A total of 111 resistant lines(GsAS1overexpression plants 27 lines,GsAS2 overexpression plants 34 lines, GsAS1 RNAi plants 29 lines and GsAS2 RNAi plants 21 lines) were gained in this way.GsAS1 and GsAS2 specific PCR primers were designed to conform by amplify a fragment of GsAS1 and GsAS2 from genome of resistant plants.The transformation rate was caculated (GsAS1overexpression 2.86%,GsAS2 overexpression 3.13%,GsASIRNAi 4.00%and GsAS2 RNAi 2.94%).HPLC analysis determined that the G.Straminea overexpressed GsAS1 contents 17%-113%more oleanolic acid than the control line and the G.Straminea overexpressed GsAS2 contents 67%-146%more oleanolic acid than the control line.As expected the RNAi lines had lower oleanolic acid content than the control line It proves that over expression the GsAS1 and GsAS2 increased the accumulation of oleanolic acid in transgenic plants and GsAS2 made much greater contribution than GsAS1.
     4.Study on metabolic profiling of S.involucrate and S.lacostei
     The analysis of water-soluble substance in S.involucrate and S.lacostei showed that there were 29 volatile organic compounds(VOCs) in S.involucrate and 24 VOCs in S.lacostei.15 VOCs of them existed in both materials.What's more,a,a-dimethyl-benzenemethanol and acenaphthylene was first found in S.lacostei
引文
1. Akagi H., Sakamoto M., Negishi T., Fujimura T., Construction of rice cybrid plants. Mol. Gen.Genet,1989.215: p. 501-506.
    
    2. Aspostol I., Low P. S., Heinstein P., Effect of age of cell suspension culture on susceptibility to a fungal elicitor. Plant Cell Rep, 1989.7:p. 692-695.
    
    3. Astudillo L., Rodri guez J. A., Schmeda-Hirschmann G, Gast roprotective activity of oleanolic acid derivatives on experimentally induced gastric lesions in rats and mice. J. Pharm. Pharmacol, 2002, 54(4) :p.583-489.
    
    4. Aviv D. Fuluhr R, Edelman M &Galun E, Progeny analysis of the interspecific somatic hybrids:Nicotiana tabacum (cms) +Nicotiana sylvestris with respect to nuclear and chloroplasts markers.Theor Appl Genet,1980.56:p.145-150
    
    5. Bach T. J., Synthesis and metabolism of mevanoic acid in plants. Plant Physiol. Biochem,1987.147:p.163-178.
    
    6. Back K., Chappell J.,Cloning and bacterial expression of a sesquiterpene cyclase from hyoscyamus muticus and its molecular comparison to related terpene cyclases. J. Biol. Chem,1995.270:p.7375-7382.
    
    7. Bates G W. .Treatment of the donor protoplasts with lethal doses of a mutagen has the additional positive effect of elimination of protoplasts not involved in the fusion. Theor. Appl. Genet, 1987. 74:p.718-726.
    
    8. Begum F, Paul S, Bag N,et al. , Somatic hybrids between Brassica juncea (L.)czern and Diplotaxis harra (forsk) boiss and the generation of backcross progenies. Theor Appl Genet,1995.91:p.1167-1172.
    
    9. Bertea C. M, Freije J. R., van der Woude H.,et al., Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. Planta Med,2005. 71:p.40-47.
    
    10. Bohlmann J., Crock J., Jetter R.,Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-alpha-bisabolene synthase from grand fir (Abies grandis). Proc. Natl. Acad. Sci. USA,1998. 95:p.6756-6762.
    
    11. Bohlmann J., Martin D., Oldham N. J.,Terpenoid secondary metabolism in Arabidopsis thaliana : cDNA cloning , characterization , and functional expression of a myrcene (E)-beta-ocimene synthase. Arch Biochem Biophys , 2000,.375:p.261-268.
    
    12. Bohlmann J., Meyer-Gauen G., Croteau R.,Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc. Natl .Acad. Sci. USA, 1998. 95(8):p. 4126- 4133.
    
    13. Bohlmann J., Phillips M., Ramachandiran V., cDNA cloning, characterization and functional expression of four new monoterpene synthase members of the Tpsd gene family from grand fir (Abies grandis). Arch. Biochem. Biophys.,1999. 368:p. 232-238.
    
    14. Bohlmann J., Steele C. L., Croteau R., Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (2)-(4S)-limonene synthase, and (2)-(lS ,5S)-pinene synthase. J. Biol. Chem, 1997.272:p.21784-21793.
    
    15. Bradley D. J., Kjllbom P., Lamb C. J., Elicitor- and wound-induced oxidative cross-linkin of a proline-rich plant cell wall protein: Anovel, rapid defense response. Cell, 1992. 70:p.21-30.
    
    16. Buiteveld J, Suo Y, Van L, et al., Production and characterization of somatic hybrid plants between leek (Allium ampeloprasum L.) and onion (Allium cape L.). Theor. Appl. Genet., 1998. 96:p.765-775.
    
    17. Burke C. C/, Wildung M. R., Croteau R.,Geranyl diphosphate synthase:Cloning, expression and characterization of this prenyltransferase as a heterodimer. PNAS, 1999. 96 :p.13062-13072.
    
    18. Cane D. E., BIOSYNTHETIC PATHWAYS : Biosynthesis Meets Bioinformatics. Science,2000.287:p.818-821.
    
    19. Carlson P.S, Smith H H & Dearing R D, Parasexual interspecific plant hybridization, Proc. Nat.Acad. Sci. USA, 1972, 69:2292-2294.
    
    20. Chen X. Y., Chen Y, Heinstein P., et al.,Cloning, expression and characterization of cadiene synthase: a catalyst for cotton phytoalexin biosynthesis. Arch. Biochem. Biophys,1995. 324: p.255-266.
    
    21. Chen X. Y., Wang M., Chen Y, Cloning and heterologous expression of a second ( + )-delta-cadinene synthase from Gossypium arboreum. J. Nat. Prod,1996.59: p.944- 960.
    
    22. Choi C. Y., You H. J., Jeong HG,Nitric oxide and tumor necrosis factor-alpha production by oleanolic acid via nuclear factor-kappaB activation in macrop hages. Biochem. Biophys. Res.Commun,2001.288 (1): p.49-56.
    
    23. Choi.D.,Ward.B.L.,Bostock.R.M.,Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme Areductase genes in response to Phytophthora infestans and to its elicitor arechidonic acid. Plant Cell, 1992.4:p.1333-1344.
    
    24. Choi D.W., Jung J., Ha Y. I., Analsis of transcripts in methylmonate-treated ginseng hairy roots to identity genes involved in the biosynthesis ginsenosides and other secondary metabolites. Plant Cell Rep, 2005. 23(8):p.557-566.
    
    25. Chye M. L., Tan C. T., Chua N. H., Three genes encode 3-hydroxy-3-methylglutaryl- coenzyme A reductase in Hevea brasiliensis:hmg1 and hmg3 are differentially expressed. Plant Molecular Biology,1991.4:p.l57-164.
    
    26. Cocking EC, A method for the isolation of plant protoplasts and vacuoles.Nature ,1960.187:p.962-963.
    
    27. Colby S. M., Alonso W. R., Katahira E. J., 4S-limonene synthase from the oil glands of spearmint (Mentha spicata): cDNA isolation characterization and bacterial expression of the catalytically active monoterpene cyclase. J. Biol. Chem, 1993. 268:p. 23016-23023.
    
    28. Colby S. M., Crock J., Dowdle-Rizzo B., Germacrene C synthase from Lycopersicon esculentum cv VFNT cherry tomato: cDNA isolation, characterization and bacterial expression of the multiple product sesquiterpene cyclase. Proc. Natl. Acad. Sci. USA, 1998. 95:p. 2216-2221.
    
    29. Degenhardt J., Gershenzon J. ,Demonstration and characterization of (E)-nerilidol synthase from maize: a herbivore-inducible terpene synthase participating in (3E)-4,8-dimethyl-l,3,7-nonatriene biosynthesis. Planta, 2000. 210:p. 815-822.
    
    30. Delourme D., Lacroute R, Cloning of Arabidopsis thaliana cDNA coding for faraesyl diphosphate synthase by functional complementation in yeast. Plant Mol. Biol, 1994. 26: p.1867-1873.
    
    31. Dietrich A., Mayers J. E., Hahlbrock K., Fungal elicitor triggers rapid, transient, and specific protein phosphorylation in parsley cell suspension cultures. J. Biol. Chem,1990,265:p. 6360-6368.
    
    32. Disch A., Schwender J., Muller C.,et al,, Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem. J, 1998,333:p. 381-388.
    
    33. Dixon R. A., Engineering of plant natural product pathways. Curr. Opin. Plant Biol, 2005.8:p.329-336.
    
    34. Dixon R. A., Harrison M. J., Lamb C. J., Early events in the activation of plant defence responses. Ann.Rev. Phytopathol, 1994,32:p. 479-501.
    
    35. Dixon R. A., Lamb C. J., Molecular communication in interactions between plants and microbial pathogens. Ann. Rev. Plant Physiol. Plant Mol. Biol., 1990.41:p.339-367.
    
    36. Donaldson P A, Bevis E E, Pandeya R S, et al, Random chloroplast segregation and frequent mtDNA rearrangements in fertile somatic hybrids between Nicotiana tabacum L. and N. glutinosa L. Theor.Appl. Genet, 1994.87:p.900-908.
    
    38. Dudareva N., Cseke L., Blanc V. M., Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C breweri flower. Plant Cell, 1996. 8:p.1137-1144.
    
    39. Dueber M. T., Adolf W., West C. A., Biosynthesis of the diterpene phytoalexin casbene: partial purification and characterization of casbene synthetase from Ricinus communis. Plant Physiol, 1978.62:p.598-603.
    
    40. Ebel J., Phytoalexin synthesis: the biochemical analysis of the induction process. Ann. Rev.Phytopathol,1986.24: p.235-264.
    
    41. Ebel J., Cosio E. G., Elicitors of plant defense responses. Inter. Rev. Cytol, 1994. 148:p. 1-36.
    
    42. Eilert U., Constabel F., Kurz W. G. W.,Elicitor-stimulation of monoterpene indole alkaloid in suspension cultures of Catharantus roseus. J. Plant Physiol, 1986. 126 :p.ll-22.
    
    43. Eilert U., Kurz W. G. W., Constabel F. J., Stimulation of sanguinarine accumulation in Papaver somniferum cell cultures by fungal Elicitors[J]. Plant Physiol, 1985.119:p. 65-76.
    
    44. Eisenreich W., Schwarz M., Cartayrade A.,The deoxyxylulosephosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol, 1998. 5:p.221-226.
    
    45. Facchini P. J., Chappell J., Gene family for an elicitor-induced sesquiterpene cyclase in Tobacco.PNAS, 1992.89: p.11088-11097.
    
    46. Feher A., Preiszner J., Litkey Z.,et al., Characterization of chromosome instability in interspecific somatic hybrids obtained by X-ray fusion between potato {Solarium tuberosum L.) and S. brevidens Phil. Theor. Appl. Genet,1992. 84:p. 880-890.
    
    47. Felix G, Grosskopf D. G, Regenass M., et al., Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Proc. Natl. Acad. Sci. USA,1991. 88:p. 8831-8834.
    
    48. Fischbach R. J., Zimmer W., Schnitzler J. P., Isolation and functional analysis of a cDNA encoding a myrcene synthase from holm oak {Quercus ilex L.). Eur. J. Biochem,2001. 268:p. 5633-5639.
    
    49. Fliigge U.-I., Gao W.,Transport of isoprenoid intermediates across chloroplast envelop membranes.Plant Biol,2005.7:p. 91-97.
    
    50. Forsberg J, Dixelius C, Lagercrantz U, et al., UV dose-dependent DNA elimination in asymmetric somatic hybrids between Brassica napus and Arabidopsis thaliana. Plant Sci, 1998a. 131 :p.65-76.
    
    51. Funk C., G(?)gler K., Brodelius P., Increased secondary product formation in plant cell suspension cultures after treatment with a yeast carbohydrate preparation (elicitor). Phytochem, 1987. 26:p.401-406.
    
    52. Gavrilenko T.A, Barbakar N.I & Pavlov A.V, Somatic hybridization between Lycopersicon esculentum and non-tuberous Solanum species of the Etuberosa series. Plant Sci.,1992,.86:p.203-214
    
    54. Glimelius K., Fahleson J., Landgren M.,et al., Gene transfer via somatic hybridization in plants. Trends Biotech,1991.9:p.24-30
    
    55. Hagimori M, Matsui M, Matsuzaki T, Shinozaki Y, Shinoda T & Harada H, Production of somatic hybrids between Nicotiana benthamiana and N. tabacum and their resistance to aphids. Plant Sci. 1993,91:213-222.
    
    56. Hahlbrock K., Scheel D., Logemann E., Oligopeptide elicitor-mediated defense gene activation in cultured parsley cells. Proc. Natl. Acad. Sci. USA, 1995. 92:p. 4150-4157.
    
    57. Hahn M.G, Microbial elicitors and their receptors in plants. Ann. Rev. Phytopathol,1996.34:p.387-412.
    
    58. Hallahan D. L., West J. M., Wallsgrove R. M.,et al., Purification and characterization of an acyclic monoterpene primary alcohol:NADP+ oxidoreductase from catmint (Nepeta racemosd). Arch.Biochem. Biophys, 1995,.318:p.l05-112.
    
    59. Haralampidis K., Trojanowska M., Osbourn A.E., Biosynthesis of triterpenoid saponins in plants. Adv.Biochem. Eng. Biotechnol, 2002.75:p.31-49.
    
    60. Hayashi H., Huang P., Inoue K., Molecular cloning and characterization of isomultiflorenol synthase, a new triterpene synthase from Luffa cylindrica, involved in biosynthesis of bryonolic acid. Eur. J.Biochem, 2001. 268:p.6311-6318.
    
    61. Hayashi H., Huang P., Kirakosyan A.,et al., Cloning and characterization of a cDNA encoding β-amyrin synthase involved in glycyrrhizin and soyasaponin biosyntheses in Licorice.Biol. Pharm.Bull,2001. 24:p.912-916.
    
    62. Heath D.W, & Earle E.D, Synthhesis of ogura male sterile rapeseed (Brassica napus) with cold tolerance by protoplast fusion and effects of atropine resistance on seed yield. Plant Cell Rep.,1996.15:p. 939-944.
    
    63. Herrera J. B., Bartel B., Wilson W K., Cloning and characterization of the Arabidopsis thaliana lupeol synthase gene. Phytochemistry,1998 .49:p.1905-1911.
    64. Herz S., Wungsintaweekul J., Schuhr C. A. Biosynthesis of terpenoids:YgbB protein converts 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate to 2C-methyl-D- erythritol 2,4-cyclodiphosphate. Proc. Natl. Acad. Sci. USA, 2000. 97(2):p. 486-2493.
    
    65. Homann V., Mende K., Arntz C, The isoprenoid pathway: cloning and characterization of fungal FPPS genes. Curr. Genet, 1996,.30: p.232-239.
    
    66. Husselstein-Muller T., Schaller H., Benveniste P., Molecular cloning and expression in yeast of 2,3-oxidosqualene2triterpenoid cyclases from Arabidopsis thaliana. Plant Mol. Biol, 2001.45:p. 75-82.
    
    67. Jomaa H., Wiesner J., Sanderbrand S.,et al., Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science ,1999.285(1):p. 573-576.
    
    68. Joseph C, Biochemistry and molecular biology of the isoprenoid biosynthetic parthway in plants.Plant Mol. Biol,1995.20:p.34-40.
    
    69. Jun Murata, Jonathon Roepke, Heather Gordon,et al., The Leaf Epidermome of Catharanthus roseus Reveals Its Biochemical Specialization. The Plant Cell, 2008.20:p. 524-542.
    
    70. Kao K. N., Michayluk M. R., A method for high-frequency intergeneric fusion of plant protoplasts.Planta,1974. 115:p.335-367.
    
    71. Keen N. T, Specific elicitors of plant phytoalexin production: determinants of race specificity in pathogens?. Science, 1975. 187:p.74-75.
    
    72. Kisaka H, Kisaka M, Kanno A, Kameya T, Intergeneric somatic hybridization of rice (Oryza sativa L.) and barley (Hordeum vulgare L) by protoplast fusion, Plant Cell Reports, 1998. 17: p.362~367.
    
    73. Kleinig H., The role of plastids in isoprenoid biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol,1989.40:p.39-59.
    
    74. Kobayashi H.,Naciri-Graven Y.,Broughton W. J.,et al.,Flavonoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234. Mol. Microbiol, 2004. 51:p.335-347.
    
    75. Kombrink E.,Somssich I. E.,Defence responses of plants to pathogens. Adv. Bot. Res., 1995. 21:p.1-34.
    
    76. Korfhage U., Trezzini G. F., Meier I., Plant Homeodomain Protein Involved in Transcriptional Regulation of a Pathogen Defense-Related Gene. The Plant Cell, 1994. 6:p. 695-708.
    
    77. Krisans S. K., Ericsson J., Edwards P.A., Farnesyl-diphosphate synthase is localized in peroxisomes. J.Biol. Chem, 1994. 269:p.l4165-14171.
    78. Kurosaki F., Tsurusawa Y., Nishi A., The elicitation of phytoalexins by. Ca~(2+) and cyclic AMP in carrot cells. Phytochem,1987. 26:p.1919-1923.
    
    79. Kushiro T., Shibuya M., Ebizuka Y, Beta-amyrin synthase-cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Eur. J.Biochem, 1998.256:p. 238-245.
    
    80. Kuzuyama T., Takagi M., Takahashi S., et al., Cloning and characterization of 1-deoxy-D-xylulose 5-phosphate synthase from Streptomyces sp. Strain CL190, which uses both the mevalonate and nonmevalonate pathways for isopentenyl diphosphate biosynthesis. J. Bacteriol, 2000.182: p.891-897.
    
    81. Lamb C. J., Lawton M. A., Dron M, In : Keen N T et al (ed) . Physiology and biochemist ry of plant-microbe interactions. Amer. Soc. Plant Physiol,1988. p. 120-123.
    
    82. Lange B. M. , Rujan T., Martin W., et al., Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc. Natl. Acad. Sci. USA, 2000. 97 (13) :p.l72-177.
    
    83. Lange B. M., Croteau R., Isoprenoid biosynthesis via a mevalonate independent pathway in plants:cloning and heterologous expression of 1-deoxy-D-xylulose- 5-phosphate reductoisomerase from pepper mint. Arch. Biochem. Biophys, 1999.365:p.l70-176.
    
    84. Lange B. M.,Wildung M. R., McCaskill D., A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proc.Natl.Acad.Sci.USA, 1998. 95:p.2100-2104.
    
    85. Li J., Guo W. J. ,Yang Q. Y, Effect s of ursolic acid and oleanolic acid on human colon carcinoma cell line HCT15.World J. Gastroenterol, 2002.8 (3) :p.493-499.
    
    86. Li Y G, Stoutjestijk P. A., Larkin P. J., Somatic hybridization for plant improvement. In: Soh W-Y,Bhojwani SS (eds) Morphogenesis in plant tissue cultures. Kluwer Academic Publishers, Dordrecht,1999.p. 363-418.
    
    87. Lichtenthaler H. K., The l-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. ,1999.50:p.47-53.
    
    88. Liu B, Liu Z L, Li X W, Production of a highly asymmetric somatic hybrid between rice and Zizania latifolia (Griseb): evident for inter-genomic exchange. Theor Appl Genet, 1999.98:p. 1099-1103
    
    89. Liu J.H., Dixelius C, Eriksson I. et al., Brassica napus (+) B. tournefortii, a somatic hybrid containing traits of agronomic importance for rapeseed breeding. Plant Science, 1995.109(l):p. 75-86.
    
    90. Liu Y L., Cai Y. F.,' Zhao Z. J.,et al., Cloning and functional analysis of a P-amyrin synthase gene associated with oleanolic acid biosynthesis in Gentiana straminea Maxim. Biol. Pharm. Bull,In press.
    91. Lois L. M., Campos N., Putra S. R.,Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of D-1-deoxyxylulose 5-phosphate ,a common precursor for isoprenoid, thiamin , and pyridoxol biosynthesis. Proc. Natl. Acad. Sci. USA,1998. 95:p.2105-2111.
    
    92. Lois R., Diet rich A., Hahlbrock K.,et al., A phenylalanine ammonia-lyase gene from parsley: structure,regulation and identification of elicitor and light responsive cis-acting elements.EMBO J,1989.8:p.1641-1648.
    
    93. Loreto E, Different sources of reduced carbon contribute to form three classes of terpenoid emitted by Quercus ilex L. leaves. Proc. Natl. Acad. Sci. USA ,1996. 93(9):p. 966-972.
    
    94. Loreto F., Velikova V., Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol, 2001.127:p.1781-1787.
    
    95. Lu Q. N., Yang Q., Zou H. W. ,Effects of cerium on the accumulation of anthocyanins and expression of a nthocyanin biosynthetic genes in in-vitro potato tissue . Journal of rare earths, 2006.24(4):p.479-484.
    
    96. Lu S., Xu R., Jia J. W., et al., Cloning and functional characterization of a beta-pinene synthase from Artemisia annua that shows a circadian pattern of expression. Plant Physiol,2002. 130:p.477-486.
    
    97. Luo P., Wang Y. H., Wang G D., et al.,Molecular cloning and functional identification of (+)-delta-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. Plant J, 2001. 28:p.95-104.
    
    98. Lupien S., Karp R, Wildung M., et al. Regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha) species: cDNA isolation, characterization, and functional expression of (-)-4S-Hmonene-3-hydroxylase and (-)-4S-limonene-6- hydroxylase. Arch. Biochem. Biophys,1999.368:p.181-192.
    
    99. Maria C, Maria R C, Paola P., et al., Molecular characterization of β-amyrin synthase from Aster sedifolius L. and triterpenoid saponin analysis. Plant Science,2005. 8:p.l51-158.
    
    100. Martin V. J., Pitera D. J., Withers S. T.,et al., Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotech, 2003. 21:p.796-802.
    
    101. Maruyama T., Ito M., Honda G,Molecular cloning, functional expression and characterization of (E)-beta farnesene synthase from Citrus junos. Biol. Pharm. Bull,2001. 24: p.1171-1179.
    102. Masataka K., Katsuyuki T., Yamato, et 1., Cloning and characterization of a cDNA encoding P-amyrin synthase from petroleum plant Euphorbia tirucalli L. Phytochemistry,2005.66: p.1759-1766.
    
    103. Masferrer A., Arro M., Manzano D.,Overexpression of Arabidopsis thaliana farnesyl diphosphate synthase (FPAIS) in transgenic Arabidopsis induces a cell death/senescence like response and reduced cytokinin levels. Plant J,2002.30(2):p.l23-132.
    
    104. Mat suda H., Li Y., Murakami T., Protective effects of oleanolic acid oligoglycosides on ethanol-or indomethacin-induced gast ricmucosal lesions in rats.Life Sci, 1998. 63 (17):p. 245-252.
    
    105. Mat suda H.,Li Y, Yoshikawa M., Roles of capsaicin-sensitive sensory nerves, endogenous nitric oxide, sulf hydryls, and prostaglandins in gast roprotection by momordin Ic ,an oleanolic acid oligoglycoside ,on et hanol-induced gast ric mucosal lesions in rats. Life Sci.,1999.65(2):p.27-35.
    
    106. Mau C. J., West C. A., Cloning of casbene synthase cDNA: evidence for conserved structural features among terpenoid cyclases in plants. Proc. Natl. Acad. Sci. USA, 1994. 91:p. 8497-8502.
    
    107. Melchers G, Sacristan M. D & Holder A A, Somatic hybrid plants of potato and tomato regenerated from fused protoplasts,Carlsberg Res Commun,1978. 43:p.203-218
    
    108. McAteer S., Coulson A., McLennan N., et al., The lytB gene of Escherichia coli is essential and specifies a product needed for isoprenoid biosynthesis. J. Bacteriol, 2001. 183(7):p.403-407.
    
    109. Mitchell L.,Wise Thomas J.,Monoterpene synthases from common sage (Salvia qfficinalis). J. Biol.Chem,1998. 273:p.l4891-14899.
    
    110. Mohammad B., Hirosuke O., Masashi I., et al., Molecular cloning and functional expression of a multifunctional triterpene synthase cDNA from a mangrove species Kandelia candel (L.) Druce.Phytochemistry,2006. 67: p.2517-2524.
    
    111. Morita M., Shibuya M., Kushiro T, Molecular cloning and functional expression of triterpene synthases from pea ( Pisum sativum) new alpha-amyrin-producing enzyme is a multifunctional triterpene synthase. Eur. J. Biochem, 2000. 267:p.3453-3459.
    
    112. Morrissey J. P., Osbourn A. E., Fungal resistance to plant antibiotics as a mechanism of pathogenesis.Microbiology and molecular biology reviews, 1999. 63:p.708-724.
    
    113. Mukundan U., Hjortso M. A., Effect of Fungal Elicitors on Thiophene Production in Hairy Root Cultures of Tagetes patula. Appl. Microbiol. Biotechnol, 1990. 33: p.145-147.
    
    114. Newman J. D., Chappell J., Isoprenoid biosynthesis in plants:carbon partitioning within the cytoplasmic pathway. Crit. Rev. Biochem. Mol. Biol,1999. 34:p.95-100.
    
    115. Nurnberger T, Nennstiel D, Jabs T, et al., High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell, 1994.78:p.449-460.
    
    116. Ohashi Y., Ohishima M., Stress- induced expression of genes for Pathogenesis-related proteins in plants. Plant Cell Physiol,1992. 33:p. 819-826.
    
    117. Ok T. K., Min Y. K., Sun M. H., et al., Cloning of a cDNA probably encoding oxidosqualene cyclase associated with asiaticoside biosynthesis from Centella asiatica (L.). Urban. Plant Cell Rep, 2005. 24:p.304-311.
    
    118. Okada K., Saito T., Nakagawa T., Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol,2000.122 :p.l045-1052.
    
    119. Osbourn A. E., Preformed antimicrobial compounds and plant defense against fungal attack. The plant cell, 1996. 8:p.l821-1831.
    
    120. Ovesna Z.,Vachalkova A., Horvat hova K., Pentacyclict riterpenoic acids mew chemop rotective compounds Minireview. Neoplasma, 2004. 51 (5) :p.327-334.
    
    121. Piastuch W.C. & Bates GW., Chromosomal analysis of Nicotiana asymmetric somatic hybrids by dot blotting and in situ hybridization,Mol Gen Genet, 1990. 222:p.97-103.
    
    122. Pimpimon T., Masaaki S., Tetsuo K., et al., Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng. FEBS Letters, 2006. 580:p.5143-5149.
    
    123. Qi X., Bakht S., Leggett M., et al., A gene cluster for secondary metabolism in oat: Implications for the evolution of metabolic diversity in plants. PNAS,2004. 101(21):p.8233-8238.
    
    124. R.X.Tan.,A cylsecoiridiods antifungal constituents from Gentiana macrophyll. Phytochemistiy, 1997.43(5): p.1205-1212.
    
    125. Rambaud C, Dubois J & Vassuer J, Male-sterile chicory cybrids obtained by intergeneric protoplast fusion. Theor. Appl. Genet. ,1993. 87:p.347-352
    
    126. Ramos-Valdivia A. C., van der H. R., Verpoorte R., Isopentenyl diphosphate isomerase: a core enzyme in isoprenoid biosynthesis. A review of its biochemistry and function. Nat. Prod. Rep, 1997.14:p.591-597.
    127. Ranansky J., Erdelsky K., Ziegler W.,et al., Fungal elicitors-active biological substances of fungi attacking cells of higher plants. Biologia, B rat islava, 1996. 51 (4):p. 471—477.
    
    128. Ranjeva R., Boudet A. M., Phosphorylation of proteins in plants: Regulatory effects and potential involvement in stimulus/response coupling. Ann. Rev. Plant Physiol, 1987. 38:p.73-93.
    
    129. Raskin I., Salicylate,a new hormone . Plant Physiol, 1992. 99:p.799-803.
    
    130. Raymond E.B., Ketchuma, Christopher D.,et al., Taxus metabolomics: methyl jasmonate preferentially induces production of taxoids oxygenated at C-13 in Taxus x media cell cultures. Phytochemistry,2003.62: p.901-909.
    
    131. Renelt A., Colling C, Hahlbrock K., Studies on elicitor recognition and signal transduction in plant defence. J. Exp. Bot, 1993.44:p.257-268.
    
    132. Rodriguez J. A.,Astudillo L.,Schmeda-Hirschmann G, Oleanolic acid promotes healing of acetic acid-induced chronic gastric lesions in rats. Pharmacol. Res, 2003.48 (3): p.291-296.
    
    133. Rodriguez-Concepcion M., Ahumada I., Diez-J uez E., l-Deoxy-D2-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening. Plant J,2001.27:p.213-218.
    
    134. Rodriguez-Rodriguez R., Herrera M. D., Perona J. S., Potential vasorelaxant effects of oleanolic acid and erythrodiol, two triterpenoids contained in'orujo'olive oil, on rat aorta. Br. J, Nutr,2004. 92(4):p.635-641.
    
    135. Rohdich F., Eisenreich W., Wungsintaweekul J., Biosynthesis of terpenoids: 2C-Methyl-D-erythritol 2 ,4-cyclodiphosphate synthase ( IspF) from Plasmodium falciparum. Eur. J. Biochem, 2001.268:p.3190-3197.
    
    136. Rohdich F., Wungsintaweekul J., Fellermeier M., Cytidine 5'triphosphate-dependent biosynthesis of isoprenoids:YgbP protein of Escherichia coli catalyzes the formation of 4-diphosphocytidyl-2-C-methylerythritol. PNAS, 1999. 96(11):p. 758-765.
    
    137. Sacchettini J. C, Poulter C. D., Creating isoprenoid diversity. Science, 1997. 277:p.l788-1796.
    
    138 Salzer P., Hebe G, Reith A., Rapid reactions of spruce cells to elicitors released from the ectomycorrhizal fungus Hebeloma crustuliniforme, and inactivation of these elicitors by extracellular spruce cell enzymes. Planta, 1996. 198:p.118-126.
    
    139. Savage T. J., Hatch M. W., Croteau R., Monoterpene synthases of Pinus contorta and related conifers:A new class of terpenoid cyclase. J. Biol. Chem, 1994. 269:p. 4012- 4018.
    140. Scheel D., Parker J. E., Elicitor recognition and signal transduction in plant defense gene activation. Z Nat urf orsch., 1990.45: p.569-575.
    
    141. Schepmann H. G, Pang J., Matsuda S. P., Cloning and characterization of Ginkgo biloba levopimaradiene synthase which catalyzes the first committed step in ginkgolide biosynthesis. Arch.Biochem. Biophys, 2001. 392:p.263-269.
    
    142. Schmidt W. E., Ebel J., Specific binding of a fungal glucan phytoalexin elicitor to membrane fractions from soybean Glycine max. Proc Nat. 1 Acad. Sci. USA, 1987. 84:p.4117-4121.
    
    143. Schuler M.A., The role of cytochrome P450 monooxygenases in plant-insect interactions. Plant Physiol, 1996.112(1):p. 411-419.
    
    144. Schwender J., Gemunden C, Lichtenthaler H. K., Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate-2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta,2001.212:p.416-422.
    
    145. Schwender J., Seemann M., Lichtenthaler H. K., Biosynthesis of isoprenoids ( carotenoids, sterols,prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde-3 -phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus.Biochem J, 1996. 316 (1) :p.73-78.
    
    146. Schwender, J., Gemunden, C, Lichtenthaler, H.K., Chlorophyta exclusiverly use the 1-deoxyxylulose 5-phosphate-2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta,2001.212:p.416-423.
    
    147. Segura M. J., Meyer M. M., Matsuda S. P., Arabidopsis thaliana LUP1 converts oxidosqualene to multiple triterpene alcohols and a triterpene diol. Org. Lett, 2000.2: p.2257-2262.
    
    148. Seo J. W., Jeong J. H., Shin C. G, Ovevexpression of squalene synthase in eleutheeococcus senticosus increases phytosterol and trierpene accumulation. Phytochemistry, 2005. 66(8):p. 869-877.
    
    149. Sharkey T. D., Chen X., Yeh S., Isoprene increases thermotolerance of fosmidomycin- fed leaves.Plant Physiol, 2001. 125:p.2001-2006.
    
    150. Shibuya M., Zhang H., Endo A., Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases. Eur. J. Biochem, 1999. 266:p.302- 309.
    
    151. Shibuya N., Kaku H., Kuchitsuk, et al., Identification of a novel high-affinity binding site for N-acetylchitooligosaccharide elicitor in the membrane fraction of suspension-cultured rice cells.FEBS Lett, 1993. 329 :p.75-78.
    152. Sigarava M. A., Earle E. D., Direct transfer of a cold-tolerant Ogura male-sterile cytoplasm into cabbage {Brassica oleraceassp. Capitata) via protoplast fusion. Theor. Appl. Genet, 1997. 94:p.213-220.
    
    153. Sikdar S.R, Chatterjee G, Das S & Sen S.K, Erussica, the intergeneric fertile somatic hybrid developed through protoplast fusion between Eruca sativa Lam and Brassica juncea (L.) Czern. Theor Appl Genet. ,1990. 79:p.561-567
    
    154. Singsaas E. L., Lerdau M., Winter K., et al., Isoprene increases thermotolerance of isoprene-emitting species. Plant Physiol, 1997. 115:p.1413-1420.
    
    155. Smillie R. M, Melcher G & von Wettstein D, Chilling resistance of somatic hybrids of tomato and potato, Carlsberg Res. Commun, 1979.44:p.127-132
    
    156. Somova L. I., Shode F. O., Mipando M., Cardiotonic and antidysrhyt hmic effects of oleanolic and ursolic acids ,methyl maslinate and uvaol. Phytomedicine, 2004. 11 (2-3) :p.121-128.
    
    157. Somova L. O., Nadar A., Rammanan P. ,Cardiovascular, antihyperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension. Phytomedicine, 2003. 10 (2-3) :p.115-123.
    
    158. Spangenberg G, Valles M P, Wang ZY, et al., Asymmetric somatic hybridization between tall fescue (Festuca arundinacea Schreb.) and irradiated Italian ryegrass (Lolium mutiflorum Lam.) protoplasts, Theor Appli Genet, 1994.88:p.509-519.
    
    159. Spangenberg G, Wang Z Y, Legris G, et al., Intergeneric symmetric and asymmetric hybridiza-tion in Festuca and Lolium. Euphytica, 1995. 85:p.235-245.
    
    160. Staswick P. E., Jasmonate, gene and fragrant signals. Plant Physiol, 1992. 99:p. 804-807.
    
    161. Steele C.L., Crock J., Bohlmann J., Sesquiterpene synthases from grand fir (Abies grandis).Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization and bacterial expression of delta-selinene synthase and gamma-humulene synthase. J. Biol. Chem., 1998.273:p.278-284.
    
    162. Steele CL , Crock J , Bohlmann J , et al., Sesquiterpene synthases from grand fir {Abies grandis) :Comparison of constitutive and wound2induced activities and cDNA isolation characterization, and bacterial expression of delta-selinene synthase and gammahumulene synthase. J. Biol. Chem, 1998.273:p.2078-2085.
    
    163. Suzuki H., Achning L., Xu R., A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula. Plant J, 2002. 32(6):p. 1033-1048.
    164. Sweigard J. A., Mattews D. E., Vanetten H. D., Synthesis of the Phytoalexin Pisatin by a Methyltransferase from Pea. Plant Physiol, 1986. 80: p.277-279.
    
    165. Takahashi S., Kuzuyama T., Watanabe H., A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. PNAS, 1998. 95(9):p. 879-886.
    
    166. Takebe I, Labib G & Melchers G, Regeneration of whole plants from isolated mesophyll protoplasts of tabacco. Naturwissenschaften., 1971.58:p.318-320.
    
    167. Tanno-Suenaga L, Ichikawa H & Imamura J, Transfer of the CMS trait in Daucus carota L. by donor-recipient protoplast fusion. Theor Appl Genet., 1988. 76:p.855-860.
    
    168. Tanno-Suenaga L, Nagao E & Imamura J, Transfer of the petaloid-rype CMS in carrot by donor-recipient protoplast fusion. Jap. J. Breed,1991.41:p.25-33
    
    169. Takeuchi Y., Yoshikawa M., Takeba G, Molecular cloning and ethylene induction of mRNA encoding a phytoalexin elicitor-releasing factor, β-1,3-glucanase, in soybean. Plant Physiol, 1990. 93:p.673-682.
    
    170. Terada R, Kyozuka J, Nishibayashi S & Shimamoto K, Plantlet regeneration from somatic hybrids of rice (Oryza sativa L.) and barnyard grass (Echinochloa oryzicola Vasing). Mol Gen Genet,1987.210:p.39-43.
    
    171. Terryn N., Van Montagu M., Inze D., GTP-binding proteins in plants. Plant Mol. Biol, 1993. 22:p.143-145.
    
    172. Toyoda K., Shiraishi T., Yamada T, Rapid Changes in Polyphosphoinositide Metabolism in Pea in Response to Fungal Signals. Plant Cell Physiol.,1993. 34: p.729-735.
    
    173. Toyoda K., Shiraishi T., Yoshioka H. Regulation of Polyphosphoinositide Metabolism in Pea Plasma Membranes by Elicitor and Suppressor from a Pea Pathogen, Mycosphaerella pinodes. Plant Cell Physiol., 1992. 33:p. 445-452.
    
    174. Tsuchiya T, Toriyama K., Nasrallah M. E., Isolation of genes abundantly expressed in rice anther at the microspore stage.PMB, 1992. 20:p.1189-1193.
    
    175. Tsuchiya T.,Toriyama K.,Nasrallah M. E., Molecular characterization of rice genes specifically expressed in the anther tapetum. PMB,1994.26:p.1737-1746.
    
    176. Van der Heijden R., Verberj E. R., Schripsema J., Induction of triterpene biosynthesis by elicitors in suspension cultures of Tabernaemontana species. Plant Cell Rep., 1988. 7: p.51-54.
    177. van der Heijden R., Verpoorte R., Metabolic enzymes of 3-hydroxy-3-methylglutaryl- coenzyme A in Catharanthus roseus. Plant Cell Tiss. Org. Cult, 1995.43:p.85-88.
    
    178. Vera-Estrella R., Higgins V. J., Blumwald E., Plant defense response to fungal pathogens: ⅡG protein mediated changes in host plasma membrane redox reaction. Plant Physiol, 1994. 106:p.97-102.
    
    179. Verpoorte R., Memelmk. J., Engineering secondary metabolite production in plants.Curr Opin Biotechnol, 2002. 13(2):p.l81-187.
    
    180. Villas-Boas S. G, Rasmussen S., Lane G. A., Metabolomics or metabolite profiles? Trends Biotechnol,2005. 23:p.385-386.
    
    181. Vogel B. S., Wildung M. R., Vogel G, Abietadiene synthase from grand fir {Abies grandis) . cDNA isolation , characterization ,and bacterial expression of a bifunctional diterpene cyclase involvedin resin acid biosynthesis. J. Biol. Chem., 1996.271:p.23262-23269.
    
    182. Wallaart T. E., Bouwmeester H. J., Hille J.,et al., Amorpha- 4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta, 2001. 212: p.460-465.
    
    183. Walters T.W, Mutscher M.A & Earle E.D, Protoplast fusion-derived Ogura male sterile cauliflower with cold tolerance. Plant Cell Rep., 1992.10:p.624-628
    
    184. Wildung M. R., Croteau R., A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J. Biol. Chem, 1996. 271: p.9201-9208.
    
    185. Wolters A M A, Schoenmakers H C H , Van der Meulen-Muisers J J, et al., limited DNA elimination from the irradiated potato parent in fusion products of albino Lycopersicon esculentum and Solanum tuberosum. Theor Appl Genet, 1991.83: p.225-232.
    
    186. Xia GM, Xiang FN, Zhou AF, Wang H, Chen HM, Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Agropyron elongatum (Host) Nevishi, Theor Appli Genet, 2003. 107:p.299-305
    
    187. Xiang F.N., Xia G.M., Zhou A.F., Huimin Chen, Asymmetric somatic hybridization between wheat (Triticum aestivum) and Bromus inermis. Acta Botanica Sinica, 1999.41(5):p. 458-462.
    
    188. Xu Y S, Murto M, Dunckley R, Jones M G K & Pehu E, Production of asymmetric hybrids between Solanum tuberosum and irradiated S. brevidens, Thero. Appl. Genet.,1993a. 85:p.729-734
    
    189. Xu Y,S, Jones M.GK, Karp A & Pehu E, Analysis of the mitochondrial DNAof the somatic hybrids of Solanum brevidens and S. tuberosum using non-radioactive dgoxigenin-labelled DNA probes. Thero App Genet., 1993b.85:p.l017-1022.
    
    190. Xu Z H, Chen Z H, In: plant biotechnology for sustainable development of agriculture. Proceedings of 2nd Asiapacific conference on plant cell and tissue culture, Beijing, China, July 28-August 1, 1995,1-9.
    
    191. Yamaguchi S., Saito T., Abe H., Molecular cloning and characterization of a cDNA encoding the gibberellin biosynthetic enzyme entkaurene synthase B from pumpkin (Cucurbita maxima L.). Plant J,1996. 10:p.203-208.
    
    192. Yanagawa H., Kato T., Kitahara Y, Chemical components of callus tissue of rice. Phytochneistry, 1972.H:p.1893-1897.
    
    193. Yeung, Him-Che., Handbook of Chinese Herbs and Formulas. Institute of Chinese Medicine. Los Angeles, 1985.
    
    194. Yoshikawa M, Mat suda H., Antidiabetogenic activity of oleanolic acid glycosides f rom medicinal foodstuffs. Bio. Factors, 2000. 13 (1-4) :p.231-237.
    
    195. Yoshikawa M., Macromolecules, recognition and triggering of resistance. In: Biochemical Plant Pathology. Callow, J.A. (Ed), 1983a. 267-298.
    
    196. Yoshikawa M., Keen N. T., Wang M. C, A receptor on soybean membranes for a fungal elicitor of phytoalexin accumulation. Plant Physiol, 1983b. 73:p. 497-506.
    
    197. Yoshikawa M., Sugimoto K., A Specific Binding Site on Soybean Membranes for a Phytoalexin Elicitor Released from Fungal Cell Walls by rβ-1,3-Endoglucanase. Plant Cell Physiol., 1993a. 34 (8):p.1229-1237.
    
    198. Yoshikawa M., Takeuchi Y, et al., Molecular st rategies of pathgens and host plants. New York :Springer-Verlag, 1991.p. 165-176.
    
    199. Yoshikawa M., Yamaoka N., Takeuchi Y, Elicitors: Their Significance and Primary Modes of Action in the Induction of Plant Defense Reactions. Plant Cell Physiol, 1993b. 34 (8): p. 1163-1173.
    
    200. Yoshikawa M., Yamauchi K., Masago H., De Novo Messenger RNA and Protein Synthesis Are Required for Phytoalexin-mediated Disease Resistance in Soybean Hypocotyls. Plant Physiol, 1978.61:p.314-317.
    
    201. Yue W, Xia G M, Zhi D Y, Chen H M., Transfer of salt tolerance from Aeleuropus littoralis Sinensis to wheat (Triticum aestivum L.) via asymmetric somatic hybridization. Plant Science, 2001. 161:p.259-266
    202.Zelcer A,Aviv D & Galun E,Interspecific transfer of cytoplasmic male sterility by fusion between protoplasts of normal Nicotiana sylevestris and X-ray irradiated protoplasts of male-sterile N.tabacum,Z.Pflanzenphysiol.,1978.90:p.397-407
    203.Zhang H.,Shibuya M.,Yokota S.,et al.,Oxidosqualene cyclases from cell suspension cultures of Betula platyphylla var.Japonica:molecular evolution of oxidosqualene cyclases in higher plants.Biol.Pharm.Bull.,2003.26:p.642-650.
    204.Zhou A.F.,Xia G.M.,Zhang X.,Analysis of chromosomal and organellar DNA of somatic hybrids between Triticum aestivum and Haynaldia villosa Schur.Mol.Gen.Genet,200lb.265:p.387-393.
    205.Zimmermann U.,Scheurich P.,High frequency fusion of plant protoplasts by electric fields.Planta,1981.151:0.26-32.
    206.高亚,于丽杰,植物细胞培养技术生产次生代谢产物的研究进展.牡丹江师范学院学报(自然科学版),2008.62:p.25-27.
    207.黄炜,黄济群,张东方,五环三萜类化合物抗人肺癌细胞侵袭和诱导细胞凋亡的研究.中国肺癌杂志,2003.6(4):p.254-260.
    208.近藤嘉和,秦艽的成分研究.生药学杂志,1996.46(3):p.342-343.
    209.刘长军,候嵩生,真菌诱导子对新疆紫草悬浮培养细胞的生长和紫草素合成的影响.植物生理学报,1998.24(1):p.6-10.
    210.刘长军,孟玉玲,候嵩生等,棉花法呢基焦磷酸合酶cDNA克隆、序列分析及其种子发育过程中的表达特征.植物学报,1998.40(8):p.703-710.
    211.刘艳红,秦艽中的环烯醚苷类成分.云南植物研究,1995.15(1):p.85-91.
    212.马玉芳,许继宏,提高植物细胞培养中次生代谢产物的方法.云南大学学报(自然科学版),2003.25(增刊):p.142-145.
    213.宁文,曹日强,真菌诱导物在植物次生代射中的调节作用.植物生理学通讯,1993.29(5):p.321-329.
    214.宋经元,任春玲,祁建军,生物诱导子在植物细胞培养生产次生产物中的应用.天然产物研究与开,1999,12(4):p.101-104.
    215.田丽婷,马龙,堵年生,齐墩果酸的药理作用研究概况.中国中药杂志,2002.27(12):p.884-888.
    216.王钧,植物生理与分子生物学.北京:科学出版社,1998.p.784-807.
    217.王宁,周乐,龙胆属植物化学研究概况.山西林业科技,2001.3:p.71-78.
    218.夏光敏,向风宁,周爱芬等.,小麦与高冰草属间体细胞杂交获可育杂种植株.植物学 报,1999.41(4):p.1-5.
    219.杨维霞,周乐,耿会等,龙胆科药用植物化学成分的研究现状.西北植物学报,2003.23(12):p.2235-2240.
    220.殷峻,胡仁明,陈名道,小檗碱、齐墩果酸和大蒜新素对糖代谢作用的体外研究.北京中医药大学学报,2003.26(2):p.36-41.
    221.元英进,葛志强等,植物细胞培养工程.北京化学工业出版社,2004.3.Chap.4:p.79-102.
    222.张西玲,晋玲,刘丽莎,近10年秦艽、麻花艽研究概况.中国中医药信息杂志,2000.10(增):p.62-63.
    223.张荫麟,宋经元,吕桂兰等,丹参毛状根培养的建立和丹参酮的产生.中国中药杂志,1995.20(5):p.269-271.
    224.张荫麟,朱敏,赵保华,蜜环菌诱导子对延胡索培养物生物碱积累的影响.植物学报,1992.34(9):p.658-661.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700