用户名: 密码: 验证码:
有压隧洞结构稳定性力学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隧洞作为一种主要的地下结构,广泛的应用于交通、水利、采矿、石油以及水电和通信等工程中。随着对于基础建设的发展和升级换代的要求,隧洞建设在世界各地蓬勃发展。而所建隧洞的安全性和经济性也越来越受到关注。一般的,隧洞设计应满足如下三个要求:隧洞在建过程中要满足稳定、安全性的要求;尽量减少对附近结构的不利影响;达到隧洞的既有设计功能。其中,第一条主要是针对隧洞支护体系的合理设计。
     众所周知,隧洞开挖后地层中初始应力释放,应力重新分布形成二次应力场,从而引起隧洞的变形。为了确保隧洞开挖后的稳定性,工程中常采用衬砌材料进行支护。然而,大多数力学模型可以退化为这样的情形:隧洞开挖,衬砌安装完,而后结构再受到地应力的影响。而事实上,岩(土)体是赋存了一定的初始应力,开挖导致隧洞发生部分变形,而后再安装衬砌,因而,必须提出一种合理的力学模型。
     另外,当作用于岩体的初始应力较大或岩体自身的强度较低,洞室开挖后,洞周的部分岩体应力超出了岩体的屈服应力,使岩体进入了塑性状态。随着与洞壁距离的增大,最小主应力也随之增大,进而提高了岩体的强度,并使岩体的应力转化为弹性状态,岩体的二次应力状态呈现弹塑性并存的状态。虽然,各种基于弹性理论的围岩-衬砌干涉作用模型很多,而经典的弹塑性解答中,一般都未考虑衬砌本身对于围岩的制约作用,实际上,围岩压力是通过衬砌和围岩的共同作用来承担的;再者,屈服条件中的第一主应力是以径向应力的情况下导出的,这样做还不够全面,必须根据不同的工况和不同的地应力条件,正确选择屈服条件中的第一主应力,导出衬砌和围岩的屈服范围和应力计算公式,给出屈服区和应力计算公式的适用范围。
     许多隧洞,包括新奥法施工的隧洞,需要的支护形式为:初期支护和二期支护。初期支护主要来承受开挖荷载,而二次衬砌支护需要承受隧洞运行期间的附加荷载以及围岩、初期支护强度随时间的降低,或者来自围岩中的其它附加荷载作用。地下水流的变化则是其中的主要附加荷载之一。隧洞突水无论是在隧洞的施工期还是在运行期均可发生。隧洞突水会造成停工、环境破坏以及结构的沉陷等严重问题。另外,为了评估相关的问题,隧洞突水也必须尽量做到提前预警。虽然孔隙水压力对隧洞支护的影响有许多的研究成果,但是,各种水力条件变化下的隧洞支护设计标准仍然急需在这方面进行多方面的深入研究。
     弹性问题的复势方法是迄今唯一能从已知到未知顺次求解的分析方法;它统一了弹性力学中的三种基本方法(位移法、应力法、应力函数法)和三类边界(力边界、位移边界、混合边界)问题;而弹性场本身的应力变形特征与复势函数之间必定存在一种确定的关系,找到这种关系无疑对于具体问题中复势函数的求解是重要的。本文的主要研究成果如下:
     1.利用基本的平面弹性方程,结合解析函数的性质,首次得到了平面弹性复势中的几个重要性质,其内容为:对于平面、反平面弹性场,当应力状态关于原点对称时,复势为偶函数;当应力状态关于x轴对称时,平面弹性场中的复势具有实系数;当应力状态关于x轴反对称时,反平面弹性场的复势具有虚系数。利用所得基本性质可以简化复势函数的求解过程。
     2.根据围岩和衬砌联合作用的机理,研究了深埋圆形衬砌隧洞在多种荷载作用下的弹性应力、位移场的解析解答。利用以上复势函数性质,构造合适的复势函数,然后,根据边界上力、位移的连续性条件,获得了全场复势的解析表达。详细讨论了非静水压力条件下的深埋衬砌压力隧洞的这一情形。结果表明:为了减少隧洞开挖对原有应力、位移场的扰动,施作衬砌是一种有效措施,但是,衬砌的厚度和刚度应该针对具体情况保持在一定范围,过大过小的值都是不合适的。另外发现,隧洞开挖对位移场的影响要远远大于对应力场的影响。就应力场而言,当隧洞埋深和隧洞内径的比值大于5时,就完全可以应用本文的结论;然而,就位移场而言,只有当隧洞埋深和隧洞内径的比值大于20时,本文的结论才可以应用。
     3.研究了隧洞处于弹塑性条件的围岩稳定性问题。考虑地应力的释放和衬砌安装的时序,提出合理模拟隧洞修筑过程的力学模型。利用边界上位移和力的连续性条件,得到围岩和衬砌内的复应力函数表达式。根据不同的工况和地应力条件,基于Mohr-Coulomb屈服准则,正确选择屈服条件中的第一主应力,导出衬砌和围岩的屈服范围和应力计算公式,并给出屈服范围和应力计算公式的适用条件。重点抓住影响地下结构稳定性的几个主要参数,即围岩、衬砌的弹性(或变形)模量,地应力侧压系数,衬砌的厚度,以及到洞轴线距离等,来分析其对结构的强度、变形影响。经典的Fenner公式和Lamé解答等许多已往解答,可以作为其特殊情况退化得到。
     4.将深埋圆形隧洞各影响因素简化为轴对称。首先,求解得到渗流场;然后,以渗透体积力方式作用在围岩应力场,求解得到衬砌作为渗透材料和不渗透材料情形下的全场位移和应力解析表达式。根据所得解答,可以用来解释各种围岩水力条件以及隧洞排水条件下的隧洞支护压力的不同。综合考虑了衬砌具有渗透性、不具有渗透性两种情形,且对得到的结果进行了对比。
Tunnel is a main underground structure and widely used for transportation, water passage, mining, petroleum, geophysical engineering practice and other purposes such as electricity or communication cable installation. With the development and upgrade of infrastructures, the demand for tunnel construction is increasing all over the world and the importance of the safety and economics of tunnel construction are recognized in tunnel engineering. In general, in relation to tunnel construction, it refers to three issues, which are: (1) maintaining stability and safety during construction; (2) minimizing unfavorable impact on adjacent structures; (3) performing the intended function over the life of a project. Among the issues, the first one is directly related to the appropriate design of tunnel support system.
     The excavation process reduces the confining stress to zero on the boundary of the opening. Thus, tunnel excavation always causes stress relief and deformation at the tunnel boundary before the liner is installed, which is well-known. The support system of underground facilities must be designed to withstand static overburden loads as well as to accommodate the additional deformations imposed by the earthquake induced motions. It is essential to understand the interaction between the liner and the surrounding geomaterial with the construction sequence taken into consideration. The real problem is that most of the analyses in the past completely misunderstand the history of stresses on the tunnel, which are essentially a "mechanical engineering" calculation in which one imagines an initially unstressed body (tunnel and liner) and then the stresses are applied at the outer boundaries. In fact of course certain pre-existing stresses exist in the ground. The tunnel is then opened, causing stress relief at the tunnel boundary (and consequent displacements), the liner is then installed, and finally the concrete of the liner cures. The effect of this construction sequence on the stresses in and around the liner was taken no account in the past.
     It is normal practice in the design of tunnel liners using surrounding geomaterial-support interaction models to consider that the geo-material behaves elasto-plastically. This means that under loading the material will first behave elastically, but when (and if) the elastic limit or plastic strength of the material (liner and surrounding geomaterial) is reached, then the material will start behaving plastically. In most of the existing elasto-plastic solutions, the first principal stress in the yield range was generally assumed to be the radial stress. In addition, the interaction between the liner and the surrounding geomaterial was not appropriately considered. Although the surrounding geomaterial-liner interaction based on elastic theory has been studied by numerous researchers. Furthermore, the variations of yield radius with the internal pressure acting on the inner boundary of the liner, the liner thickness and rigidity were not adequately discussed in the past literatures. In fact, certain pre-existing stresses exist in the geomaterail before the tunnel is excavated, which causes stress relief at the tunnel boundary (and consequent displacements). The liner is then installed, and finally the concrete of the liner cures. It is essentially important to understand how the surrounding geomaterial around a tunnel deform due to changes in stresses with the construction sequence taken into account properly. Moreover, the variations of the internal pressure acting on the inner boundary of the liner, the liner thickness and rigidity may result in the variations of the yield radius, the first principal stress and the boundary condition. Such factors should be properly considered in order to have a full picture of the elasto-plastic behavior for underground engineering problems.
     Many tunnels, including NATM tunnels, require two types of support: primary and secondary support. The role of the primary support is to withstand the loads that may arise during excavation. The secondary support has to withstand those loads that arise from tunnel operation, deterioration of ground strength and primary support with time, or from other changes of stresses in the ground around the tunnel. An important source for such additional loads is the change of groundwater flow around the tunnel. Water ingress into tunnels may be encountered as well in the construction phase of any tunnel as in the operation phase of hydraulic tunnels. Water ingress in the construction and in the operational phases may cause severe difficulties, downtimes and environmental impact by altering the groundwater regime and causing settlements of structures on the surface. To assess the related problems, the water ingress must be somehow predicted in advance. Even though some of the effects of pore water pressure on tunnel support have been investigated, there are many aspects that require further scrutiny, in particular a reasonable design criterion for tunnel support is needed where groundwater flow conditions are included.
     As an important analytical method, the complex variable method has been widely used to analyze problems associated with underground construction. The advantage of the complex variable method in solving elastic tunnelling problems is that both the stresses and displacements are solved simultaneously, enabling the solution of problems for various types of boundary conditions, and that the boundary conditions for the displacements and stresses are similar. An important issue is to find the deterministic relations between the stress-deformation conditions and the complex potentials. The work in the present paper can be summarized in the following:
     1. Four important properties for the complex potentials expressed in series expansion in the plane and anti-plane elastic fields is obtained by applying the basic equations of plane and anti-plane problems, combining the theory of analytical function, and recalling the feature of stress and deformation. Firstly, the complex potentials in the plane or anti-plane elastic fields are real functions when the stress states are symmetrical with regard to the origin. In addition, the complex potentials in the plane elastic field have real coefficient when the stress states are symmetrical with regard to the x-axis. Finally, the complex potentials in the anti-plane elastic field have imaginary coefficient when the stress states are anti-symmetric with regard to the x-axis. Then, based on the conclusions of the paper, some classic solutions are rearrived at, which indicates the results derived in this paper are right and simplify the process of constructing and solving the complex potential functions. The present conclusions provide an efficient tool to discovery the solutions in the sophisticated state.
     2. By applying the series expansion technique in the complex variable method established by Muskhelishvili, the plane elasticity problem for the stress and displacement field around a lined circular tunnel in conjunction with the consideration of misfit and interaction between the liner and the surrounding geomaterial is dealt with. The tunnel is assumed to be driven in a homogeneous and isotropic geomaterial. The coefficients in the Laurent series expansion of the stress functions are determined. The complex potentials in the liner and the surrounding geomaterial are explicitly derived, respectively. An elastic solution is obtained under a wide class of loading conditions, the main limitation being that internal stress sources (if any) are located in the geomaterial. Loading by misfit alone, by in situ stresses, by far-field shear stresses, and by a concentrated force, are explicitly treated as special cases. As an example, the case of a lined circular tunnel located in an isotropic initial stress field but subjected to uniform internal pressure is numerically considered. Numerical results indicate that the installation of tunnel liner can reduce the influences of the tunnel excavation on the in situ displacement and stress fields. However, the relative thickness and rigidity of the liner should be in an appropriate range. In addition, the effect of the tunnel excavation upon the displacement field is more significant than that upon the stress field. As far as the stress field in the surrounding geomaterial is concerned, when the ratio between the cover depth of tunnel and the tunnel radius is larger than 5, the results for the stress field in the paper are applicable. When the ratio between the tunnel depth and the tunnel radius is larger than 20, the results are applicable for the displacement field.
     3. The elasto-plastic problem for the stress fields around a lined circular tunnel is investigated in this paper. An appropriate mechanical model considering the stress relief and the installation of the liner is proposed to model the tunnel construction sequence. By considering the continuity conditions for the stresses and displacements along the boundaries, the complex potentials in the liner and the surrounding geomaterial are explicitly derived, respectively. Based on the linear Mohr-Coulomb (M-C) yield criterion, for two cases that the first principal stress is the radial stress or the tangential stress, respectively, the stress solutions are given when plastic deformation occurs in the liner and/or the surrounding geomaterial. Numerical results indicate that the influences of the internal pressure, liner thickness and rigidity on the yield range are significant. The first principal stress may vary with the variations of the above parameters and is not always the radial stress. In addition, it is shown that the variations of stresses in the surrounding geomaterial intensively rely on the relative liner rigidity, thickness and distance to the tunnel axis when the ratio between the distance of these points under investigation to the tunnel axis and the outer radius of the liner ranges from 1 to 2. Classical Fenner's solution and Lame's solution can be considered as the special cases of the present solutions.
     4. It is assumed that all the influence factors surrounding deep-buried circle tunnel are axially symmetrical. Firstly, the solution of fluid flow field is resolved. Secondly, in conjunction with two cases of the material character of the liner, i.e., a permeable liner or an impermeable liner, analytical solutions of elastic stress and displacement are obtained by considering the seepage force in the surrounding geomaterial as a body force. The proposed solution together with the analytical solution for axi-symmetric loading of an annular ring representing a liner are used to explain the fundamental differences in support loading obtained for various hydro-mechanical conditions. These conditions involve excavating the tunnel with a permeable liner, with and without removal of water from the tunnel, excavating the tunnel with an impermeable liner, with subsequent drainage of water in the ground around the tunnel, etc. In addition, the results of the liner as a permeable material are compared with those of the liner as an impermeable material.
引文
[1] Savin GN. Stress Concentration around Holes. Pergamon Press, London, United Kingdom, 1961.
    
    [2] Timoshenko SP, Goodier JN. Theory of Elasticity. McGraw-Hill Publishing Company, New York, 1970.
    [3] Peck RB, Hendron Jr AJ, Mohraz B. State of the art of softground tunneling. Proceedings of the Rapid Excavation Tunneling Conference, Chicago, vol. 1, 1972; 259-285.
    [4] Einstein HH, Schwartz CW. Simplified analysis for tunnel supports. Journal of Geotechnical Engineering Division (ASCE) 1979; GT4 (April): 499-518.
    [5] Hendron AJ, Fernandez G. Dynamic and static design considerations for underground chambers. Howard, T.R. (Ed.), Seismic Design of Embankments and Caverns (ASCE) 1983; 157-197.
    [6] Merritt JL, Monsees JE, Hendron Jr AJ. Seismic design of underground structures. Proceedings of the Rapid Excavation Tunneling Conference, New York, vol. 1,1985; 104-131.
    [7] Penzien J. Seismically induced raking of tunnel linings. Earthquake Engineering and Structure Dynamics 2000; 29: 683-691.
    [8] Penzien J, Wu, CL. Stresses in linings of bored tunnels. Earthquake Engineering and Structure Dynamics 1998; 27:283-300.
    [9] Hashash YMA, Hook JJ, Schmidt B, et al. Seismic designand analysis of underground structures. Tunneling and Underground Space Technology 2001; 16: 247-293.
    [10] Stagni L. Elastic analysis of a multilayered cylindrical fiber with eigenstrains. International Journal of Engineering Science 2001; 39: 641-653.
    
    [11] Li SC, Wang MB. An elastic stress-displacement solution for a lined tunnel at great depth. International Journal of Rock Mechanics and Mining Sciences 2008; 45:486-494.
    [12] Li SC, Wang MB. Elastic analysis of stress-displacement field for a lined circular tunnel at great depth due to ground loads and internal pressure. Tunnelling and Underground Space Technology 2008; 23: 609-617.
    [13] Kirsch G. Die Theorie der Elastizitat und die Bedurfnisse der Festigkeitslehre. Zeitchrift Verein Deutsch Ing 1898; 42: 797-807.
    [14] Yu YY, Mo SL. Gravitational stresses on deep tunnels. Journal of Applied Mechanics 1952; 19:537-542.
    [15] Muskhelishvili NI. Some basic problems of the mathematical theory of elasticity. Groningen, The Netherlands: Noordhoof Ltd, 1963.
    [16] Poulos HG, Davis EH. Elastic solutions for soil and rock mechanics. John Wiley & Sons, Inc, New York, 1974.
    [17] Pender MJ. Elastic solutions for a deep circular tunnel. Geotechnique 1980; 30: 216-222.
    [18] Sagaseta C. Analysis of undrained soil deformation due to ground loss. Geotechnique 1987; 37: 301-320.
    [19] Gercek H. Stresses around tunnels with arched roof. Proceedings of the seventh International Congress on Rock Mechanics, vol. 2.Balkema, Rotterdam, The Netherlands: ISRM 1991; p. 1297-1299.
    [20] Gercek H. An elastic solution for stresses around tunnels with conventional shapes. International Journal Rock Mechanics Mining Sciences 1997; 34(3-4), paper No. 096.
    [21] Exadaktylos GE, Stavropoulou MC. A closed-form elastic solution for stresses and displacements around tunnels, International Journal of Rock Mechanics & Mining Sciences 2002; 39: 905-916.
    
    [22] Exadaktylos GE, Liolios PA, Stavropoulou MC. A semi-analytical elastic stress- displacement solution for notched circular openings in rocks, International Journal of Solids and Structures 2003; 40: 1165-1187.
    [23] Huo H, Bobet A, Fernandez G, et al. Analytical solution for deep rectangular structures subjected to far-field shear stresses, Tunnelling and Underground Space Technology 2006;21:613-625.
    [24]刘允芳.非圆形地下洞室的复变函数解法[J].力学与实践,1987,s1:121-126.
    [25]吕爱钟.以孔边绝对值最大的切向应力最小为优化准则的孔洞形状优化[J].固体力学学报,1996,17(1):73-76.
    [26]蔡晓鸿,蔡勇斌,蔡勇平等.二向不等围压和内压作用下椭圆形洞室的计算[J].地下空间与工程学报,2008,4(3):453-459.
    [27]吕爱钟、蒋斌松.岩石力学反问题[M].北京:煤炭工业出版社,1998.
    [28]刘金高,王润富.马蹄形孔口和梯形孔口的应力集中问题[J].岩土工程学报,1995,17(5):57-64.
    [29]Sagaseta C.Analysis of undrained soil deformation due to ground loss.Geotechnique 1987;37:301-320.
    [30]Sagaseta C.On the role of analytical solutions for the evaluation of soil deformations around tunnels.In Application of Numerical Methods to Geotechnical Problems,Cividini A(ed),no.397 in CISM Courses and Lectures.Springer:Vienna,1998;3-24.Invited Lecture.
    [31]Jeffery GB.Plane stress and plane strain in bipolar coordinates.Transactions of the Royal Society of London,Series A 1920;221:265-293.
    [32]Mindlin RD.Stress distribution around a tunnel.Transactions of the ASCE 1940;1117-1153.
    [33]Mindlin RD.Stress distribution around a hole near the edge of a plate under tension.Proceedings of the Society of Experimental Stress Analysis 1948;5:56-57.
    [34]Verruijt A,Booker JR.Surface Settlements due to deformation of a tunnel in an elastic half plane.Geotechnique 1996;46:753-756.
    [35]Verruijt A.A complex variable solution for a deforming circular tunnel in an elastic half-plane.International Journal for Numerical and Analytical Methods in Geomechanics 1997;21:77-89.
    [36]Strack OE,Verruijt A.A complex variable solution for a deforming buoyant tunnel in a heavy elastic half-plane.International Journal for Numerical and Analytical Methods in Geomechanics 2002;26:1235-1252.
    [37]Verruijt A.Deformations of an elastic half plane with a circular cavity.International Journal of Solids and Structures 1998;35(21):2795-2804.
    [38]Bobet A.Analytical solutions for shallow tunnels in saturated ground.ASCE Journal Engineering Mechanics 2001;127:1258-1266.
    [39]Chou WI,Bobet A.Predictions of ground deformations in shallow tunnels in clay.Tunnelling and Underground Space Technology 2002;17:3-19.
    [40]Verruijt A,Sagaseta C,Strack OE.Predictions of ground deformations in shallow tunnels in clay Wei-I.Chou;Antonio Bobet,Tunnelling and Underground SpaceTechnology,Vol.17,pp 3-19.Tunnelling and Underground Space Technology 2003;18:93-94.
    [41]Chou WI,Bobet A.Response by the authors to A.Verruijt,C.Sagaseta,and O.E.Strack discussion to the paper:W.Chou and A.Bobet(2002).Predictions of ground deformations in shallow tunnels in clay,Tunnelling and Underground Space Technology,Vol.17,pp.3-19.Tunnelling and Underground Space Technology 2008;18:95-97.
    [42]Hibbitt,Karlsson & Sorensen,Inc..ABAQUS User's Manual,vol.6-2.1080Main Street,Pawtucket,RI,USA,2002.
    [43]陆文超,仲政,王旭.浅埋隧道围岩应力场的解析解[J].力学季刊,2003,24(1):50-54.
    [44]王立忠,吕学金.复变函数分析盾构隧道施工引起的地基变形[J].岩土工程学报,2007,29(3):319-327.
    [45]韩煊,李宁.隧道衬砌变形引起的地层位移规律探讨[J].西安理工大学学报,2006,22(4):369-372.
    [46]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996.
    [47]谢家杰.浅埋隧道的地层压力[J].土木工程学报,1964,6:58-70.
    [48]潘家铮.水工隧洞[M].科技卫生出版社,上海,1958.
    [49]汪胡祯.水工隧洞的设计理论和计算[M].水利电力出版社,北京,1976.
    [50]朱伯芳,王同生等.水工混凝土结构的温度应力与温度控制[M],北京:水利电力出版社,1976.
    [51]吕有年.水工有压隧洞温度应力的弹性理论计算法[J].水力发电学报,1983,3:102-111.
    [52]蔡晓鸿,吕有年,高乐群.水工有压隧洞温度应力B-П·伏尔可夫计算法的错误及其改正[J].土木工程学报,1987,20(1):85-93.
    [53]蔡晓鸿,吕有年.水工有压隧洞弹性温度应力计算[J].水利发电,1984,11:14-313.
    [54]蔡晓鸿.水工有压隧洞温度应力变位谐调计算法[J].江西水利科技,1991,17(3):232-236.
    [55]蔡晓鸿.水工有压隧洞衬砌伸缩缝问距设计新法[J].江西水利科技,1994,20(4):303-310.
    [56]Fenner R.Untersuchungen zur Erkenntnis des Gebirgsdruckes.Gluckauf 1938;74:681-695 and 705-715.
    [57]Jaeger JC,Cook NGW.Fundamentals of rock mechanics.London:Chapman &Hall,1979.
    [58]任青文,张宏朝.关于芬纳公式的修正[J].河海大学学报,2001,29(6):109-111.
    [59]任青文,邱颖.具有衬砌圆形隧洞的弹塑性解[J].工程力学,2005,22(2):212-217.
    [60]范文,俞茂宏,石耀武,等.围岩塑性松动压力Caquot公式的推广和改进[J].长安大学学报(地球科学版),2003,25(1):33-36.
    [61]徐栓强,俞茂宏,胡小荣.基于双剪统一强度理论的地下圆形洞室稳定性的研究[J].煤炭学报,2003,28(5):522-526.
    [62]范文,俞茂宏,陈立伟.考虑材料剪胀及软化的有压隧洞弹塑性分析的解析解[J].工程力学,2004,21(5):16-24.
    [63]李同录,陈立伟,俞茂宏,范文.考虑材料软化的洞室围岩弹塑性分析的统一解[J].长安大学学报(自然科学版),2004,24(3):48-52.
    [64]齐明山,蔡晓鸿,冯翠霞.隧道围岩压力的弹塑性新解[J].土工基础,2006,20(2):73-76.
    [65]蔡晓鸿,吕有年.水工压力隧洞弹塑性应力计算[J].地下空间,1987,1:29-38.
    [66]蔡晓鸿,吕有年.应用塑性强化理论推求圆形压力隧洞岩石抗力系数K[J].岩土工程学报,1984,6(3):44-56.
    [67]蔡晓鸿.圆形压力隧洞岩石抗力系数K的普通计算式[J].人民长江,1988,8:7-17.
    [68]蔡晓鸿.圆形压力隧洞岩石抗力系数K的理论和计算[J].工程力学,1988,5(3):100-108.
    [69]吕有年,蔡晓鸿.应用塑性强化理论分析隧洞衬砌和围岩的应力[J].土木工程学报,1985,18(3):74-86.
    [70]Carranza-Torres C,Fairhurst C.The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion.International Journal Rock Mechanics and Mining Sciencses 1999;36:777-809.
    [71]Carranza-Torres C,Fairhurst C.Application of the Convergence- Confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion.Tunnelling and Underground Space Technology 2000;15(2):187-213.
    [72]Carranza-Torres C.Dimensionless Graphical Representation of the Exact Elastoplastic Solution of a Circular Tunnel in a Mohr-Coulomb Material Subject to Uniform Far-field Stresses.,Rock Mechanics and Rock Engineering 2003;36(3):237-253.
    [73]Carranza-Torres C.Elasto-plastic solution of tunnel problems using the generalized form of the hoek-brown failure criterion.International Journal Rock Mechanics and Mining Sciences 2004;41(Suppl):629-639.
    [74]Hoek E.Strength of jointed rock masses.Rankine Lecture.Geotechnique 1983;33(3):187-223.
    [75]Hoek E.Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion.International Journal Rock Mechanics and Mining Sciences 1990;27(3):227-229.
    [76]Hoek E.Personal communication.Hoek,E.and E.T.Brown(1980).Underground Excavations in Rock.London:The Institute of Mining and Metallurgy,1999.
    [77]Hoek E,Brown ET.Practical estimates of rock mass strength.International Journal Rock Mechanics and Mining Sciences 1997; 34(8): 1165-1186.
    [78] Hoek E, Kaiser PK, Bawden WF. Support of Underground Excavations in Hard Rock. Rotterdam: Balkema, 1995.
    [79] Hoek E, Marinos P, Benissi M. Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation. Bulletin of Engineering Geology and the Environment 1998; 57(2): 151-160.
    [80] Hoek E, Brown ET. 1980. Empirical strength criterion for rock masses. Journal of the Geotechnical Engineering Division 1980; ASCE 106 (GT9): 1013-1035.
    [81] Brown ET, Bray JW, Ladanyi B, et al. Ground response curves for rock tunnels. Journal of Geotechnical and Geoenvironmental Engineering 1983; 109: 15-39.
    [82] Wang Y. Ground response of circular tunnel in poorly consolidated rock. Journal of Geotechnical and Geoenvironmental Engineering 1996; 122: 703-708.
    [83] Sharan SK. Elastic-brittle-plastic analysis of circular openings in Hoek-Brown media. International Journal Rock Mechanics and Mining Sciences 2003; 40: 817-824.
    [84] Sharan SK. Exact and approximate solutions for displacements around circular openings in elastic-brittle-plastic Hoek-Brown rock. International Journal Rock Mechanics and Mining Sciences 2005; 42: 542-549.
    
    [85] Schwartz DI. Introduction to Maple. Upper Saddle River: Prentice-Hall; 1999.
    [86] Park KH, Kim YJ. Analytical solution for a circular opening in an elastic-brittle-plastic rock. International Journal Rock Mechanics and Mining Sciences 2006; 43: 616-622.
    [87] Itasca Consulting Group Inc. FLAC (Fast Lagrangian Analysis of Continua) Version 4.0. www.itascacg.com, Minneapolis, 2000.
    [88] Itasca Consulting Group Inc. FLAC (Fast Lagrangian Analysis of Continua) Version 3.4. User Manual. Minneapolis: Itasca, 1998.
    [89] Sofianos AI, Halakatevakis N. Equivalent tunnelling Mohr-Coulomb strength parameters for given Hoek-Brown ones International Journal Rock Mechanics and Mining Sciences 2002; 39: 131-137.
    [90]Sofianos AI.Tunnelling Mohr-Coulomb strength parameters for rock masses satisfying the generalized Hock-Brown criterion.International Journal Rock Mechanics and Mining Sciences 2003;40:435-440.
    [91]Sofianos AI,Nomikos PP.Equivalent Mohr-Coulomb and generalized Hoek-Brown strength parameters for supported axisymmetric tunnels in plastic or brittle rock.International Journal Rock Mechanics and Mining Sciences 2006;43:683-704.
    [92]Jimenez R,Serrano A,Olalla C.Linearization of the Hoek and Brown rock failure criterion for tunnelling in elasto-plastic rock masses.International Journal Rock Mechanics and Mining Sciences 2008;45,1153-1163.
    [93]Fl(u|¨)gge W.Viscoelasticity,Second Edition,Springer-Verlag,Berlin,1975.
    [94]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [95]杨挺青.粘弹性力学[M].武汉:华中理工大学出版社,1990.
    [96]陈子荫.围岩力学分析中的解析方法[M].北京:煤炭工业出版社,1994.
    [97]朱维申.粘弹-塑性介质中围岩与衬砌的应力状态[J].力学学报,1981,1:56-67.
    [98]朱维申,李建华.考虑岩体扩容、软化、流变效应的围岩应力状态[C].第三届全国岩土力学数值分析与解析方法讨论会论文集,珠海:1988.
    [99]王桂芳.圆形隧道的粘弹性应力分析[J].工程力学,7(1):106-127.
    [100]欧阳鬯.粘弹塑性理论[M].长沙:湖南科技出版社,1985
    [101]房营光,孙钧.地面荷载下浅埋隧道围岩的粘弹性应力和变形分析[J].岩石力学与工程学报,1998,17(3):239-347.
    [102]袁静,龚晓南,益德清.岩土流变模型的比较研究[J].岩石力学与工程学报,2001,20(6):772-779.
    [103]周培德.圆形隧道衬砌围岩变形压力的时间效应[J].地下空间,1993,13(1):18-25.
    [104]朱素平,周楚良.地下圆形隧道围岩稳定性的粘弹性力学分析[J].同济大学学报,1994,22(3):329-333.
    [105]万志军,周楚良,马文顶等.巷道/隧道围岩非线性流变数学力学模型及其初 步应用[J].岩石力学与工程学报,2005,24(5):761-767.
    [106]万志军,周楚良,罗兵全等.软岩巷道围岩非线性流变数学力学模型[J].中国矿业大学学报,2004,33(4):468-472.
    [107]杨太华.发展中的岩体水力学[J].大自然探索,1994,13(50):98-102.
    [108]潘家铮.论水工隧洞衬砌的计算[J].水力发电,1952,2:13-20.
    [109]张有天,张武功.隧道水荷载的静力计算[J].水利学报,1980,3:52-62.
    [110]张有天,张武功,王镭.再论隧洞水荷载的静力计算[J].水利学报,1985,3:22-32.
    [111]SD134-84水工隧洞设计规范[S].北京:水利电力出版社,1985
    [112]王建宇,胡元芳.对岩石隧道衬砌结构防水问题的讨论[J].现代隧道技术,2001,38(1):20-25
    [113]张有天.岩石隧道衬砌外水压力问题的讨论[J].现代隧道技术,2003,40(3):1-4.
    [114]王建宇.再谈隧道衬砌水压力[J].现代隧道技术,2003,40(3):5-10.
    [115]王建宇.隧道围岩渗流和衬砌水压力荷载[J].铁道建筑技术,2008,2:1-6.
    [116]王建秀,杨立中,何静.深埋隧道衬砌水荷载计算的基本理论[J].岩石力学与工程学报,2002,9:1339-1343.
    [117]王建秀,杨立中,何静.深埋隧道外水压力计算的解析-数值法[J].水文地质工程地质,2002,3:17-28.
    [118]王建秀,杨立中,何静.深埋隧道涌水量数值计算中的试算流量法[J].岩石力学与工程学报,2002,21(12):1776-1780.
    [119]王建秀,朱合华,叶为民.隧道涌水量的预测及其工程应用[J].岩石力学与工程学报,2004,23(7):1150-1153.
    [120]陈崇希,刘文波,彭涛.确定隧道外水压力的地下水流模型-读《深埋隧道外水压力计算的解析-数值法》一文随笔[J].水文地质工程地质,2002,29(5):62-641.
    [121]彭涛.对深埋隧道外水压力问题的几点讨论[J].水文地质工程地质,2003,2:107-108.
    [122]王建秀.深埋隧道外水压力计算中几个问题的探讨[J].水文地质工程地质, 2003,30(1):95-97.
    [123]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005.
    [124]张有天.从岩石水力学观点看几个重大工程事故[J].水利学报,2003,48(5).
    [125]周志芳.裂隙介质水动力学原理[M].北京:高等教育出版社,2006.
    [126]Louis C.Rock Hydraulics in Rock Mechanics[M].Edited by L.Muller Udine,1974:299-387.
    [127]仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社,1995.
    [128]张有天,张武功.裂隙岩石渗透特性渗流数学模型及系数量测[J].岩石力学.1982,(8):41-52.
    [129]田开铭,万力.各向异性裂隙介质渗透性的研究与评价[M].北京:学苑出版社,1989.
    [130]王媛.裂隙岩体渗流及其应力耦的全耦合分析[D].南京:河海大学博士学位论文,1995.
    [131]盛金昌,速宝玉,王媛.裂隙岩体渗流.弹塑性应力耦合分析[J].岩石力学与工程学报,2000,19(3):304-309.
    [132]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [133]赵阳升,杨栋,郑少河.三维应力作用下岩石裂缝水渗流物性规律的实验研究[J].中国科学(E辑),1999,29(1):82-86.
    [134]李术才,李树忱,朱维申等.裂隙水对节理岩体裂隙扩展影响的CT实时扫描实验研究[J].岩石力学与工程学报,2004,23(21):3584-3590.
    [135]李术才,李树忱,张庆松等.岩溶裂隙水与不良地质情况超前预报研究[J].岩石力学与工程学报,2007,26(2):217-225.
    [136]李廷春,李术才,陈卫忠等.厦门海底隧道的流固耦合分析[J].岩土工程学报,2004,26(3):397-401.
    [137]陈卫忠,杨建平,杨家岭.裂隙岩体应力渗流耦合模型在压力隧洞工程中的应用[J].岩石力学与工程学报,2006,25(12):2384-2391.
    [138]郑少河,朱维申.裂隙岩体渗流损伤耦合模型的理论分析[J].岩石力学与工程学报,2001,20(2):151-159.
    [139]Lu JK.Boundary Value Problems for Analytic Function.Singapare:World Scientific,1993
    [140]路见可.关于周期应力平面弹性基本问题[J].力学学报,1964,7(4):316-326.
    [141]路见可.双周期平面弹性理论中的复Airy函数[J].数学杂志,1986,6(3):319-330.
    [142]郑可.双周期平面弹性基本问题[J].数学物理学报,1988,8(1):95-104.
    [143]李正兴,李星.具相对位移的双周期平面弹性第二基本问题[J].宁夏大学学报,1992,13(2):1-8.
    [144]Li X.Application of doubly quasi-periodic boundary value problems in the elasticity theory.[Ph..D Thesis.]Berlin University,1999.
    [145]Honein T,Hermann G.On the bonded inclusions with circular or straight boundaries in plate elastostatics.Journal of Applied Mechanics 1990;57:850-856.
    [146]刘又文,蒋持平.含圆形弹性夹杂的反平面问题[J].中南大学学报,1991,22(2):196-201.
    [147]Gao CF,Noda N.Faber series method for two-dimensional problems of an arbitrarily shaped inclusion in piezoelectric materials.Acta Mechanica 2004,171:1-13.
    [148]Liu YW,Fang QH,Jiang CP.Analysis of a piezoelectric screw dislocation in the interphase layer between a circular inclusion and an unbounded matrix.Materials Chemistry and Physics 2006;98:14-26.
    [149]Fang QH,Liu YW,Jiang CP.On the interaction between a generalized screw dislocation and circular-arc interfacial rigid lines in magnetoelectroelastic solids.International Journal of Engineering Science 2005;43:1011-1031.
    [150]张敬周,王旭,仲政.电磁弹性复合材料双圆柱央杂问题[J].力学季刊,2002,23(3):373-379.
    [151]Wang XY,Yu SW.Scattering of sh waves by an arc-shaped crack between a cylindrical piezoelectric inclusion and matrix near fields[J].Key Engineering Materials,2003,251-252:215-220.
    [152]Fang QH,Liu YW,Size-dependent elastic interaction between a screw dislocation and a circular nano-hole with surface stress[J].Physica Status Solidi(b),2006,243(4):R28-R30.
    [153]杨珏,何旭洪,赵昊彤等.Mathematica应用指南[M].北京:人民邮电出版社,1999.
    [154]李术才,朱维申,陈卫忠.小浪底地下洞室群施工顺序优化分析[J].煤炭学报,1996,21(4):393-398.
    [155]朱维申,李晓静,郭彦双等.地下大型洞室群稳定性的系统性研究[J].岩石力学与工程学报,2004,23(10):1689-1693.
    [156]杨为民,陈卫忠,李术才等.快速拉格朗日法分析巨型地下洞室群稳定性[J].岩土工程学报,2005,27(2):230-234.
    [157]杨典森,陈卫忠,杨为民等.龙滩地下洞室群围岩稳定性分析[J].岩土力学,2004,25(3):391-395.
    [158]李顺才,卓士创,谢卫红.圆形隧道围岩应力场的自然边界元法[J].煤炭学报,2004,26(6):672-675.
    [159]李忠华,官福海,潘一山.基于损伤理论的圆形巷到围岩应力场分析[J].岩土力学,2004,25(增刊):160-163.
    [160]毕继红,丛蓉.各种形状洞室的围岩压力分析[J].地下空间,2004,24(1):23-26.
    [161]Lu AZ,Zhang LQ.Altemating method study on stress analysis of surrounding rock for two random geometry tunnels.Journal of Coal Science & Engineering 1997;3(2):24-29.
    [162]张路青,吕爱钟.双孔圆形洞室围岩应力分析的交替法研究[J].岩石力学与工程学报,1998,17(5):534-543.
    [163]张路青,杨志法,吕爱钟.两平行的任意形状洞室围岩位移场解析法研究及其在位移反分析中的应用[J].岩石力学与工程学报,2000,19(5):584-589.
    [164]张路青,杨志法,吕爱钟.任意布置方式下两任意形状孔洞平面弹性问题的解析法研究[J].中国科学(D辑),2000,30(5):509-518.
    [165]Zhang LQ,Yang ZF,Lu AZ.Analytics study on the problem of two holes having arbitrary shapes and arrangements in plane elastostatics.Science in China(Series D) 2001;44(2):146-158.
    [166]Peck RB.Deep excavations and tunneling in soft ground.In:Proceedings of the Seventh International Conference on Soil Mechanics and Foundation Engineering,Mexico City,State-of-the-Art 1969;pp.225-290.
    [167]Peck RB,Hendron,AJ,Mohraz,B.State of the art of soft-ground tunneling.In:Proceedings of the North American Rapid Excavation and Tunneling Conference,Chicago,IL 1972;pp.259-286.
    [168]Kuesel TR.Principles of tunnel lining desing.Tunnel&Tunnelling 1987;(4):25-28.
    [169]孙钧.侯学渊.地下结构[M].北京:科学出版社,1991.
    [170]王梦恕,杨会军.重申隧道设计、施工的基本原则[J].铁道工程学报,2007,24(1):77-81.
    [171]李宗利,任青文,李亚红.考虑渗流场影响深埋圆形隧洞的弹塑性解[J].岩石力学与工程学报,2004,23(8):1291-1295.
    [172]刘干斌,谢康和,施祖元等.压力隧洞衬砌.围岩(土)相互作用研究[J].岩石力学与工程学报,2005,24(14):2449-2455.
    [173]王贵君.节理裂隙岩体中大断面隧洞围岩与支护结构的施工过程力学状态[J].岩石力学与工程学报,2005,24(8):1328-1334.
    [174]过镇海.钢筋混凝土原理[M].北京,清华大学出版社,1999.
    [175]Chen WF.Plasticity in reinforced concrete.McGraw-Hill Company,1982.
    [176]Sandor BI.Strength of Materials.Prentice Hall,Englewood Cliffs,NJ,1978.
    [177]Mayers MA,Chawla KK.Mechanical Behavior of Materials.Prentice Hall,Upper Saddle River,NJ,1999.
    [178]Courtney TH.Mechanical Behavior of Materials.McGraw-Hill,New York,2000.
    [179]Gere JM.Mechanics of Materials.Brooks-Cole,Belmont,MA,2001.
    [180]Drucker DC.Limit analysis of two and three dimensional soil mechanics problems.Journal of the Mechanics and Physics of Solids 1953;(1):217-226.
    [181]Drucker DC.On uniqueness in the theory of plasticity.The Quarterly of Applied Mathematics 1956;(ⅪⅤ):35-42.
    [182]Drucker DC.1964.On the postulate of stability of material in the mechanics of continua.Journal of Mechanics 1956;(3):235-249.
    [183]Arslan G.Sensitivity study of the Drucker-Prager modeling parameters in the prediction of the nonlinear response of reinforced concrete structures.Materials and Design 2007;28:2596-2603.
    [184]Melao Barros MHF.Elasto-plastic modelling of confined concrete elements following MC90 equations.Engineering Structures 2001;23:311-318.
    [185]Pankaj P,Ermiao L.Material modelling in the seismic response analysis for the design of RC framed structures.Engineering Structures 2005;27:1014-1023.
    [186]Davide B,Andrea P.Yield criteria for quasi-brittle and frictional materials.International Journal of Solids and Structures 2004;41:2855-2878.
    [187]华东水利学院,成都科学技术大学.岩石力学[M].北京,水利电力出版社,1984.
    [188]#12
    [189]王秀英,王梦恕,张弥.山岭隧道堵水限排衬砌外水压力研究[J].岩土工程学报,2005,27(1):125-127.
    [190]王秀英,谭忠盛,王梦恕等.高水位隧道堵水限排围岩与支护相互作用分析[J].岩土力学,2008,29(6):1623-1628.
    [191]王秀英,谭忠盛,王梦恕等.山岭隧道堵水限排围岩力学特性分析[J].岩土力学,2008,29(1):75-80.
    [192]王秀英,王梦恕,张弥.计算隧道排水量及衬砌外水压力的一种简化方法[J].北方交通大学学报,2004,28(1):8-10.
    [193]杨林德,丁文其.渗水高压引水隧洞衬砌的设计研究[J].岩石力学与工程学报,1997,16(2):112-117.
    [194]谢兴华,盛金昌,速宝玉等.隧道外水压力确定的渗流分析方法及排水方案比较[J].岩石力学与工程学报,21(增2):2375-2378.
    [195]潘家铮,张有天,张武功.学术讨论—隧洞水荷载的静力计算[J].水利学报,1981,(5):73-79.
    [196]雅贝尔.地下水水力学[M].北京:地质出版社,1985.
    [197]Coussy O.Poromechanics.J.Wiley & Sons,New York,2004.
    [198]Lambe TW,Whitman,RV.Soil Mechanics.J.Wiley & Sons,New York,1969.
    [199]Bobet A.Effect of pore water pressure on tunnel support during static and seismic loading.Tunnelling and Underground Space Technology 2003;18:377-393.
    [200]Nam SW,Bobet,A.Liner stresses in deep tunnels below the water table.Tunnelling and Underground Space Technology 2006;21:626-635.
    [201]刘鹤年.流体力学[M].北京:中国建筑工业出版社,2004.
    [202]Louis C,Maini T.Determination of in situ hydraulic parameters in jointed rock.In:Proc.2nd Cong.ISRM 1970;235-245
    [203]Zimmerman RW,Bodvarsson GS.Hydraulic conductivity of rock fractures.Transport in Porous Media,1996,23:1-30.
    [204]Zimmerman RW,A1-Yaarubi A,Pain CC,et al.Non-linear regimes of fluid flow in rock fractures.International Journal of Rock and Mining Science 2004;41(3):384-384.
    [205]Zimmerman RW,Chen DW,Cook NGW.The effect of contact area on the permeability of fractures.Journal of Hydrology 1992;139:79-96.
    [206]Yue Cai,Yetsuro Esaki,Yujing Jiang.A rock bolt and rock mass interaction model.International Journal of Rock Mechanics & Mining Sciences 2004;(41):1055-1067.
    [207]Tsang YW,Tsang CF.Channel model of flow through fractured media.Water Resources Research 1987;23(3):467-479.
    [208]Tsang CF.Coupled behavior of rock joints.In:Rock joints,Edited by Barton &stephansson,Balkema,1990.505-518.
    [209]孙讷正.地下水流的数学模型和数值方法[M].北京:地质出版社,1981.
    [210]孙讷正.地下水污染-数学模型和数值方法[M].北京:地质出版社,1989.
    [211]Sun,NZ.Mathematical Modeling of Groundwater Pollution.Springer-Verlag,New York,1996.
    [212]Sun,NZ.Inverse Problems in Groundwater Modeling.Kluwer Academic Publishers,the Netherlands,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700