用户名: 密码: 验证码:
高地应力条件下围岩劈裂破坏的力学机理及其能量分析模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着国民经济的持续稳定增长,国家对地下洞室开发利用的需求日益增加,大量工程都在建设或筹划中,地下工程建设呈现出方兴未艾的局面。仅就西部的水电工程来说,近些年内有相当多的大型水力发电工程和蓄能电站进入兴建与筹划期。其中很多都设计有大型或超大型地下洞室群做主要的水工建筑物,且大多选择为深埋式地下厂房。而西部地区具有全球最强烈的现代地壳运动,活动断裂发育,地质环境极为复杂,加上高山峡谷等地形地貌条件,往往赋存有高地应力场。在此条件下围岩的破裂现象在洞群施工期就会明显的出现,一系列大型洞群的高边墙经常发现有劈裂裂缝,并随着地下厂房规模的增大表现得更加突出。此现象已经引起专家的关注,但对其发生机理及其锚固效应尚未进行深入地分析研究。本文采用理论分析、数值模拟和实验验证相结合的方法,从微观和宏观两个方面系统研究了高地应力条件下围岩劈裂破坏机理及其锚固效应,并将理论分析与工程实践紧密结合,主要完成了以下几个方面的工作:
     (1)从断裂力学的角度,系统研究了地下工程围岩中的裂纹在各种受力条件下(包括拉剪、压剪两种情况)的起裂、扩展及贯通以致最终形成劈裂裂缝的各个阶段的特征和破坏判据。分析了裂纹之间的贯通机理和极值分布,从理论上揭示了多裂纹之间可能存在的贯通模式与机理。最后以受压岩体中的斜裂纹扩展过程分析为例,模拟了岩体中裂纹逐渐发展成劈裂裂缝的整个过程。
     (2)在有限元分析软件ANSYS中实现断裂分析的基本过程。通过参数化设计方法APDL编写裂纹扩展模拟的前处理程序,实现了裂纹断裂计算和分析的自动化,证明ANSYS非常适合于模拟含裂纹或缺陷结构,当参数选择合适时,有限元可以很好的模拟裂纹的扩展过程。并分别模拟了裂纹扩展的不同阶段,通过与理论计算结果相对照,进一步完善劈裂裂缝的形成过程和发生机理。
     (3)基于试验结果,分析研究了岩石的单轴压缩和三轴压缩条件下的变形破坏过程,揭示了这一过程的能量耗散及能量释放特征。通过实验室内的相似模型试验,研究了加锚对岩体断裂能的影响。为了能够定量分析围岩能量释放的程度,基于裂纹扩展是以能量释放为主要特征的破坏现象的认识,定量计算了能量释放率,并将其应用到瀑布沟地下厂房的开挖分析中,分别得到了该地下厂房不同位置处弹性能随开挖步变化曲线以及弹性能密度分布等值线图,可以更直观地分析能量与裂纹扩展的关系。
     (4)采用滑移裂纹组模型来模拟岩石在轴向压力作用下的劈裂破坏,以考虑裂纹之间的相互作用。基于裂纹扩展过程中的能量平衡原理,分别建立了线弹性条件下和小范围屈服条件下的劈裂判据。并将这两个判据应用到琅琊山抽水蓄能水电站的开挖分析中,分别计算得到了两种情况下劈裂破坏区范围分布图,以定量的概念和直观的图像来把握和判断围岩中不同区域的劈裂破坏程度,为高地应力条件下地下工程开挖过程中出现的劈裂破坏提高更加科学合理的预测判据。
     (5)对于处在高地应力下脆性围岩中的地下洞室群,开挖时洞室围岩容易出现纵向的劈裂裂缝,导致脆性开裂,形成劈裂性平行大裂缝组,可将其看作叠层薄板。根据柯克霍夫平板理论检验了薄板模型的适用性,在薄板模型的基础上利用能量方法建立了劈裂围岩的临界应力、位移的解析计算公式。以瀑布沟水电站为工程背景,将劈裂判据编成fish语言计算得到围岩的劈裂破损区。在此基础上利用薄板力学模型计算了其临界应力和最大位移。
     (6)锚喷支护对岩体的加固作用在很大程度上是抑制裂纹的扩展。分别采用理论分析和数值方法对锚喷支护抑制裂纹的扩展进行了分析研究。首先在理论方面利用断裂力学理论分别分析了混凝土喷层和锚杆对应力强度因子的影响,并计算得到了锚杆的最佳安装角。然后利用ANSYS数值模拟了锚杆对裂纹的止裂作用,分析了不同因素对应力强度因子的影响。
     (7)通过分别计算外力所做功,锚杆吸收的能量,塑性能,弹性应变能,裂纹扩展耗散的能量,根据能量守恒定律建立了锚固条件下围岩劈裂破坏判据,并将该判据应用到猴子岩水电站的开挖分析中,通过分别计算三种洞室间距方案、三种开挖顺序以及考虑锚杆作用下洞室围岩的劈裂破坏范围,并与计算的塑性区范围相对比,分析得出在高地应力条件下不能仅仅以塑性区作为评价开挖顺序和洞室布置方案的唯一指标,有时劈裂区更能反映出地应力分布的特征,可以为开挖方案的优化提供更多的参考意见。
The demand for the underground caverns is increasing by the persistent national economy increase in recent years. A great deal of engineering is being built or planed. The underground engineering is in the ascendant. For western water-power engineering only, quite a number of large-scale water-power engineering and storage plants has been built and designed. Most of them use large or ultra-large underground caverns as hydraulic architectures and mostly are immerged. The western bears the most strong modern lithosphere movement. The geologic environment is very complicated. Because of the landform and physiognomy such as alp and canyon, there always is high geostress filed. There will be fracture phenomena in constructing under the condition. A series of high side wall were found splitting cracks and standing out by the scale. This phenomenon has attracted the expert's attention. But the mechanism and anchorage effect has not been gone deep into analyze and research. The theory analysis, numerical simulation and experiment validation were combined in this thesis. The splitting failure mechanism and anchorage effect are systematically studied from both microcosmic and macroscopic aspect. Combine the theory analysis with engineering practice tightly. The main results discussed in this thesis are as follows:
     (1) Based on fracture mechanics, the characteristics and failure criterions of wall rock cracks including initiation, propagation, and coalescence are analyzed systematically under different conditions. The coalescence mechanism and extremum distribution of cracks are researched. The coalescence mode and mechanism among cracks are revealed in theory. Finally, take the compressed crack propagation analysis as an example, simulate the whole process that the cracks in rock develop into splitting cracks.
     (2) To realize the basic process of fracture analysis in ansys. The fore treatment program of crack propagation simulation is compiled by parameterization method of apdl. The calculation and analysis is automatic. Ansys is well for simulating the structures which contain cracks and bugs. When the parameters are suitable, the propagation of cracks can be simulated well in ansys. The different phases of crack propagation are simulated. To compare with the results by theory, perfect the formation process and mechanism of splitting cracks.
     (3) According to the results of experiments, the failure process of rock under uniaxial and triaxial compression is analyzed. The characteristics of energy dissipation and release in the process are revealed. Via the similar experiments in lab, the fracture energy of bolted rock mass is studied. In order to analyze the degree of released energy quantitatively, the ratio of energy release is computed based on the acquaintance to the failure phenomenon which the crack propagation give priority to the energy release. This method is applied into Pubugou power station excavation. Both the curves of elastic energy change in different positions and the contour chart of elastic energy density are received. The relationship between energy and crack propagation can be analyzed straightly.
     (4) In order to consider the interaction among cracks, adopt the sliding model of multi-cracks to simulate the splitting failure of rock in axial compress. According to the energy balance principle in the process of crack propagation, the splitting criterions under both linear elastic and small range yield are set up. Both of them are put into the excavation of Langyashan pumped storage power station. The distribution charts of splitting failure range are obtained. The splitting failure degree in different positions can be grasped and judged by quantificational concepts and intuitionistic images. The method offer more scientific and rational criterion to evaluate the splitting failure of underground engineering in high geostress.
     (5) When the underground caverns of brittle wall rock that locate in high geostress are being excavated, the longitudinal splitting cracks always present and lead to brittle craze. The splitting cracks will evolve into large parallel splitting crack groups. It can be treated as thin plate. According to G.R.Kirchoff thin plate theory, test the applicability of thin plate. The stress and displacement are resolved by elastic thin plate at the condition of basic hypothesis and geostress. The resolution calculation of critical stress and displacement are settled in theory based on energy method. Set Pubugou power station as engineering background. The criterion is programmed into fish language and the splitting failure range is confirmed. The critical stress and displacement are calculated by the resolution formula in the splitting failure range.
     (6) The reinforcement of bolts and shotcrete supporting to rock mass can control the cracks propagation well. Adopt both theory analysis and simulation method to study the mechanism of controlling the propagation. Firstly, from the theory aspect analyze the influence of shotcrete and bolts on stress intensity factor based on fracture mechanism theory. The best fixed angle of bolts is calculated. Then use ansys to simulate the crack arrest function of bolt to crack. Analyze the influence of different factors on stress intensity factor.
     (7) The splitting failure criterion of bolted rock mass is set up depending on energy balance principle including the work by external force, dissipation energy by bolts, plastic energy, elastic strain energy and dissipation energy by cracks propagation. The criterion is also applied into the excavation analysis of Houziyan water power station. The splitting failure range of surrounding rock is calculated, separately considering three separations, three excavation sequences and anchorage. And compare with the plastic range. The results show that the plastic range can not be treated as the only index which evaluates the excavation sequence and caverns layout scheme. The splitting failure may reflect more characters of geostress distribution sometimes and can give more reference opinions to optimization of excavation schemes.
引文
[1]朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用[M].北京:科学出版社,2002.
    [2]李宁,孙宏超,姚显春,石广斌.地下厂房母线洞环向裂缝成因分析及处理措施[J].岩石力学与工程学报,2008,27(3):433-438.
    [3]M.F.Ashby and S.D.Hallam.The failure of brittle solids containing small cracks under compressive stress states[J].Acta Metallurgy,1986,34(3):497-510.
    [4]S.Nemat-Nasser,and Obata,M.M.A microcrack model of dilatancy in brittle material[J].Journal of aliedmechanics,1988,55(2):24-35.
    [5]S.Nemat-Nasser,and H.Horii.Compression-induced nonlinear crack extension with application to splitting,exfoliation,and rockburst[J].J.Geophys Res.,1982,87(B8):6805-6821.
    [6]Brace W F,Bombolakis E G.A note on brittle crack growth in compression[J].J.Geophys Res,1963,68(B12):3709-3713.
    [7]Ramamurthy T.Shear strength response of some geological materials in triaxial compression.International Journal of Rock Mechanics and Mining Sciences,2001,38(6):683-697.
    [8]Ramamurthy T,Arora V K.Strength predictions for jointed rocks in confined and unconfined states[J].Int.J.Rock Mech.Min.Sci.& Geomech.Abstra,1994,31(1):9-22.
    [9]Wong R H C,Leung W L,Wang S W.Shear strength studies on rock-like models containing arrayed open joints[C].Proceeding of the 38th U.S.Rock Mech Symp Rock Mech in the National Interest,2001b:843-849.
    [10]Wong R H C,Wang S W.Experimental and numerical study on the effect of material property,normal stress and the position of joint on the progressive failure under direct shear[C].NARMS-TAC2002,Mining and Tunnelling Innovation and Opportunity,Toronto,Canada,2002b:1009-1016.
    [11]Gehle C,Kutter H K.Breakage and shear behavior of intermittent rock joints[J].Int.J.Rock Mech.Min.Sci.,2003,40(8):687-700.
    [12]Bobet A,EinsteinH H.Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J].International Journal of Rock Mechanics and Mining Sciences,1998,35(7):863-888.
    [13]Yang Z Y,Chen J M,Huang T H.Effect of joint sets on the strength and deformation of rock mass models[J].International Journal of Rock Mechanics and Mining Sciences,1998,35(1):75-84.
    [14]Reyes O,Einstein H H.Failure mechanisms of fractured rock - A fracture coalescence model[C].Proceedings of 7th International Congress on Rock Mechanics,Aachen,Germany,1991:333-340.
    [15]Shen B.The mechanism of fracture coalescence in compression- experimental study and numerical simulation[J].Engng Frac Mech,1995,51(1):73-85.
    [16]Shen B,Stephansson O,Einstein H H,et al.Coalescence of fractures under shear stresses in experiments[J].J Geophys Res,1995,100(B4):5975-5990.
    [17]Bobet A,Einstein H H.Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J].Int J Rock Mech Min Sci,1998,35(7):863-888.
    [18]朱维申,陈卫忠,申晋.雁形裂纹扩展的模型试验及断裂力学机制研究[J].固体力学学报,1998,19(4):355-360.
    [19]朱维申,冯光北,方昭茹.单排裂隙岩体模型的抗剪试验研究,中科院武汉岩土力学研究所内部报告,1983.
    [20]朱维申,冯光北.不同连通率的单排岩体模型的抗剪试验研究,中科院武汉岩土力学研究所内部报告,1984.
    [21]徐靖南,朱维申,白世伟.压剪应力作用下多裂隙岩体的力学特性-断裂损伤演化方程及试验验证[J].岩土力学,1994,15(12):1-12.
    [22]徐靖南.压剪应力作用下多裂隙岩体的力学特性-理论分析与模型试验[D].武汉:中国科学院武汉岩土力学研究所博士学位论文,1993.
    [23]朱维申,申晋,赵阳升.裂隙岩体渗流耦合模型及在三峡船闸分析中的应用[J].煤炭学报,1999,24(3):289-293.
    [24]朱维申.节理岩体强度特性的物理模拟及其强度预测分析,国家自然科学基金委重大项目中间报告,1992.
    [25]朱维申,陈卫忠,申晋.雁形裂纹扩展的模型试验及断裂力学机制研究[J].固体力学学报,1998,19(4):355-360.
    [26]李术才.加锚断续节理岩体断裂损伤模型及其应用[D].武汉:中国科学院武汉岩土力学研究所博士学位论文,1996.
    [27]陈卫忠.节理岩体损伤断裂时效机理及其工程应用[D].武汉:中国科学院武汉岩土力学研究所博士学位论文,1997.
    [28]陈卫忠,李术才,朱维申,邱祥波.岩石裂纹扩展的实验与数值分析研究[J].岩石力学与工程学报,2003,22(1):18-23.
    [29]李术才,李廷春,王刚,白世伟.单轴压缩荷载作用下内置裂隙扩展的CT扫描试验[J].岩力学与工程学报,2007,26(3):484-492.
    [30]张强勇,朱维申,向文,李术才.节理岩体断裂破坏强度计算及工程应用[J].山东大学学报(工学版),2005,35(1):98-101.
    [31]Lin P.,Wong R.H.C.,Chau K.T.and Tang C.A.Multi-crack coalescence in rock-like material under uniaxial and biaxial loading[J].Key Engineering Materials.2000,14(2):183-187 & 809-814.
    [32]黄明利,黄凯珠.三维表面裂纹相互作用扩展贯通机制试验研究[J].岩石力学与工程学报,2007,26(9):1794-1799.
    [33]蒋爵光.铁路岩石边坡坡度的确定及稳定性分析[J].西南交通大学学报,1991,2:1-7.
    [34]周小平,王建华,哈秋舲.压剪应力作用下断续节理岩体的破坏分析[J].岩石力学与工学报,2003,22(9):1437-1440.
    [35]周小平,张永兴,王建华等.断续节理岩体劈裂破坏的贯通机理研究[J].岩石力学与工程学报,2005,24(1):8-12.
    [36]黄润秋,黄达.卸荷条件下岩石变形特征及本构模型研究[J].地球科学进展,2008,23(5):441-447.
    [37]刘冬梅,蔡美峰.岩石裂纹扩展过程的动态监测研究[J].岩石力学与工程学报,2006,25(3):467-472.
    [38]黎立云,刘大安,史孝群,车法星.多裂纹类岩体的双压实验与正交各向异性本构关系[J].中国有色金属学报,2002,12(1):165-170.
    [39]郭少华.岩石类材料压缩断裂的实验与理论研究[D].长沙:中南大学博士学位论文,2003.
    [40]陈蕴生,刘晟锋,李宁,等.裂隙对非贯通裂隙介质强度与变形特性影响的研究[J].西北农林科技大学学报(自然科学版),2007,35(7):207-212.
    [41]赵兴东,李元辉,袁瑞甫,等.基于声发射定位的岩石裂纹动态演化过程研究[J].岩石力学与工程学报,2007,26(5):944-950.
    [42]Cundall P A,Strack O D L.A discrete numerical model for granular assemblies[J].Geotechnique,1979,29(1):47-65.
    [43]Liu H Y,Roquete M,Kou S Q,et al.Characterization of rock heterogeneity and numerical verification[J].Engineering Geology,2004,72(1/2):89-119.
    [44]Liu H Y,Kou S Q,Lindqvist P A.Numerical simulation of the fracture process in cutting heterogeneous brittle material[J].International Journal for Numerical and Analytical Methods in Geomechanics,2002,26(13):1253-1278.
    [45]Fang Z,Harrison J P.Development of a local degradation approach to the modeling of brittle fracture in heterogeneous rocks[J].International Journal of Rock Mechanics and Mining Sciences,2002,39:443-457.
    [46]Fang Z,Harrison J P.Application of a local degradation model to the analysis of brittle fracture of laboratory scale rock specimens under triaxial conditions[J].International Journal of Rock Mechanics and Mining Sciences,2002,39:459-476.
    [47]陈沙,岳中琦,谭国焕.基于真实细观结构的岩土工程材料三维数值分析方法[J].岩石力学与工程学报,2006,25(10):1951-1959.
    [48]Sellers E J,Klerck P.Modelling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels[J].Tunneling and Underground Space Technology.2000,15(4):463-469.
    [49]Tang C A,Lin P,Wong R H C,Chau K T.Analysis of crack coalescence in rock-like materials containing three flaws-Part Ⅱ:numerical approach[J].International Journal of Rock Mechanics and Mining Sciences,2004,38(7):925-939.
    [50]陈卫忠,李术才,朱维申,邱祥波.岩石裂纹扩展的实验与数值分析研究[J].岩石力学与工程学报,2003,22(1):18-23.
    [51]李宁,张志强,张平,刘琳.裂隙岩样力学特性细观数值试验方法探讨[J].岩石力学与工程学报,2008,27(supp.1):2848-2854.
    [52]唐春安,黄明利,张国民,焦明若.岩石介质中多裂纹扩展相互作用及其贯通机制的数值模拟[J].地震,2001,21(2):53-58.
    [53]C.A.Tang,P.Lin,R.H.C.Wong and K.T.Chau.Analysis of crack coalescence in rock-like materials containing three flaws-Part Ⅱ:numerical approach[J].International Journal of Rock Mechanics and Mining Sciences,2001,38(7):925-939.
    [54]梁正召,唐春安,张永彬,等.岩石三维破裂过程的数值模拟研究[J].岩石力学与工程学报,2006,25(5):931-936.
    [55]焦玉勇,张秀丽,刘泉声,陈卫忠.用非连续变形分析方法模拟岩石裂纹扩展[J].岩石力学与工程学报,2007,26(4):682-691.
    [56]夏祥,李海波,李俊如,等.岩体爆生裂纹的数值模拟[J].岩土力学,2006,27(11):1987-1991.
    [57]唐辉明,晏同珍.岩体断裂力学理论与工程应用[M].北京:中国地质大学出版社,1993.
    [58]伍佑伦.基于岩体断裂力学的巷道稳定性与锚喷支护机理研究[D].武汉:华中科技大 学博士学位论文,2004.
    [59]陈枫.岩石压剪断裂的理论与实验研究[D].长沙:中南大学博士学位论文,2002.
    [60]李江腾.硬岩矿柱失稳及时间相依性研究[D].长沙:中南大学博士学位论文,2005.
    [61]F.Erdogan,G.C.Sih.On crack extension in plates under plane loading and Transverse shear[J].Trans.ASME.,Journal of Basic Engng,1963,85:519-527.
    [62]G.C.Sih.Energy-density concept in fracture mechanics[J].Engng.Fracture Mech.,1973,5:1037-1040.
    [63]G.C.Sih.Strain-energy-density factor applied to mixed mode crack problem[J].Int.J.Fracture,1974,10:305-321.
    [64]于骁中.岩石和混凝土断裂力学[M].长沙:中南工业大学出版社,1991.
    [65]R.J.Nuismer.An energy release rate criterion for mixed fracture.Int.Jour.Fract.Mech.,1975,11(2):245-250.
    [66]Shen B and Stephansson.Modification of the G-criterion for crack propagation subjected to compression[J].Engng.Fracture Mech.,1994,47(2):177-189.
    [67]Hussain M A,Pu S L and Underwood J.Strain energy release rate for a crack under Combined modeⅠ and mode Ⅱ[C],fracture Analysis,ASTM,STP 560,1974:2-28.
    [68]Chiang W T.Fracture criteria for combined mode cracks[C].Fracture,ICP4,1977,4:278-292.
    [69]El-Tahan W W,Staab G H,Advani S H and Lee J K,A mixed mode local symmetric fracture geo-materials[C].Proc.32~(nd) U.S.Symp.Rock Mechanics,1990:455-462.
    [70]周群力.岩石压剪断裂判据及其应用[J].岩土工程学报,1987,9(3):33-37.
    [71]尹双增.探讨一种新的复合型断裂判据[J].应用数学和力学,1985,6(6):507-518.
    [72]郭少华.压缩条件下岩石断裂模式与断裂判据的研究[J].岩土工程学报,2002,24(3):304-308.
    [73]栾茂田,杨新辉,杨庆,等.考虑三向应力效应的最大Mises应力复合断裂判据[J].岩土力学,2006,27(10),1647-1652.
    [74]周家文,徐卫亚,石崇.基于破坏准则的岩石压剪断裂判据研究[J].岩石力学与工程学报,2007,26(6):1194-1201.
    [75]蒋玉川,徐双武,陈辉.脆性材料复合型裂纹的断裂准则[J].工程力学,2008,25(4):50-54.
    [76]陈四利.复合型断裂等W线体积应变能准则[J].沈阳工业大学学报,1992,14(4):87-92.
    [77]邓宗才.重力坝压剪复合型断裂问题的探讨[J].山东建材学院学报,1995,9(3):39-44.
    [78]李建林,孙志宏.节理岩体压剪断裂及其强度研究[J].岩石力学与工程学报,2000,19(4):444-448.
    [79]Wawersik W R,Brace W F.Post-failure behavior of a granite and diabase[J].Rock Mech.,1971,3:61-85.
    [80]Hallbauer D C,Wagner H,Cook N G W.Some observations concerning the microscopic and mechanical behavior of quartzite specimens in stiff,triaxial compressin tests[J].Int.J.Rock Mech Min.Sci.,1973,10:713-725.
    [81]Tapponnier P,Brace W F.Development of stress induced microcraeks in Westly granite[J].Int.J.Rock Mech Min.Sci.,1976,13:103-112.
    [82]Kranz R L.Crack growth and development during creep of Baru granite[J].Int.J.Rock Mech Min.Sci.(a),1979,16:23-36.
    [83] Kranz R L. Crack-crack and crack pore interactions in stressed granite[J]. Int. J. Rock Mech Min.Sci.(b), 1979, 16:37-47.
    [84] Wong T F. Micromechanics of faulting in westly granite[J]. Int. J. Rock Mech Min. Sci.(b), 1982, (19): 49-64.
    [85] Fredrich J T, Evens B. Effect of grain size on brittle and semi-brittle strength: implication for micromechanics modeling of failure in compression[J]. J. Geophys Res., 1990, 95: 10907-10920.
    [86] Horri H, Nemat-Nasser S. Brittle failure in compression: splitting, faulting, and brittle-ductile transition[J]. Phil Trans Royal Soc London, 1986(319): 337-374.
    [87] Zhang J, Wong T F, Davis D M. micromechanics of pressure-induced grain crushing in porous rocks[J]. J. Geophys Res., 1990, 95: 341-352.
    [88] Wimmer S A, Karr D G. Compressive failure of microcracked porous brittle solids[J]. Mechanics of matrial, 1996, 22: 265-277.
    [89] Xia Y R. Rate dependent elasto-plasticity of hybrid composites in compression[J]. Int. J. Solids Structures, 1993, 30(2): 249-261.
    [90] Day T N, Wang C Y. Some mechanisms of microcrack growth and interaction in compressive rock failure[J]. Int. J. Rock Mech. Min. Sci., 1981,18: 199-209.
    [91] Krajcnovic D, Basista M, Sumarac D. Micromechnically inspired phenomenological damage model[J]. J. App. Mech., 1991, 58: 305-310.
    [92] Wong T F. A note on the propagation behaviour of a crack nucleated by a dislocation pile-up[J]. J. Geophys Res., 1990, 95: 8639-8646.
    [93] Brace W F, Bombolakis E G. A note on brittle crack growth in compression[J]. J. Geophys. Res., 1963,68(6): 3709-3717.
    [94] Kachanov M L. A microcrack model of rock inelasticity part I: friction sliding on microcracks[J]. Mech. Mater., 1982a, 1(1): 19-27.
    [95] Kachanov M L. A microcrack model of rock inelasticity part II: propagation on microcracks[J]. Mech. Mater., 1982b, 1(1): 29-41.
    [96] Myer L R, Kemeny J M, Zheng Z, et al. Extensive crack in porous rock under differential compressive stress[J]. Appl. Mech. Rev., 1992,45(8): 263-280.
    [97] Olsson W A, Peng S S. Microcrack nucleation in marble[J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1976,13(2): A21-22.
    [98] Nemat-Nasser S, Horri H. Compression-induced nonlinear crack extension with application to splitting, exfoliation and rockburst[J]. J. Geophys. Res., 1982, 87(B8): 6805-6821.
    [99] Horri H, Nemat-Nasser S. Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure[J]. J. Geophys. Res., 1985, 90(B4): 3105-3125.
    [100] Nemat-Nasser S, Obata M. A microcrack model of dilatancy in brittle materials[J]. J. Appl. Mech., 1988, 55(1): 24-35.
    [101] Kemeny J M. A model for non-linear rock deformation under compression due to subcritical crack growth[J]. Int. J. Rock Mech. Min.Sci. Geomech. Abstr., 1991, 28(6): 459-46.
    [102] Germanovich L N , Salganik R L., Dyskin A V, et al. Mechanisms of brittle fracture of rock with pre-existing crack in compression[J]. Pure Appl. Geophys., 1994, 14 3(1-3): 117-149.
    [103] Blair S C, Cook N G W. Analysis of compressive fracture in rock usingstatistical techniques: Part I .A non-linear rule-based model, Part II. Effect of microscale heterogeneity on macroscopic deformation[J].Int.J.Rock Mech.Min.Sci.,1998,35(7):837-861
    [104]Hajiabdolmajid V,Kaiser P K,Martin C D.Modeling brittle failure of rock[J].Int.J.Rock Mech.Min.Sci.,2002,39(6):731-741.
    [105]Kemeny J M,Cook N G.Crack models for the failure of rock under compression,Proc[C].2nd Int.Conf.Constitutive Laws for Engng,Materials,Tucson,1987,2:879-887.
    [106]Adams M,Sines G.Crack extension from flaws in a brittle material subjected to compression[J].Tectonophysics,1978,49(1):97-118.
    [107]Kachanov M L.Microcrack model for rock in elasticity[J].Grant EAR,1980,78:129-180.
    [108]Fanella D and Krajacinovic D.A micromechanical model for concrete in compression[J].Engng.Fracture Mech.,1988,29(1):49-66.
    [109]McClintock F A and Walsh J B.Friction on Griffith cracks in rocks under pressure[C].4th U.S.National Congress for Applied Mechanics,Berkeley,California,1962:1015-1021.
    [110]Tirosh J and Catz E.Mixed-mode fracture angle and fracture locus of materials subjected to compressive loading[J].Engng.Fracture Mech.,1981,14:27-38.
    [111]Ashby M F arid Hallam S D.The failure of brittle solids containing small cracks under compressive stress states[J].Acta Metall.,1986,34(3):497-510.
    [112]Paul B.Macroscopic criteria for plastic flow and brittle fracture[C].Fracture,Vol.Ⅱ,Academic Press,New York,1968.
    [113]Yuan Y G,Lajtai E Z and Ayari M L.Fracture nucleation from a compression-parallel,Finite-width elliptical flaw[J].Int.J.Rock Mechanics Min.Sci.and Geomechanics Abstract,1993,30(7):873-876.
    [114]STEIF P S.Crack extension under compressive loading[J].Engng.Fract.Mech.,1984,20:463-473.
    [115]LEHNER F,KACHANOV M.On modeling of winged cracks forming under compression[J].Int.J.Fract.,1996,77:65-75.
    [116]BAUD P,REUSCHLE T,CHARLEZ P.An improved wing crack model for the deformation and failure of rock in compression[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanies Abstracts,1996,33(5):539-542.
    [117]ASHBY M F,HALLAM S D.The failure of brittle solids containing small cracks under compressive stress states[J].Acta Metall,1986,34:497-510.
    [118]李术才,朱维申.复杂应力状态下断续节理岩体断裂损伤机理研究及其应用[J].岩石力学与工程学报,1999,18(2):142-146.
    [119]罗淦堂,林伟平.多孔隙岩石的破坏机理与特征强度判定[J].长江科学院院报,1987,(2):21-30.
    [120]黎立云,黎振兹,孙宗颀.岩石的复合型断裂实验及分析[J].岩石力学与工程学报,1994,13(2):134-140.
    [121]孔园波,华安增.裂隙岩石破裂机理研究[J].煤炭学报,1995,20(1):72-77.
    [122]刘东燕,朱可善.岩石压剪断裂及其强度特性分析[J].重庆建筑工程学院学报,1994,16(2):54-60.
    [123]徐靖南,朱维申.压剪应力作用下共线裂纹的强度判定[J].岩石力学与工程学报,1995,14(4):306-311.
    [124]王水林,葛修润,章光.受压状态下裂纹扩展的数值分析[J].岩石力学与工程学报,1999,18(6):671-675.
    [125]周小平,张永兴,哈秋聆.裂隙岩体加载和卸荷条件下应力强度因子[J].地下空间,2003,23(3):277-280.
    [126]周维恒,剡公瑞.岩石混凝土类材料断裂损伤过程区的细观力学研究[J].水电站设计,1997,13(1):1-9.
    [127]ChenFeng,Sun Zongqi,Xu Jicheng.A crack closure model for brittle rock subjected to compressive shear loading[J].TranS.Nonferrous Met.Soc.1999,9(2):428-432.
    [128]陈枫,孙宗颀.单轴压缩下中心裂纹巴西试样的权函数分析[J].岩石力学与工程学报,2000,19(5):588-603.
    [129]杨新辉,架茂田,杨庆,叶祥记,樊成.简化脆性断裂裂尖模型及复合型断裂判据[J].大连理工大学学报,2005,45(5):712-716.
    [130]楼晓明,郑俊杰,章荣军.富水区深埋巷道围岩微裂纹裂尖塑性区研究[J].华中科技大学学报(自然科学版),2008,36(8):125-128.
    [131]黎立云,宁海龙,刘志宝,佘云龙,刘大安,付敬辉.层状岩体断裂破坏特殊现象及机制分析[J].岩石力学与工程学报,2006,25(supp.2):3933-3938.
    [132]李银平,杨春和.裂纹几何特征对压剪复合断裂的影响分析[J].岩石力学与工程学报,2006,25(3):462-466.
    [133]李江腾,曹平.硬岩矿柱纵向劈裂失稳突变理论分析[J].中南大学学报(自然科学版),2006,37(2):371-375.
    [134]张平,贺若兰,李宁,等.不同应变速率下非贯通裂隙介质的单轴抗压强度分析[J].岩石力学与工程学报,2007,26(supp.1):2735-2742.
    [135]赵艳华.混凝土断裂过程中的能量分析研究[D].大连:大连理工大学博士学位论文,2002
    [136]Nemat-Nasser S and Obata M.A microcrack model of dialatancy in brittle material[J].J.Appl.Mech.,1988,55:24-35.
    [137]Kemeny J M and Cook N G W.Micromechanics of deformation in rocks[C].Toughening Mechanics in Quasi-brittle materials,1991:155-188.
    [138]Basista M and Gross D.The sliding crack model of brittle deformation:an internal variable approach[J].Int.J.Solids Structure,1998,35(5-6):487-509.
    [139]Ravichandran G and Subhash G.A micromechanical model for high strain rate behavior of ceramic[J].Int.J.Solids Structures.1995,32(17-18):2627-2646.
    [140]Cook N G W.The design of underground excavations[C].In Proc.8~(th) U.S.Symposium on Rock Mechanics,Univ.of Minnesota,Am.Inst.Min.Metall.,Petrol.Engins.,New York,1967:167-193.
    [141]Jay P A.Unstable and Violent Failure around Underground Openings in Highly Stressed Ground[D].Ph.D.Thesis,Queen's University at Kingston,Kingston,Ontario,1999.
    [142]Ravichandran,G.and Subhash,G.A micromechanical model for high strain rate behavior of ceramics[J].Int.J.Solids Structures,1995,32:2627-2646.
    [143]Kemeny,J.M.,Cook,N.G.W.Determination of rock fracture parameters from crack models for failure in compression[C].28th,U.S.Symp.On Rock Mech.,1987.
    [144]Zheng Z,Kemeny J,Cook N G W.Analysis of borehole breakouts.J.Geophys Res,1989,94(B6):7171-7182.
    [145]谢和平,彭瑞东,鞠扬等.岩石破坏的能量分析初探[J].岩石力学与工程学报,2005,24(15):2603-2608.
    [146]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩 石力学与工程学报,2005,24(17):3003-3010.
    [147]朱维申,张强勇,李术才.三维脆弹塑性断裂损伤模型在裂隙岩体工程中的应用[J].固体力学学报,1999,20(2):164-170.
    [148]李树忱,李术才,朱维申.能量耗散弹性损伤本构方程及其在围岩稳定分析中的应用[J].岩石力学与工程学报,2005,24(15):2646-2653.
    [149]陈卫忠,李术才,朱维申,等.考虑裂隙闭合和摩擦效应的节理岩体能量损伤理论与应用[J].岩石力学与工程学报,2000,19(2):131-135.
    [150]华安增.地下工程周围岩体能量分析[J].岩石力学与工程学报,2003,22(7):1054-1059.
    [151]赵忠虎,谢和平.岩石变形破坏过程中的能量传递和耗散研究[J].四川大学学报(工程科学版),2008,40(2):26-31.
    [152]尤明庆,华安增.岩石试样破坏过程的能量分析[J].岩石力学与工程学报,2002,21(6):778-781.
    [153]苏承东,张振华.大理岩三轴压缩的塑性变形与能量特征分析[J].岩石力学与工程学报,2008,27(2):273-280.
    [154]李海波,赵坚,李俊如,等.基于裂纹扩展能量平衡的花岗岩动态本构模型研究[J].岩石力学与工程学报,2003,22(10):1683-1688.
    [155]程良奎,范景伦,韩军,等.岩土锚固[M].北京:中国建筑工业出版社,2003.
    [156]Gunnar Wijk.A theoretical remark on the stress field around prestressed rock Bolts[J].Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.,1978(15):289-294.
    [157]A.P.S.Selvadurai.Some results concerning the viscoelasic relaxation of prestress in a surface rock anchor[J].Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.,1979(16):1307-1310.
    [158]林世胜,朱维申.锚杆对洞周粘弹性岩体应力状态的影响[J].岩土工程学报,1983,5(3):12-27.
    [159]Dight PM.A case study of the behaviour of rock slope reinforced with fully grouted rock bolts[C].International Symposium on Rock Bolting,Abisko,Sweden,1983:523-38.
    [160]H.Stille,M.Holmberg.Support of Weak Rock with Grouted Bolt sand Shotcrete[J].Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.,1989,26(1):99-11.
    [161]B.Indraratna,P.K.Kaiser.Design for Grouted Rock Bolts on the Convergence Control Method[J].Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.1990,27(4):269-281.
    [162]汤伯森.弹塑性围岩砂浆锚杆支护问题的估算法[J].岩土工程学报,1991,13(6):42-51.
    [163]Spang K,Egger P.Action of fully-grouted bolts in joined rock and factors of influence[J].Rock Mech.Rock Eng.,1990,23:201-29.
    [164]Holmberg M,Stille H.The mechanical behaviour of a single grouted bolt[C].International Symposium on Rock Support in Mining and Underground Construction,Sudbury,Canada,1992:473-81.
    [165]张玉军.地下圆形洞室锚固区按环向各异性体计算的弹性解[C].中国青年学者岩土工程力学与应用讨论会论文集.武汉,1994:686-689.
    [166]P.P.Oreste,D.Peila.Radial Passive Rock bolting in Tunnelling Design With a New Convergence-confinement Model[J].Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.,1996,33(5):443-454.
    [167]徐思虎,姜广臣,董友军.巷道锚杆支护的合理计算模型探讨[J].山东矿业学院学报,1999,18(1):21-22.
    [168]朱维申,张玉军.三峡船闸高边坡节理岩体稳定分析及加固方案初步研究[J].岩石力 学与工程学报,1996,15(4):305-311.
    [169]李术才.节理岩体力学特性和锚固效应分析模型及应用研究[R].武汉:武汉水利电力大学,1999.
    [170]张强勇,朱维申.裂隙岩体损伤锚柱单元支护模型及其应用[J].岩土力学,1998,19(4):19-24.
    [171]张强勇.多裂隙岩体三维加锚损伤断裂模型及其数值模拟与工程应用研究[D].武汉:中国科学院武汉岩土力学研究所博士论文,1998.
    [172]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,19(3):342-345.
    [173]伍佑伦,王元汉,许梦国.拉剪条件下节理岩体中锚杆的力学作用分析[J].岩石力学与工程学报,2003,22(5):769-772.
    [174]王成.层状岩体边坡锚固的断裂力学原理[J].岩石力学与工程学报,2005,24(11):1900-1904.
    [175]李术才,陈卫忠,李术才,等.加锚节理岩体裂纹扩展失稳的突变模型研究[J].岩石力学与工程学报,2003,22(10):1661-1666.
    [176]G.Grasselli.3D Behaviour of bolted rock joints:experimental and numerical study[J].Int.J.Rock Mech.and Min.Sci.,2005,42:13-24.
    [177]CHANROUR A.H.,OHTSU M.Analysis of anchor bolt pull-out tests by a two-domain boundary element method[J].Materials and structures,1995,28:201-209.
    [178]朱浮声,李锡润,王泳嘉.锚杆支护的数值模拟方法[J].东北工学院学报,1989,(1):1-7.
    [179]姜清辉,丰定祥.三维非连续变形分析方法中的锚杆模拟[J].岩土力学,2001,22(2):176-178.
    [180]Kim.N.K.Performance of tension and compression anehorsin weathered soil[J].Journal of Geotechnical and Geoenvironmentai engineering,2003,129(12):1138-1150.
    [181]王霞,郑志辉,孙福英.锚索内锚固段摩阻力分布及扩散规律研究[J].煤炭工程,2004,(7):45-48.
    [182]朱合华,郑国平,刘庭金.预应力锚固支护的数值模拟[J].西部探矿工程,2003,(7):17-19.
    [183]漆泰岳.FLAC~(2D) 3.3锚杆单元模型的修正及其应用[J].矿山压力与顶板管理,2003,(4):50-52.
    [184]邬爱清,任放,郭玉.节理岩体开挖面上块体随机分布及锚固方式研究[J].长江科学院院报,1991,8(4):27-34.
    [185]冯光明,冯俊伟,谢文兵,才庆祥.锚杆初锚力锚固效应的数值模拟分析[J].煤炭工程,2005,(7):46-47.
    [186]张拥军,安里千,于广明,等.锚杆支护作用范围的数值模拟和红外探测实验研究[J].中国矿业大学学报,2006,35(4):545-548.
    [187]姜清辉,王书法.锚固岩体的三维数值流形方法模拟[J].岩石力学与工程学报,2006,25(3):528-532.
    [188]董志宏,邬爱清,丁秀丽.数值流形方法中的锚固支护模拟及初步应用[J].岩石力学与工程学报,2005,24(20):3754-3760.
    [189]张欣.全长粘结式锚杆受力特性以及数值仿真试验研究[D].济南:山东大学博士学位论文,2008.
    [190]Aydan O,Koya T,Ichikawa Y,et al.Three-dimensional simulation of an advancing tunnel supported with forepoles,shotcrete,steel ribs and rockbolts[J].Numerical Methods in Geomechanics,Swoboda(ed.),Innshruck,Balkema.1988:1481-1486.
    [191]雷晓燕.三维锚杆单元理论及其应用[J].工程力学,1996,13(2):50-60.
    [192]郭映龙,叶金汉.节理岩体锚固效应研究[J].水利水电技术,1992,(7):41-44.
    [193]陈卫忠,朱维申,王宝林,等.节理岩体中洞室围岩大变形数值模拟和模型试验研究[J].岩石力学与工程学报,1998,17(3):223-229.
    [194]徐东强,李占金,田胜利.锚杆安装载荷作用机理的数值模拟[J].河北理工学院学报,2002,24(3):1-5.
    [195]宋宏伟.非连续岩体中锚杆横向作用的新研究[J].中国矿业大学学报,2003,32(2):161-164.
    [196]李梅.三维锚杆的数值模拟方法[J].福州大学学报(自然科学版),2003,31(5):588-592.
    [197]陈胜宏,强晟.加锚固体的三维复合单元模型研究[J].岩石力学与工程学报,2003,22(1):1-8.
    [198]何则干,陈胜宏.加锚节理岩体的复合单元法研究[J].岩土力学,2007,28(8):1544-1550.
    [199]李金奎.锚杆对含纵向裂隙气体结构墙体刚度的数值模拟研究[J].河北建筑科技学院学报,2004,21(2):22-23.
    [200]程东幸,潘玮,刘大安,等.锚固节理岩体等效力学参数三维离散元模拟[J].岩土力学,2006,27(12):2127-2132.
    [201]李贺.岩石断裂力学[M].重庆:重庆大学出版社,1988.
    [202]切列帕诺夫.脆性断裂力学[M].北京:科学出版社,1990.
    [203]尹祥础.固体力学[M].北京:地震出版社,1985.
    [204]沈成康.断裂力学[M].上海:同济大学出版社,1996.
    [205]范天佑.断裂理论基础[M].北京:科学出版社,2003.
    [206]张文佑.锯齿状断裂的力学形成机制-构造地质问题[M].北京.科学出版社,1962
    [207]郭增建,秦保燕.地震成因和地震预报[M].北京.地震出版社,1991
    [208]Sih G.C.Strain-energy-density factor applied to mixed mode crack problems[J].Int.Frac.,1974,10(4):305-321.
    [209]Lajtal E.Z.Brittle fracture in compression[J].Int,Frac.,1974,10(4):362-374.
    [210]Cotterell B.Brittle fracture in compression[J].Int,Frac.,1972,8(2):195-208.
    [211]Rao Q,Stillborg B,Sun Z Q.Mode II fracture toughness testing of rock[C].Int.Congress on Rock Mechanics,Paris:A A Balkema,1999:731-734.
    [212]潘别桐,唐辉明.岩石压剪性断裂特性及Ⅰ-Ⅱ型复合断裂判据[J].地球科学,1988,13(4):413-421.
    [213]李银平,伍佑伦,杨春和.岩石类材料滑动裂纹模型[J].岩石力学与工程学报,2007,26(2):278-284.
    [214]王元汉,徐钺,谭国焕,李启光.改进的翼形裂纹分析计算模型[J].岩土工程学报,2000,22(5):612-615.
    [215]Masuda K,Mizutani H and Yamada I.Experimental study of strain-rate dependence and pressure dependence of failure properties of granite[J].J.Phys.Earth,1987,35:37-66.
    [216]黎立云,许凤光,高峰,等.岩桥贯通机理的断裂力学分析[J].岩石力学与工程学报,2005,24(23):4328-4334.
    [217]Dyskin AV,Germanovieh LN.Model of rockbrust caused by cracks growing near free surface[J].In:Young P,editor.Rockbursts and seismicity in mines 93.Rotterdam:Balkema,1993,69-175.
    [218]缪协兴,安里千,翟明华.岩(煤)壁中滑移裂纹扩展的冲击矿压模型[J].中国矿业大学学报,1999,28(2):113-117.
    [219]Sun Z Q.Is crack branching under shear loading caused by shear fracture?[J].Trana.Nonferrous Met.Soc.China,2001,2(11):287-292.
    [220]Rao Q H,Sun Z Q,Wang G Y,et al.Mode Ⅱ fracture mechanism of direct shearing specimen with guiding grooves of rock[J].Trana.Nonferrous Met.Soc.China,2001,2(11):613-616.
    [221]Gou S H,Sun Z Q.Closing law and stress intensity factor of elliptical crack under compressive loading[J].Trana.Nonferrous Met.Soc.China,2002,5(12):966-969.
    [222]Ingraffea A R.Mixed-mode fracture initiation in Indiana limestone and westerly granite[A].In:Proceedings of the 22nd.U.S.Symposium on Rock Mechanics[C],1981:199-204.
    [223]Ouchterlony F.Review of fracture toughness testing of rocks[A].In:Swedish Detonic Research Foundation[C],1980:15-19.
    [224]Stacey T R.A simple extension strain criterion for fracture of brittle rock[J].Int.J.Rock Mech.Min.Sci.,1981,18:469-474.
    [225]Tang C A,Tham L G,Lee P K K,et al.Numerical tests on micro-macro relationship of rock failure under uniaxial compression,part Ⅱ:constraint,slenderness and size effects[J].Int.J.Rock Mech.Min.Sci.,2000,37:570-577.
    [226]朱维申,陈卫忠,申晋.雁形裂纹扩展的模型实验及断裂力学机制研究[J].同体力学学报,1998,19(4):355-360.
    [227]黄凯珠,林鹏,唐春安,等.双轴加载下断续预制裂纹贯通机制的研究[J].岩石力学与工程学报,2002,21(6):808-816.
    [228]陈景涛,冯夏庭.高地应力下硬岩的本构模型研究[J].岩土力学,2007,28(11):2271-2278.
    [229]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004.
    [230]蔡美峰.岩石与地下工程[M].北京:科学出版社,2002.
    [231]李晓静.深埋洞室劈裂破坏形成机理的试验和理论研究[D].济南:山东大学博士学位论文,2007.
    [232]Hillerborg A.Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J].Cement and Concrete Research,1976,6(6):773-782.
    [233]Mendis P,Pendyala R,Setunge S.Stress-strain model to predict the full-range moment curvature behavior of high-strength concrete sections[J].Magazine of Concrete Research,2000,52(4):227-234.
    [234]温暖冬.裂隙岩体锚杆方式优化的试验与数值模拟研究[D].济南:山东大学硕士学位论文,2007.
    [235]杨圣奇,徐卫压,苏承东.大理岩三轴压缩变形破坏与能量特征研究[J].工程力学,2007,24(1):136-142.
    [236]苏国韶,冯夏庭,江权.高地应力下地下工程稳定性分析与优化的局部能量释放率新指标研究[J].岩石力学与工程学报,2006,25(12):2453-2460.
    [237]尹双增.断裂·损失理论及应用[M].北京,清华大学出版,1992.
    [238]S.P.Shah and M.Wecharatana.Prediction of nonlinear fracture process zone in concrete[J].J.Eng.Mech.Div.ASCE.,1983,109:1231-1245.
    [239]P.L.Swanson and H.Spetzer.Ultrasonic probing of fracture process zone in rock using surface waves.Proc.25~(th) U.S.Svmp.On Rock Mech.,1984:67-76.
    [240]L.I.Knob,H.N.Walder.J.R.Clifton and E.R.Fuller.Fuller.Fluorescent thin sections to observe the fracture process zone in concrete[J].Cement and Concrete Res.,1984(14):339-344.
    [241]周群力,佘泳琼,王良之.岩石压剪断裂核的试验研究[J].固体力学学报,1991,12(4):329-336.
    [242]L.J.Jankowske and D.J.Stys.Formation of the fracture process zone in concrete[J].Engng.Fract.Mech.,1990,36(2):245-253.
    [243]A.Maji and S.P.Shah.Process zone and acoustic-emission measurements in concrete[J].Experimental Mechanics,1988,24(4):27-33.
    [244]S.P.Shah.Experimental method for determining fracture process zone and fracture parameter[J].Engng.Fract.Mech.,1990,35(1):3-14.
    [245]F.H.Wittmann and Xiao Zhi Hu.Fracture process zone in cementitious materials[J].Int.J.of Fract.,1991,51:3-18.
    [246]徐秉业.塑性力学[M].北京:高等教育出版社,1988.
    [247]Lajtai,E.Z.,Carter,B.J.,Duncan,S.Mapping the state of fracture around cavities[J].Engineering Geology,1991,31:277-289.
    [248]孙广忠.论岩体力学模型[J].地质科学,1984,(4):423-428.
    [249]孙广忠,黄运飞.高边墙地下洞室洞壁围岩板裂化实例及其力学分析[J].岩石力学与工程学报,1988,7(1):15-24.
    [250]Exadaktylos G E,Tsoutrelis C E.Pillar failure by axial splitting in brittle rocks[J].Int Rock Mech Min Sci & Gremech Abstr,1995,32(6):551-562
    [251]LI Chunlin,Richard P,Erling N.The stress-strain behaviour of rock material related to fracture under compression[J].Engineering Geology,1998,49(2):293-302
    [252]孙广忠.孙广忠地质工程文选[M].北京:兵器工业出版社,1997
    [253]Hawkes I,Mellor M.Uniaxial testing in rock mechanics laboratories[J].Engineering Geology,1970,4:177-285.
    [254]Peng S D,Johnson A M.Crack growth and faulting in cylindrical specimens of granite[J].International Journal of Rock Mechanics & Mining Sciences,1972,9:37-86.
    [255]顾金才,顾雷雨,陈安敏,等.深部开挖洞室围岩分层断裂破坏机制模型试验研究[J].岩石力学与工程学报,2008,27(3):433-438.
    [256]徐芝纶.弹性力学[M].北京:人民教育出版社,1982.
    [257]铁摩辛柯S P,盖莱J M.弹性稳定性理论[M].张福范译.北京:科学出版社,1965.
    [258]苏仲杰,于广明,杨伦.覆岩离层变形力学模型及应用[M].岩土工程学报,2002,24(6):778-781.
    [259]于骁中.岩石和混凝土断裂力学[M].长沙:中南工业大学出版社,1991.
    [260]Li C.,Stillborg B.Analytical models for rock bolts[J].Int.J.of Rock Mech.Min.Sci.,1999,36(8):1013-1029.
    [261]Spang K.Egger P.Action of fully-grouted bolts in jointed rock and factors of influence[J].Rock Mechanics and Rock Engineering,1990,23(3):201-229.
    [262]Jewell R.A.,Wroth C.P.Direct shear tests on reinforced sand[J].Geotechnique,1987,37(1):53-68.
    [263]朱维申,任伟中,张玉军,等.开挖条件下节理围岩锚固效应的模型试验研究[J].岩土力学,1997,18(3):1-7.
    [264]葛修润,刘建武.加锚节理面抗剪性能研究[J].岩土工程学报,1988,10(1):8-20.
    [265]郑雨天.试用断裂力学观点解释锚喷支护机理[J].煤炭科学技术,1980,7:11-14.
    [266]尤春安.锚固系统应力传递机理理论及应用研究[D].泰安:山东科技大学博士学位论文,2004.
    [267]李海波.花岗岩材料在动态压应力作用下力学特性的实验与模型研究[D].武汉:中国科学院博士学位论文,1999.
    [268]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [269]沈为.非线性能量释放率断裂判据[J].华中工学院学报,1979,(1):120-131.
    [270]沈为,李德怡.复合型断裂的非线性能量分析[J].固体力学学报,1983,(1):23-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700