用户名: 密码: 验证码:
磁场辅助合成镁基储氢合金及其吸放氢动力学机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出了一种磁场结合氢化燃烧合成或烧结合成的新方法(MACS或MASS法)制备了Mg-Ni合金氢化物、La2Mg17体系复合材料和La-Mg-Ni基AB3合金,通过等温定容法、HPDSC、XRD、SEM、EDS和粒度分布等方法系统地研究了它们的储放氢性能、相结构和形貌特征。
     对MACS法制备的Mg-Ni合金,强磁场能促进Mg2NiH4相的形成,显著降低合成温度。经吸放氢循环后都能得到以Mg2NiH4为主相的化合物,其中4 T磁场制备的Mg-Ni合金杂相含量最低,它在573 K下的吸氢量为3.586 wt.%,具有最优的热力学性能。DSC结果显示磁场明显降低材料的放氢吸热峰和吸氢放热峰。
     MACS工艺合成的La-Mg材料具有复相结构,强磁场促进添加相Ni在La-Mg合金表面形成Mg2NiH4相。其PCT曲线出现两个平台,最大吸氢量为4.162 wt.%,Mg2NiH4相起到储氢相和催化相的双重作用。Ni能使材料初始放氢温度从625 K降低到520 K。
     MASS法制备的La-Mg-Ni合金均由PuNi3型结构的(La, Mg)Ni3主相所组成。合金氢化后转变为以La2Ni7、MgNi2和LaNi3结构为主相的产物。PCT测试表明,1073 K的烧结温度下,经1 T磁场制得的合金具有最小的吸放氢滞后系数(0.480)和最大的放氢量(1.307 wt.%)。而在4 T磁场下,1023 K烧结的合金具有最小的滞后系数(0.519)、最高的吸氢量(1.525 wt.%)、最高的放氢量(1.474 wt.%)以及最高的放氢率(0.967)。采用La2Mg中间合金为原料也可获得La2MgNi9合金,用Co部分替代Ni后,合金晶胞参数随磁场增大,表明磁场有利于Co的取代。4 T下制备的La2MgNi7.5Co1.5合金具有最小的滞后系数(0.427)和最高的吸氢量(1.538 wt.%)。Co能同时提高合金的热力学和动力学性能。
     在考虑温度对储氢材料体系平衡氢压影响的基础上建立了新的动力学模型,发现对一般合金的氢化过程而言,在一定氢气压力下存在最优氢化温度(Topt)和最少特征氢化时间(tc-min)。这两个重要的参数在工程应用领域具有理论指导意义。
     采用本文推导的新模型对MACS法制备的Mg-Ni合金吸氢动力学进行研究后发现:在523 ~ 623 K下,合金吸氢动力学均受氢原子扩散所控制。当吸氢温度较低时,影响反应速率的最主要因素是活化能的大小,而在相对高的温度下则是合金的热力学本性,总体说来,4 T磁场制备的合金吸氢动力学最优。在553 ~ 623 K范围内,Mg-Ni合金放氢动力学也都受氢原子扩散所控制,其中2 T磁场制备的合金特征放氢时间仅是无磁场制备样品的1/4,放氢性能最优。
     无论是单纯的La2Mg17合金还是添加Fe3O4、Nb2O5或Ni作为催化相的复合材料,磁场的引入都会降低材料的吸氢动力学性能,其中对La2Mg17-Ni材料影响最明显,而La2Mg17-Nb2O5反之。在所有样品中,添加Ni作为催化相的样品具有最优的吸氢活化能(约5.3 kJ·mol-1 H2)、最优的特征吸氢时间(tc-473 = 84 s)、最低的Topt (502 K)和最少的tc-min (82 s)。与吸氢不同,材料的放氢均受表面渗透过程所控制,磁场能略微提高La2Mg17-Fe3O4体系材料的放氢速率,而对该系列的其他体系材料则有不利影响。
     对MASS法制备的La-Mg-Ni基AB3合金,当磁场强度低于4 T时,其吸氢过程受氢原子扩散所控制,而达到8 T时,受氢原子的表面渗透所控制。其中,1 T磁场制备的样品具有最小的特征吸氢时间(132 s),氢化动力学最优。Co部分取代Ni后合金吸氢速率提高近5倍。而磁场(4 T)则可以提高La2MgNi7.5Co1.5合金的动力学性能近4倍。所有MASS法制备的AB3合金在300 ~ 333 K下的放氢过程均受氢原子的扩散所控制。对La2MgNi9合金,1 T的磁场能得到最优放氢动力学。Co部分替代Ni可大幅度提高合金放氢性能,其中1 T磁场下制备的La2MgNi7.5Co1.5合金性能最佳,其活化能比其他合金低1个数量级,仅2.7 kJ·mol-1 H2,特征放氢时间也最短。
A new processing of hydrogen storage materials assisted by a high magnetic field (MACS or MASS), combining the hydriding combustion synthesis or sinter synthesis with the strong magnetic field, was presented in the thesis. The Mg2NiH4 hydrogen storage metal hydride, La2Mg17-based composites and La-Mg-Ni(Co) AB3 alloys were successfully synthesized by this method. The effects of magnetic intensity on the hydriding/dehydriding properties, phase structure and morphology characteristic of the as-prepared materials were investigated through the method of identical volume, HPDSC, XRD, SEM, EDS, size distribution and so on.
     For the Mg-Ni alloys prepared by MACS, a high magnetic field promotes the formation of Mg2NiH4 and decreases synthesis temperature obviously. After hydriding/dehydriding cycles, Mg2NiH4 become the major phase for all samples. Among them, the sample prepared under 4 T magnetic field has the lowest impurity. Moreover, its hydrogen capacity at 573 K is 3.586 wt.% and it has the optimum thermodynamics properties. DSC measurements indicate that magnetic fields significantly shift the endothermic/exothermic peaks towards lower temperatures.
     La2Mg17-based composites have multiphase structures and a high magnetic field promotes the reaction of Ni with alloy to Mg2NiH4 phase on the surface of La-Mg particles. The measurement of PCT curves indicates that the reversible hydriding amount for the La2Mg17-Ni composite is 4.162 wt% at 623 K and the PCT curves have two plateaus in the temperature ranges of 523~623 K. Mg2NiH4 play dual role as hydrogen storage and catalytic phases. Moreover, nickel decreases the initial dehydriding temperature of the material from 625 K to 520 K.
     All the La-Mg-Ni alloys prepared by MASS have the major phase of PuNi3 type (La, Mg)Ni3. After hydriding/dehydriding cycles, the phase structure is changed to La2Ni7, MgNi2 and LaNi3. The measurement of PCT curves indicates that under the sinter temperature of 1073 K, the sample prepared under 1 T magnetic field has the minimum hydriding/dehydriding hysteresis (0.480) and the maximal dehydriding capacity (1.307 wt.%). Under 4 T magnetic field, the sample prepared at 1023 K has the minimum hydriding/dehydriding hysteresis (0.519), the maximal hydriding/dehydriding capacity (1.525 wt.%/ 1.474 wt.%) and the maximal dehydrogenated rate (0.967). After partial substitution of Ni with Co, the unit cell parameters increase with the increase of magnetic field intensity, indicating that the magnetic field is beneficial to the substitution of Ni with Co. The (La, Mg)(Ni, Co)3 alloy prepared under 4 T magnetic field has the minimum hydriding/dehydriding hysteresis (0.427) and the maximal hydriding capacity (1.538 wt.%). Both the thermodynamics and kinetics properties can be improved by element Co.
     The influence of temperature on the equilibrium hydrogen pressure was considered and a new hydriding/dehydriding kinetics model for hydrogen storage materials had been developed. It was found that for a general hydrogen storage system, there is a optimum hydriding temperature (Topt) at a certain hydrogen pressure and corresponding to the minimal characteristic hydriding time (tc-min). They are two important parameters which have certain guidance functions on engineering application field.
     The new model proposed in this thesis has been used to investigate the hydriding/dehydriding kinetics mechanism of the above three systems. For the Mg-Ni alloys prepared by MACS, the rate-controlling step for hydriding process is the diffusion of hydrogen in the hydride layer. At relatively low temperature, the main factor to influence the hydriding rate is activation energy, but at relatively high temperature, the main factor is the thermodynamics characteristic. The sample prepared under 4 T magnetic field has the optimum hydriding kinetics properties. Otherwise, the dehydriding process is also controlled by the diffusion of hydrogen. The characteristic dehydriding time (tc) of the sample prepared under 2 T magnetic field is only 1/4 of that without magnetic in the temperature ranges of 523 ~ 623 K and the former has the optimum dehydriding kinetics properties.
     However, the magnetic fields deteriorate the hydriding kinetics of La2Mg17-based composites whatever the catalytic phase is Fe3O4, Nb2O5 or Ni. Among them, the most sensitive composite to magnetic field is La2Mg17-Ni, conversely, the least one is La2Mg17-Nb2O5. La2Mg17-Ni composite prepared without magnetic field has the minimal activation energy (5.3 kJ·mol-1 H2), the minimal characteristic hydriding time (tc-473 = 84 s), the minimal Topt (502 K) and the minimal tc-min (82 s). Otherwise, the dehydriding processes of the composites are all controlled by the surface penetration of hydrogen atoms. Magnetic fields slightly improve the dehydriding rate of La2Mg17-Fe3O4 composite, but have adverse influence on other La2Mg17-based composites.
     For the (La, Mg)Ni3 alloys prepared by MASS, the rate-controlling step for hydriding process is the diffusion of hydrogen in the hydride layer when the magnetic field is lower than 4 T, but with the magnetic increase to 8 T, the rate-controlling step is changed to the surface penetration of hydrogen atoms. The sample prepared under 1 T magnetic field has the minimum characteristic hydriding time (tc = 132 s). After partial substitution of Ni with Co, the hydriding rate is improved by nearly 5 times. Otherwise, magnetic field (4 T) improves the hydriding rate of La2MgNi7.5Co1.5 alloy for about 4 times. The rate-controlling steps of the dehydriding processes for all AB3 alloys are the diffusion of hydrogen atoms under the temperature ranges from 300 to 333 K. For dehydriding kinetics of La2MgNi9 alloys, the optimized magnetic intensity is 1 T. The dehydriding kinetics can be improved obviously by partial substitution of Ni with Co. The activation energy of the sample prepared under 1 T magnetic field is only 2.7 kJ·mol-1 H2. At the same time, it has the minimal tc, indicating that this sample has the optimum dehydriding kinetics properties.
引文
[1] Sattler G. Fuel cells going on-board. J. Power Sources, 2000; 86: 61-7.
    [2] Winter C J. Into the hydrogen energy economy—milestones. Int. J. Hydrogen Energy, 2005; 30: 681-5.
    [3] Wietschel M, Hasenauer U, Groot A D. Development of European hydrogen infrastructure scenarios—CO2 reduction potential and infrastructure investment. Energy Policy 2006; 34: 1284-98.
    [4] Fernandes T R C, Chen F Z, Carvalho M G.“HySociety”in support of European hydrogen projects and EC policy. Int. J. Hydrogen Energy, 2005; 30: 239-45.
    [5] http://www.iea.org/textbase/papers/2006/hydrogen.pdf.
    [6] US DOE. A national vision of America’s transition to a hydrogen economy—to 2030 and beyond, www.eren.doe.gov.
    [7] Züttel A, Wenger P, Sudan P, Mauron P, Orimo S. Hydrogen demity in nanostructured carbon, metals and complex materials. Mater. Sci. Eng., B 2004; 108: 9-18.
    [8] Selvam P, Viswanathan B, Swamy C S, Srinivasan V. Magnesium and magnesium alloy hydrides. Int. J. Hydrogen Energy, 1986; 11: 169-92.
    [9]胡子龙.贮氢材料.北京,化学工业出版社,2002.
    [10] Züttel A. Materials for hydrogen storage. Materials Today, 2003; 9: 18-27.
    [11] Bogdanovi? B, Brand R A, Marjanovi? A, Schwickardi M, Tolle J. Metal-doped sodium aluminum hydrides as potential new hydrogen storage materials. J. Alloys Compd., 2000; 302: 36-58.
    [12] Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature, 2001; 414: 353-8.
    [13]侯庆烈.镁基合金的储氢功能.上海有色金属,2005; 26(3): 140-4.
    [14] Pons M, Dantzer P. Effective thermal conductivity in hydride packed beds I. Study of basic mechanisms with help of the Bauer and Schünder model. J. Less-Common Met., 1991; 172-174: 1147-56.
    [15] Ishido Y, Kawamura M, Ono S. Thermal conductivity of magnesium-nickel hydride powder beds in a hydrogen atmosphere. Int. J. Hydrogen Energy, 1982; 7: 173-82.
    [16] Suda S, Kobayashi N, Yoshia K. Reaction kinetics of metal hydrides and theirmixtures. J. Less-Common Met., 1988; 73: 119-25.
    [17]大角太章著,吴永宽,苗艳秋译.金属氢化物的性质与应用,北京:化学工业出版社,1990.
    [18] Wang C S, Wang X H, Lei Y Q, Chen C P, Wang Q D. The hydriding kinetics of MlNi5—I. Development of the model. Int. J. Hydrogen Energy, 1996; 21: 471-8.
    [19] Martin M, Gommel C, Borkhart C, Fromm E. Absorption and desorption kinetics of hydrogen storage alloys. J. Alloys Compd., 1996; 238: 193-201.
    [20] Inomata A, Aoki H, Miura T. Measurement and modeling of hydriding and dehydriding kinetics. J. Alloys Compd., 1998; 278: 103-9.
    [21] Ron M. The normalized pressure dependence method for the evaluation of kinetic rates of metal hydride formation/decomposition. J. Alloys Compd., 1999, 283: 178-91.
    [22] Bloch J. The kinetics of a moving metal hydride layer. J. Alloys Compd., 2000; 312: 135-53.
    [23] Asakuma Y, Miyauchi S, Yamamoto T, Aoki H, Miura T. Numerical analysis of absorbing and desorbing mechanism for the metal hydride by homogenization method. Int. J. Hydrogen Energy, 2003; 28: 529-36.
    [24] Avrami M. Kinetics of phase change: I. J Chem Phys 1939; 7(12): 1103-12; II. ibid 1940; 8(2): 212-24; III. ibid 1941; 9(2): 177-84.
    [25] Johnson W A, Mehl R F. Reaction kinetics in processes of nucleation and growth. Trans. AIME., 1939; 135(8): 416-42.
    [26] Hancock J D, Sharp J H. Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3. J Am Ceram Soc 1972; 55(2): 74-7.
    [27] Reilly J J, Josephy Y, Johnson J R. Kinetics of the isothermal decomposition of lanthanum nickelhydride. Z. Phys. Chem. NF. Bd. 1989; 164: 1241-7.
    [28] Budrugeac P, Segal E. On the use of Diefallah’s composite integral method for the non-isothermal kinetic analysis of heterogeneous solid-gas reactions. J. Therm. Anal. Calorim, 2005; 82: 677-80.
    [29] Jander W. Reactions in solid state at high temperatures. Z.Anorg. Chem., 1927; 163: 1-30.
    [30] Hulbert S F. Models for solid-state reactions in powdered compacts: A review. J. Brit. Ceram. Soc., 1969; 6(1): 11-20.
    [31] Ginstling A M, Brounshtein B I. Concerning the diffusion kinetics of reactions inspherical particles. J. Appl. Chem. USSR., 1950; 23(12): 1327-38.
    [32] Ortega A. A simulation of the mass-transfer effects on the kinetics of solid–gas reactions. Int. J. Chem. Kinet. 2008; 40(4): 217-22.
    [33] Kroger C, Ziegler G. Reaction rates of glass batch melting: II. Glastech Ber 1953; 26(11): 346-53; III. ibid 1954; 27(6): 199-212.
    [34] Zhuravlev VF, Lesokhin IG, Tempel’man RG. kinetics of the reactions for the formation of aluminates and the role of mineralizers in the process. J. Appl. Chem. USSR., 1948; 21(9): 887-902.
    [35] Valensi G. Kinetics of the oxidation of metallic spherules and powders. Compt. Rend., 1936; 202(4): 309-12.
    [36] Carter RE. Kinetic model for solid-state reactions. J. Chem. Phys., 1961; 34(6): 2010-5.
    [37] Zaluska A, Zaluski L, Strom-Olsen J O. J. Nanocrystalline magnesium for hydrogen storage. J. Alloys Compd., 1999; 288: 217-25.
    [38] Vigeholm B, Larsen B, Pedersen A S. Hydride formation mechanisms in nearly spherical. Magnesium Powder Particles. J. Less-Common Met., 1987; 131: 133-41.
    [39] Zaluska A, Zaluski L, Strom-olsen J O. Structure, catalysis and reactions on the nano-scale: a systems approach to metal hydrides for hydrogen storage. Appl. Phys. A, 2001; 72: 157-65.
    [40] Huot J, Liang G, Boily S, van Neste A, Schulz R. Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J. Alloys Compd., 1999; 293-295: 495-500.
    [41] Stander C M. Kinetics of formation of magnesium hydride from magnesium and hydrogen. Z. Phys. Chem. N. F., 1977; 104: 229-38.
    [42] Mintz M H, Gavra Z, Hadari Z. Kinetic study of the reaction between hydrogen and magnesium, catalyzed by addition of indium. J. Inorg. Nucl. Chem., 1978; 40(5): 765-8.
    [43] Belkbir L, Joly E, Gerard N. Comparative study of the formation-decomposition mechanisms and kinetics in LaNi5 and magnesium reversible hydrides. Int. J. Hydrogen Energy, 1981; 6: 285-94.
    [44] Han J S, Pezat M, Lee J Y. Thermal desorption of hydrogen from magnesium hydride. Scripta Metall., 1986; 20: 951-6.
    [45] Massalski T B, Okamoto H, Subramanian P R, Kacprzak L. Binary alloy phasediagrams second edition. ASM International, Materials Park, Ohio, 1990.
    [46] Darriet B, Soubeyroux J L, Pezat M. Structural and hydrogen diffusion study in the Mg2Ni-H2 system. J. Less-Common Met., 1984; 103: 153-62.
    [47] Ono S, Hayakawa H, Suzuki A, Nomura K, Nishimiya N, Tabata T. Structure Analysis of the Metal Sublattice of the Low Temperature form of Mg2NiH4. J. Less-Common Met., 1982; 88: 63-71.
    [48] Ono S, Ishido Y, Imanari K, Tabata T, Cho Y K, Yamamoto R, Doyama M. Phase transformation and thermal expansion of Mg-Ni alloys in a hydrogen atmosphere. J. Less-Common Met., 1982; 88: 57-61.
    [49] Hayakawa H, Ishido Y, Nomura K, Uruno H, Ono S. Phase transformation among three polymorphs of Mg2NiH4. J. Less-Common Met., 1984; 103: 277-83.
    [50] Post M L, Murray J J. Mg2Ni hydride: In situ heat conduction calorimetry of the phase transition near 510 K. J. Less-Common Met., 1987; 134:15-26.
    [51] Schefer J, Fischer P, H?lg W, Stucki F, Schlapbach L, Didisheim J J, Yvon K, Andresen A F. New structure results for hydrides and deuterides of the hydrogen storage material Mg2Ni. J. Less-Common Met., 1980; 74: 65-73.
    [52] Zaluski L, Zaluska A, Str?m-Olsen J O. Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying. J. Alloys and Compd., 1995; 217: 245-9.
    [53] Tessier P, Enoki H, Bououdina M, Akiba E. Ball-milling of Mg Ni under hydrogen. J. Alloys and Compd., 1998; 268: 285-9.
    [54]方志杰,梁业广,王德安,卓亚琦,郭进. Mg2Ni氢化物电子结构的研究.桂林工学院学报, 2004; 24: 489-491.
    [55] Song M Y, Ivanov E I, Darriet B, Pezat, Hagenmuller P. Hydriding properties of a mechanically alloyed mixture with a composition Mg2Ni. Int. J. Hydrogen Energy, 1985; 10: 169-78.
    [56] Liang G, Huot J, Boily S, Van Neste A, Schulz R. Hydrogen storage properties of nanocrystalline Mg1.9Ti0.1Ni made by mechanical alloying. J. Alloys Compd., 1999; 282: 286-90.
    [57] Zhang Y S, Yang H B, Yuan H T, Yang E D, Zhou Z X, Song D Y. Dehydriding properties of ternary Mg2Ni1-xZrx hydrides synthesized by ball milling and annealing. J. Alloys Compd., 1998; 269: 278-83.
    [58] Shao H Y, Xu H R, Wang Y T, Li X G. Preparation and hydrogen storage properties of Mg2Ni intermetallic nanoparticles. Nanotechnology 2004; 15: 269-74.
    [59] Ueda T T, Tsukahara M, Kamiya Y, Kikuchi S. Preparation and hydrogen storage properties of Mg–Ni–Mg2Ni laminate composites. J. Alloys Compd., 2005; 386: 253-7.
    [60] Yuan H T, Yang H B, Zhou Z X, Song D Y, Zhang Y S. Pressure-composition isotherms of the Mg2Ni0.75Fe0.25-Mg system synthesized by replacement-diffusion method. J. Alloys Compd., 1997; 260: 256-9.
    [61] Akiyama T, Isogai H, Yagi J. Combustion synthesis of Magnesium Nickel. Int. J. Self Propagating High-Temperature Synthesis (SHS), 1995; 4: 69-77.
    [62] Akiyama T, Isogai h, Yagi J. Hydriding combustion synthesis for the production of hydrogen storage alloy. J. Alloys and Compd., 1997; 252(1-2): L1-L4.
    [63] Song M Y, Pezat M, Darriet B, Hagenmuller P. A kinetic study on the reaction of hydrogen with Mg2Ni. J. Solid State Chem., 1985; 56: 191-202.
    [64] Mattsoff S, Noréus D. Hydriding kinetics of Mg2Ni at low temperatures where intrinsic processes dominate the reaction rates. Int. J. Hydrogen Energy, 1987; 12: 333-5.
    [65] Lupu D, Biris A, Mihǎilescu G, Sarbu R, Vonica D. Isotopic effects and dehydriding kinetics in the Mg2Ni-H2(D2) system. Int. J. Hydrogen Energy, 1988; 11: 685-90.
    [66] Han J S, Lee J Y. A study of the hydriding kinetics of Mg2Ni at the near isothermal condition. Int. J. Hydrogen Energy, 1987; 12: 417-24.
    [67] Han J S, Lee J Y. A study of the hydriding kinetics of Mg2Ni. J. Less-Common Met., 1987; 131: 109-16.
    [68] Akiba E, Nomura K, Ono S, Mizuno Y. Kinetics of the reaction between Mg -23.3% Ni eutectic alloy and hydrogen. J. Less-Common Met., 1983; 89: 145-50.
    [69] Jung W B, Nahm K S, Lee W Y. The reaction kinetics of hydrogen storage in Mg2Ni. Int. J. Hydrogen Energy, 1990; 15: 641-8.
    [70] Han J S, Lee J Y. A study on the dehydriding kinetics of Mg2Ni Intermetallic compound. J. Less-Common Met., 1987; 128: 155-65.
    [71] Song M Y, Darriet B, Pezat M, Lee J Y, Hagenmuller P. Dehydriding kinetics in the Mg2Ni-H2 system. J. Less-Common Met., 1986; 118: 235-48.
    [72] Song M Y, Darriet B, Pezat M, Lee J Y, Hagenmuller P. Dehydriding kinetics of a mechanically alloyed mixture with a composition Mg2Ni. Int. J. Hydrogen Energy. 1987; 12: 27-30.
    [73] Darriet B, Pezat M, Hbika A, Hagenmuller. Investigation of magnesium richrare-earth alloys to hydrogen storage. Int. J. Hydrogen Energy, 1980; 5: 173-8.
    [74] Dutta K, Srivastava O N. Investigation on synthesis, characterization and hydrogenation behaviour of the La2Mg17 intermetallic. Int. J. Hydrogen Energy, 1990; 15: 341-4.
    [75] Slattery D K. The hydriding-dehydriding characteristics of La2Mg17. Int. J. Hydrogen Energy, 1995; 20: 971 -3.
    [76] Yajima S, Kayano H. Hydrogen sorption in La2Mg17. J. Less-Common Met., 1977; 55: 139-41.
    [77] Sun D L, Gingl F, Nakamura Y, Enoki H, Bououdina M, Akiba E. In situ X-ray diffraction study of hydrogen-induced phase decomposition in LaMg12 and La2Mg17. J. Alloys. Compd., 2002; 333: 103-8.
    [78] Pezat M, Darriet B, Hagenmuller P. A comparative study of magnesium-rich rare-earth-based alloys for hydrogen storage. J. Less-common Met, 1980; 74:427-34.
    [79] Khrussanova M, Pezat M, Darriet B , Hagenmuller P. Le Stockage de L'Hydrogene Par Les Alliages La2Mg17 ET La2Mg16Ni. J. Less-common Met, 1982; 86: 153-60.
    [80] Khrussanova M, Peshev P. Calcium and nickel-substituted lanthanum-magnesium alloys for hydrogen storage. J. Less-common Met, 1987; 131:379-83.
    [81] Gao X P, Wang Y, Lu Z W, Hu W K, Wu F, Song, D Y Shen, P W. Preparation and electrochemical hydrogen storage of the nanocrystalline LaMg12 alloy with Ni powders. Chem. Mater. 2004; 16: 2515-7.
    [82] Wang L, Wang X H, Chen L X, Xiao X Z, Gao L H, Wang C Y, Chen C P, Wang Q D. Effect of Ni content on the electrochemical performance of the ball-milled La2Mg17?xNix + 200 wt.% Ni (x = 0, 1, 3, 5) composites. J. Alloys. Compd., 2007; 428: 338–43.
    [83] Song M Y, Yim C D, Kwon S N, Bae J S, Hong S H. Preparation of Mg–23.5Ni–10(Cu or La) hydrogen-storage alloys by melt spinning and crystallization heat treatment. Int. J. Hydrogen Energy, 2008; 33: 87-92.
    [84] Zhu Y F, Liu Y F, Gu H, Li L Q. Structural and hydriding/dehydriding properties of Mg–La–Ni-based composites. J. Alloys Compd., (2008), doi:10.1016/j.jallcom.2008;10.019.
    [85] Wang W, Chen C P, Chen L X, Wang Q D. Change in structure and hydrogen storage properties of La2Mg16Ni alloy after modification by mechanical grinding intetrahydrofuran. J. Alloys Compd., 2002; 339: 175-9.
    [86] Chi H Z, Chen C P, Chen L X, An Y, Wang Q D. Hydriding/dehydriding properties of La2Mg16Ni alloy prepared by mechanical ball milling in benzene and under argon. Int. J. Hydrogen Energy, 2004; 29: 737-41.
    [87] Cai G M, C P Chen, Chen Y, Chen L X, Wang Q D. Hydriding–dehydriding properties of crystalline and amorphous La1.8Ca0.2Mg16Ni alloy. Int. J. Hydrogen Energy, 2003; 28: 509-13.
    [88] Khrussanova M, Terzieva M, Peshev P. On the hydriding kinetics of the alloys La2Mg17 and La2-xCaxMg17. Int. J. Hydrogen Energy, 1986; 11: 331-4.
    [89] Gross K J, Spatz P, Züttel A, Schlapbach L. Mg composites for hydrogen storage: The dependence of hydriding properties on composition. J. Alloys Compd., 1997; 261: 276-80.
    [90] Pal K, Pal N R. Connectionist Models in Materials Science: Characterisation of the Sorption Properties of Hydrogen Storage Materials. Neural Comput & Applic, 2001; 10:195-205.
    [91] Virkar A V, Pamam A. Crystal structures of AB3 and A2B7 rare earth-nickel phases. J. Less-Common Met., 1969; 18: 59-66.
    [92] Cromer D T, Olsen C E. The crystal structure of PuNi3 and CeNi3. Acta Crystallogr. 1959; 12: 689-94.
    [93] ParthéE, Lemaire R. Structure block stacking in intermetallic compounds. I. The rhombohedral-hexagonal Mn+1X5n-1 and the monoclinic-hexagonal-trigonal- orthorhombic Mn+1X5n+2 structure series. Acta Crystallogr. B, 1975; 31: 1879-89.
    [94] Frank F C, Kasper J S. Complex alloy structures regarded as sphere packing. I. Definitions and basic principles. Acta Crystallogr. 1958; 11, 184-90.
    [95] Frank F C, Kasper J S. Complex alloy structures regarded as sphere packing 2: Analysis and classification of representative structures, Acta Crystallogr. 1959; 12: 483-99.
    [96] Kadir K, Sakai T, Uehara I. Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R=La, Ce, Pu, Nd) built from MgNi2 Laves-type alternating with AB5 layers. J. Alloys Compd., 1997; 257:115-21.
    [97]廖彬. La-Mg-Ni系AB3型贮氢电极合金的相结构与电化学性能,浙江大学博士学位论文. 2004.
    [98] Zhu M, Peng C H, Ouyang L Z, Ton Y Q g. The effect of nanocrystallineformation on the hydrogen storage properties of AB3-based Ml–Mg–Ni multi-phase alloys. J. Alloys Compd., 2006; 42: 316-21.
    [99] Liao B, Lei Y Q, Lu G L, Chen L X, Pan H G, Wang Q D. The electrochemical properties of LaxMg3-xNi9 (X=1.0-2.3) hydrogen storage alloys. J. Alloys Compd., 2003; 356-357: 746-9.
    [100] Chen J, Takeshita H T, Tanaka H, Kuriyama N, Sakai T, Uehara I, Hruta M. Hydriding properties of LaNi3 and CaNi3 and their substitutes with PuNi3-type structure. J. Alloys Compd., 2000; 302: 304-12.
    [101] Guo J, Huang D, Li G X, Ma S Y, Wei W L. Effect of La/Mg on the hydrogen storage capacities and electrochemical performances of La-Mg-Ni alloys. Mater. Sci. Eng., B, 2006; 131: 169-72.
    [102] Brooks J S, Crow J E, Moulton W G. Science opportunities at high magnetic fields. J. Phys. Solids, 1998; 59(4): 560-90.
    [103]王金录,邸洪双,张晓明等.电磁场对钢材组织性能的影响.钢铁研究,2001;6: 37-40.
    [104] Asai S. Recent development and prospect of electromagnetic processing of materials. Sci. Technol. Adv. Mater., 2000; 1: 191-200.
    [105]李喜,王晖,任忠鸣.恒稳强磁场技术的发展及其在材料科学中的运用.材料导报,2002; 10:25-27.
    [106] M. Yamaguchi, I. Yamamoto, S. Mizusaki, K. Ishikawa. Magnetic field effect on the heat of reaction in metal-hydrogen systems. J. Alloys Comp., 2002; 330-332: 48-51.
    [107]胡心彬,陈菁,陈洪,杨贤镛,钱应平. Co-Ni合金磁诱发马氏体相变的热力学分析.功能材料,2002; 33(2): 173-5.
    [108]丘纪华.磁场对煤粉着火温度影响的研究.燃烧科学技术,2002; 8(5): 461-63.
    [109]赵啸林,毛大恒,李晓谦.电磁场对临变区金属学行为的影响.上海有色金属,2001; 22(4): 166-70.
    [110]姜寿亭,李卫.凝聚态磁性物理,北京,科学出版社. 2003.
    [111]钟云波.电磁力场作用下液态金属中非金属颗粒迁移规律及其应用研究.上海大学博士学位论文,2000.
    [112]王晖,任忠鸣,徐匡迪.纯物质凝固的磁场热力学分析.中国有色金属学报,2004; 6: 945-8.
    [113] Courtois P, Perrier R, Bathie D L, Tournier R. Exploration of the magnetic field effect on the orientation of Nd2Fe14B crystallites at high temperatures. J. Magn. Magn. Mater., 1996; 153:224-30.
    [114] Yamamoto I, Yamaguchi M, Goto T, Miura S. Chemical equilibrium of the ferromagnetic LaCo5-H system in strong magnetic fields. J. Alloys Compd., 1995; 231: 205-7.
    [115] Yamamoto I, Yamaguchi M, Fujino M, Ishikawa, Goto T, Miura S. Magnetic field effects on the chemical equilibrium between metals and hydrogen. Physica B, 1996; 216: 399-402.
    [116] Yamaguchi M, Yamamoto I, Ishikawa F, Goto T, Miura S. Thermodynamic theory of magnetic field effects on chemical equilibria and applications to metal-hydrogen systems. J. Alloys Comp. 1997; 253–254: 191-4.
    [117]马建新,潘洪革,朱云峰,李寿权,陈长聘.一种改善贮氢电极合金电化学性能的新方法.金属学报,2001; 37: 57-60.
    [118] Li Q, Lu X G, Chou K C, Xu K D, Zhang J Y, Chen S L. Feasibility study on the controlled hydriding combustion synthesis of Mg–La–Ni ternary hydrogen storage composite. Int. J. Hydrogen Energy, 2007; 32:1875 -84.
    [119] Li Q, Liu J, Chou K C, Lin G W, Xu K D. Synthesis and dehydrogenation behavior of Mg–Fe–H system prepared under an external magnetic field. J. Alloys Compd. 2008; 466: 146-52.
    [120] Mio H, Kano J, Saito F, Kaneko K. Effects of rotational direction and rotation-to-revolution speed ratio in planetary ball milling. Mater. Sci. Eng., A, 2002; 332: 75-80.
    [121] Li L Q, Saita I, Saito K, Akiyama T. Effect of synthesis temperature on the purity of product in hydriding combustion synthesis of Mg2NiH4. J. Alloys Compd., 2002; 345: 189-95.
    [122] Zaluska A, Zaluski L, Strom-Olsen J O. Nanocrystalline magnesium for hydrogen storage. J. Alloys Compd., 1999; 288: 217-25.
    [123] Akiba E, Nomura K, Ono S. Pressure-composition isotherms of Mg-Ni-H2 alloys. J. Less-Common Met., 1982; 83: L43-6.
    [124] Selvam P, Viswanathan B, Swamy C S, Srinvasan V. Magnesium andmagnesium alloy hydrides. Int. J. Hydrogen Energy, 1986; 11: 169-92.
    [125] Li L Q, Akiyama T, Yagi J. Activity and capacity of hydrogen storage alloy Mg2NiH4 produced by hydriding combustion synthesis. J. Alloys Compd., 2001; 316: 118-23.
    [126] Hayakawa H, Ishido Y, Nomura K, Uruno H, Ono S. Phase transformations among three polymorphs of Mg2NiH4. J. Less-Common Met., 1984; 103: 277-83.
    [127]姜寿亭,李卫。凝聚态磁性物理,北京,科学出版社。2003.
    [128] Zhang F B, Luo Y C, Chen J P, Yan R X, Kang L, Chen J H. Effect of annealing treatment on structure and electrochemical properties of La0.67Mg0.33Ni2.5Co0.5 alloy electrodes. J. Power Sources, 2005; 150: 247-54.
    [129] Liao B, Lei Y Q, Chen L X, Lu G L, Pan H G, Wang Q D. A study on the structure and electrochemical properties of La2Mg(Ni0.95M0.05)9 (M = Co, Mn, Fe, Al, Cu, Sn) hydrogen storage electrode alloys. J. Alloys Compd., 2004; 376:186 -95.
    [130] Liu Y F, Pan H G, Gao M X, Zhu Y F, Lei Y Q, Wang Q D. The effect of Mn substitution for Ni on the structural and electrochemical properties of La0.7Mg0.3Ni2.55?xCo0.45Mnx hydrogen storage electrode alloys. Int. J. Hydrogen Energy, 2004; 29: 297-305.
    [131] Busch G, Schlapbach L, Waldkirch T V. Hydrides of La-Ni and Ce-Ni intermetallic compounds. J. Less-Common Met., 1978; 60: 83.
    [132]钱存富,杜昊,王洪祥。Co, Mn元素在LaNi5储氢合金中的作用机理,稀有金属材料与工程,1999; 28(6): 368-70.
    [133] Shu K Y, Yang X G, Zhang S K, Lu G L, Lei Y Q, Wang Q D. Effect of Cr and Co additives on microstructure and electrochemical performance of Zr(NiVMn)2M0.1 alloys. J. Alloys Compd, 2000; 306:122-6.
    [134] Chou K C, Li Q, Lin Q, Jiang L J, Xu K D. Kinetics of absorption and desorption of hydrogen in alloy powder. Int J Hydrogen Energy 2005; 30: 301-9.
    [135] Chou K C, Xu K D. A new model for hydriding and dehydriding reaction in intermetallics. Intermetallics 2007; 15: 767-77.
    [136] Chou K C. A Kinetic Model for Oxidation of Si–Al–O–N Materials. J. Am. Ceram. Soc., 2006; 89(5): 1568-76.
    [137] Wang X L, Suda S. Reaction kinetics of metal hydrides under quasi-isothermal conditions. J. Less-Common Met., 1991; 172-174: 969-82.
    [138] Wang X L, Suda S. Kinetics of the hydriding-dehydriding reactions of thehydrogen-metal hydride systems. J. Int. J. Hydrogen Energy, 1992; 17: 139-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700