用户名: 密码: 验证码:
元素掺杂对Zr基非晶形成及结构演化影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非晶形成的机理以及热力学、动力学和结构对非晶形成能力的影响是材料科学的重要问题之一,目前也是非晶材料和物理领域研究的重点方向之一。非晶合金材料是由小于1nm的团簇密堆组成的,这种结构和其形成能力密切相关。微量元素掺杂(微合金化)技术在提高合金的玻璃形成能力(GFA),增加非晶的机械/热力学稳定性和改善非晶磁性能和力学性能等方面发挥着有效和重要的作用,而且是探索新的非晶材料,改进非晶性能的有效方法。
     本文主要利用机械合金化(MA)法,以Zr基二元合金作为研究的基体合金,针对性的选择不同原子尺寸范围的单质元素、相近尺寸的不同元素、金属间化合物和异相非晶作为掺杂物,研究各掺杂物对MA诱导Zr-Ni基合金粉末显微结构演化行为的影响,进一步研究探讨元素或化合物掺杂对合金粉末的GFA和非晶机械/热力学稳定性的影响机理。另外,利用单辊旋转淬冷法,研究不同原子尺寸的元素掺杂对快速凝固Zr-Ni基合金显微结构演化和耐腐蚀性能的影响。综合研究元素掺杂效果与非晶制备技术的相关性。本课题从研究方向上为利用元素掺杂制备新的金属基非晶材料/复合材料和改善其腐蚀性能提供全面的实验与理论依据;从研究手段上扩展了非晶合金及其复合材料的制备方法,故而,对于开发新的非晶合金系统、优化合金成分具有重要的理论指导意义。本文以X射线衍射技术(XRD)、差示扫描量热分析(DSC)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)、X射线能谱分析(EDX)为主要测试手段,主要研究内容和结论如下:
     利用MA法,在Zr_(66.7)Ni_(33.3)合金粉末中分别掺杂小原子尺寸的非金属元素C、中间原子尺寸Ag和大原子尺寸的稀土元素La取代基体元素Zr,不仅成功的制备了Zr_(66.7-x)Ni_(33.3)C_x,Zr_(66.7-x)Ni_(33.3)La_x和Zr_(66.7-x)Ni_(33.3)Ag_x(x=0,1,3,5at.%)的单一非晶相,而且在相同球磨条件下,C,La和Ag的掺杂都显著的影响了MA诱导Zr-Ni合金粉末显微结构的演化行为。适量C的掺杂可明显缩短非晶反应开始时间,促进非晶化进程,提高合金粉末的GFA,而且还提高了非晶合金的机械稳定性;适量La的掺杂同样大大缩短了非晶反应开始时间,改善Zr-Ni合金粉末的GFA,而且1-5at.%La的掺杂可以显著的增强非晶相的机械稳定性,但是其机械稳定性随着La掺杂量的增加而降低;尽管Ag的掺杂并没有改善Zr-Ni合金粉末的GFA,但显著的延长了非晶粉末稳定存在的球磨时间,大大提高了非晶的机械稳定性。此外,延长球磨时间,单一的非晶相在球磨介质剪切力和碰撞力的作用下发生机械晶化,而且在特定元素掺杂量的条件下,Zr-Ni-C和Zr-Ni-La非晶相逐步向fcc-晶体相转变,而Zr-Ni-Ag非晶相向bc-晶体相转变。相同球磨条件下,综合比较具有显著原子半径区别的三种元素(C,La,Ag)的掺杂效果,1at.%La的掺杂对于提高Zr-Ni合金粉末的GFA和非晶机械稳定性两方面的综合影响效果最佳;C的掺杂在提高合金粉末GFA的影响效果优于Ag的掺杂,而在提高非晶稳定性方面,Ag的掺杂效果更好,因此,可知机械合金化合成Zr-Ni非晶相的机械稳定性随着掺杂元素原子半径的增大而提高。另外,从元素间混合热、原子错配度、球磨过程中的压力、原子团簇(键级)等方面,解释了不同原子尺寸元素掺杂对机械合金化Zr-Ni合金显微结构演化行为的影响。
     选用具有相近原子半径和化学性质的Pd,Ag和Au作为掺杂元素,研究在相同球磨条件下这些元素对MA诱导Zr-Ni合金显微结构演化行为的影响,分析探讨相近原子半径的元素掺杂对Zr-Ni合金GFA和机械/热稳定性不同影响效果的作用机理。微量掺杂Pd,Ag和Au(1at.%)并没有改善Zr-Ni合金粉末的GFA,但元素Au的微量掺杂可以明显的提高非晶合金的机械稳定性,而且Zr_(65.7)Ni_(33.3)Au_1非晶合金具有更高的热稳定性。根据与非晶合金XRD曲线上漫散主峰的峰位(2θ值)相对应的最近邻原子间距随球磨时间的变化,研究发现在整个MA过程中,Zr_(65.7)Ni_(33.3)Au_1非晶合金中自始至终发生着结构弛豫或原子重排等微观结构的变化。而对于Zr_(66.7)Ni_(33.3),Zr_(65.7)Ni_(33.3)Pd_1和Zr_(65.7)Ni_(33.3)Ag_1非晶合金,其微观结构变化只发生在球磨初级阶段,而随着球磨时间的延长,局部区域的微观结构保持不变。因此认为,这三种非晶合金初始晶化阶段发生的是近邻原子间位置互换,而不改变互换原子相对距离的微观结构演化,在随后的晶化过程中再发生原子长程扩散来实现最后的有序原子排列构型。
     研究了中等原子尺寸Nb的掺杂对机械合金化Zr_(66.7-x)Cu_(33.3)Nb_x(x=0,2,4at.%)合金粉末显微结构演化的影响。发现:在低转速(200rpm)的MA条件下,Nb的掺杂并没有促进Zr-Cu-Nb单一非晶相的形成,但其适量掺杂明显的加速了非晶化进程,缩短了非晶反应开始时间,从而提高了合金的GFA,而且,机械合金化Zr-Cu-Nb合金的GFA随着Nb含量的增加而提高;在高转速(350rpm)的MA条件下,可以获得单一的Zr-Cu-Nb非晶相,而且Nb元素的掺杂同样也加速了非晶化进程,缩短了非晶开始反应时间,机械合金化Zr-Cu-Nb非晶相的机械稳定性随着Nb含量的增加而提高,另外,延长球磨时间,Zr_(66.7)Cu_(33.3)非晶相发生机械晶化,逐步转变为fcc-Zr_2Cu晶体相。
     选用金属间化合物TiC作为增强颗粒,采用MA法诱导Zr-Ni基合金粉末发生固-固反应转变,分析研究TiC掺杂(1-5wt.%)对Zr-Ni合金粉末由晶态向非晶态转变过程中的结构演化行为及机械晶化行为的影响。采用适量的TiC掺杂,成功制备出以TiC为增强颗粒的非晶复合材料,而且,其适量掺杂明显的影响了Zr-Ni合金粉末显微结构的演化行为。根据EDX成分分析,TiC在Zr,Ni原子间的扩散不均匀,导致局域范围内原子无序度增大,从而改善非晶的形成能力和稳定性,其中5wt.%TiC的掺杂不仅缩短了非晶反应开始时间,提高了Zr-Ni合金粉末的GFA,而且大大增强了非晶复合材料的机械稳定性。DSC结果表明,3wt.%TiC掺杂导致非晶相的热稳定性优于5wt.%TiC的掺杂效果,说明MA合成Zr-Ni基非晶合金粉末的机械稳定性和其热稳定性之间无相关性。
     在MA条件下制备Zr_(66.7)Ni_(33.3)非晶作为基体相,通过掺杂与其成分不同的异相非晶合金Cu_(50)Ti_(50),利用不同测试手段研究MA诱导混合非晶粉末的固-固转变机理,分析异相非晶对非晶复合相的形成能力、晶化行为和热稳定性的影响,进而探讨不同原子团簇间的交互作用关系及影响机制。适量异相非晶Cu_(50)Ti_(50)的掺杂能够显著影响Zr_(66.7)Ni_(33.3)非晶基体显微结构在MA过程中的演化行为,且两种不同类型原子团簇间的交互作用可以促使原子无序度增加或提高这种无序度的机械稳定性。其中,随着球磨时间的延长,3wt.%Cu_(50)Ti_(50)非晶掺杂可导致基体非晶相发生循环非晶化转变。此外,随着Cu_(50)Ti_(50)非晶掺杂量一定程度的增加,Cu,Ti原子扩散不均匀,Ti更易占据二十面体Zr_9Ni_4团簇中Ni的位置,增大了原子间的亲和力,从而使原子排列无序度增加,混合非晶粉末的机械稳定性提高;但在相同球磨时间条件下,混合非晶粉末的热稳定性随着异相非晶掺杂量的增加而降低。
     与MA制备非晶技术作对比,采用单辊旋转淬冷法,通过分别掺杂小原子尺寸Si,中等原子尺寸Pd和大原子尺寸La三种元素,研究Zr-Ni-M(M=Si,Pd或La)合金在快速凝固条件下非晶化的转变机理,并结合MA研究结果,系统地探讨不同原子半径的元素掺杂对Zr-Ni基合金的GFA、非晶热稳定性及非晶微观结构的影响机理。此外,利用浸泡实验方法对Zr-Ni-M非晶薄带进行抗腐蚀能力测试,研究不同元素掺杂效果和非晶耐蚀性的相关性。研究发现,大尺寸La的掺杂明显提高了Zr-Ni非晶合金的GFA。根据Miracle金属玻璃原子模型,Ni-La的R值可能最接近R_N~*值,导致团簇达到最有效的原子排列,从而表现出优良的影响效果,这和MA研究结果相似。元素Si,Pd和La的掺杂都可以提高Zr-Ni-M非晶合金的热稳定性。根据非晶合金的激活能计算结果,进一步证实了元素掺杂有助于提高Zr-Ni非晶合金的热稳定性,且随着掺杂量增加,非晶热稳定性也随之提高,其中3at.%Si的掺杂对非晶热稳定性的提高效果最佳。但是,不同元素掺杂引起的非晶热稳定性变化趋势并没有随着冷却速度的增加而发生变化。此外,非晶薄带的耐蚀性试验表明,中等原子尺寸Pd的掺杂大大降低Zr-Ni非晶薄带的耐蚀性,而La取代Zr或Ni原子可使Zr基非晶合金容易钝化,故适量La的掺杂(3at.%)能够显著提高Zr-Ni非晶薄带的耐蚀性。
The influence of thermodynamics,kinetics and structure on the glass forming ability(GFA),as well as formation mechanism of amorphous alloys,is one of important issues for materials science.At present,this is also one of key research directions in amorphous materials and physics.Amorphous alloys are composed of close-packed clusters with a size less than 1 nm,and this structure is closely associated with their forming ability.Minor addition(Microalloying) technique plays an effective and important role in increasing the GFA of alloys, enhancing the mechanical/thermal stability of the amorphous phase,and improving magnetic and mechanical properties of amorphous alloys.Moreover, Minor addition technique is an effective method to explore novel amorphous materials and improve their properties.
     In the present work,we used Zr-based binary alloys as base alloys and pertinently selected elements with different atomic size magnitude,different elements with close atomic sizes,intermetallic compound and outphase amorphous alloys as additions.Using the mechanical alloying(MA) method,we investigated the influence of different kinds of additions on the microstructural evolution behavior of MA induced Zr-Ni-based alloy powders,and further probed into the effect and mechanism of additions of elements or compounds on the GFA and mechanical/thermal stability of the amorphous alloys.In addition, we also studied the influence of elemental additions with different atomic sizes on the microstructural evolution and corrosion-resisting properties of rapidly solidified Zr-Ni-based amorphous alloys using the single-roller melt-spinning technique.The correlation between the effect of elemental additions and fabrication techniques of the amorphous alloys has also been investigated.From the viewpoint of research direction,the present study supplies general experimental and theoretical bases for the fabrication of metallic amorphous materials/composites making use of elemental additions and the improvement of their corrosion-resisting properties.This study also expands the fabrication methods for the amorphous alloys and their composites.Therefore,our work is very important for the exploration of new amorphous alloy systems and for the optimization of alloy compositions.We mainly used X-ray diffraction(XRD), differential scanning calorimetry(DSC),scanning electron microscopy(SEM), transmission electron microscopy(TEM),high resolution transmission electron microscopy(HRTEM) and energy dispersive X-ray analysis(EDX) in this work. The research contents and conclusions are described as follows.
     Using the MA method,the single amorphous phase of Zr_(66.7-x)Ni_(33.3)C_x, Zr_(66.7-x)Ni_(33.3)La_x and Zr_(66.7-x)Ni_(33.3)Ag_x(x=0,1,3,5at.%) has been successfully fabricated through substitution of non-metallic C with small atomic size,Ag with intermediate atomic size and rare-earth element La with large atomic size for the base metal Zr in Zr-Ni.Under the same milling conditions,the additions of C,La and Ag has an obvious effect on the microstructural evolution behavior of Zr-Ni alloys.An amount of C additions can markedly shorten the starting time of the amorphization reaction,facilitate the amorphization process,increase the GFA of the alloys,and improve the mechanical stability of the amorphous alloys. Similarly,the La addition can greatly shorten the starting time of the amorphization reaction and improve the GFA of the Zr-Ni alloy powders. Furthermore,the addition of 1-5at.%La can obviously enhance the stability of the amorphous phase against the mechanical crystallization.With increasing La addition,however,the mechanical stability of the Zr-Ni amorphous powders decreases.The Ag addition cannot improve the GFA of Zr-Ni,but significantly extends the milling time for the stable existence of the amorphous powders and greatly improves the mechanical stability of the amorphous phase.In addition, the amorphous phase starts to mechanically crystallize with increasing milling time when subjected to shearing and collision forces of milling media.Moreover, the Zr-Ni-C and Zr-Ni-La amorphous phases gradually transform into an fcc-phase,but the Zr-Ni-Ag amorphous phase transforms into a bc-phase,with a certain amount of elemental additions.We comprehensively compare the addition effect of three elements(C,La,Ag) with quite different atomic radii under the same milling conditions.The addition of 1 at.%La shows an optimum effect on the improvement of the GFA and mechanical stability of the Zr-Ni amorphous alloys.The effect of the C addition is better than that of the Ag addition for the improvement of the GFA of Zr-Ni,but the effect of the Ag addition is better than that of the C addition for the improvement of mechanical stability of the amorphous phase.Therefore,the mechanical stability of the MA induced Zr-Ni amorphous phase increases with increasing atomic radius of the additional elements.In addition,the influence of elemental additions with different atomic sizes on the microstructural evolution behavior of mechanically alloyed Zr-Ni alloys has been discussed based upon heat of mixing between elements,mismatch of atoms,pressure produced during ball milling and atomic clusters(bond order),and so forth.
     We selected Pd,Ag and Au with similar atomic radii and chemical properties as additional elements,and investigated the influence of these elements on the microstructural evolution behavior of MA induced Zr-Ni alloys under the same ball milling conditions.We also probed into the mechanism of effect of elemental additions with similar atomic radii on the GFA and mechanical/thermal stability of Zr-Ni alloys.The minor additions of Pd,Ag and Au(1 at.%) do not improve the GFA of Zr-Ni alloys,but the minor addition of Au can markedly increase the mechanical stability of the amorphous alloys. Furthermore,the Zr_(65.7)Ni_(33.3)Au_1 amorphous alloy has higher thermal stability. According to the variation(with increasing milling time) of nearest-neighbor atomic distance corresponding to the position of the first maximum peak(2θ) on the XRD patterns of the amorphous alloy,it has been found that the structural relaxation or atomic rearrangement of the Zr_(65.7)Ni_(33.3)Au_1 amorphous alloy always takes place during the entire MA process.For the Zr_(66.7)Ni_(33.3), Zr_(65.7)Ni_(33.3)Pd_1 and Zr_(65.7)Ni_(33.3)Ag_1 amorphous alloys,however,the microstructural transition occurs only at the initial milling stage.The local microstructure of these amorphous alloys almost keeps invariable with further prolonged milling time.Therefore,it is reasonable to assume that the initial crystallization of these three amorphous alloys proceeds through the interchange of the sites of neighboring atoms,keeping the relative atomic distance of the involved atoms invariable.During the later crystallization process,the long-range diffusion of atoms occurs resulting in the ordered atomic configuration.
     The influence of Nb with intermediate atomic size on the microstructural evolution of mechanically alloyed Zr_(66.7-x)Cu_(33.3)Nb_x(x=0,2,4at.%) alloys has been investigated.At the lower speed of 200 rpm,the Nb addition does not lead to the formation of a single amorphous phase,but an amount of Nb addition obviously accelerates the amorphization process and shortens the starting time of the amorphization reaction,indicating the improvement of GFA.Moreover,the GFA of mechanically alloyed Zr-Cu-Nb alloys increases with increasing Nb addition.At the higher speed of 350 rpm,a single Zr-Cu-Nb amorphous phase can be obtained.Furthermore,the Nb addition can also accelerate the amorphization process and shorten the starting time of the amorphization reaction.The mechanical stability of the Zr-Cu-Nb amorphous phase increases with increasing Nb content.In addition,the Zr_(66.7)Cu_(33.3) amorphous phase mechanically crystallizes with increasing milling time,gradually transforming into the fcc-Zr_2CU phase.
     The intermetallic compound TiC was selected as enhanced particles,and the solid-solid reaction occurred during MA of Zr-Ni-based alloy powders.We investigated the influence of the TiC addition(1-5wt.%) on the microstructural evolution during the crystalline-amorphous transformation and on the mechanical crystallization behavior.The TiC enhanced amorphous composites have been successfully synthesized,and the TiC addition markedly affects the microstructural evolution behavior of Zr-Ni alloy powders.Based upon the EDX analysis,we have found that the diffusion of TiC among the atoms of Zr and Ni is inhomogeneous,leading to the increase of the disorder degree of atoms in local regions.Therefore,the TiC addition improves the GFA and stability of the Zr-Ni alloys.The addition of 5 wt.%TiC not only shortens the starting time of the amorphization reaction,but also improves the GFA of Zr-Ni alloy powders and greatly enhances the mechanical stability of the amorphous composites.The DSC results demonstrate that the effect of the addition of 3 wt.%TiC is better than that of the addition of 5 wt.%TiC on the improvement of thermal stability of the amorphous phase,suggesting that there is no correlation between thermal stability and mechanical stability of MA induced Zr-Ni-based amorphous alloys.
     We used MA-synthesized Zr_(66.7)Ni_(33.3) amorphous phase as the base alloy and outphase Cu_(50)Ti_(50) amorphous phase with different composition as the addition. The MA induced solid-solid transition mechanism of mixing amorphous powders has been studied using different testing instruments.We probed into the influence of the addition of the outphase amorphous phase on the forming ability, crystallization behavior and thermal stability of the mixing amorphous powders, and further discussed the interaction relationship of different atomic clusters and the effect mechanism.The addition of the outphase Cu_(50)Ti_(50) amorphous phase can markedly influence the microstructural evolution behavior of the Zr_(66.7)Ni_(33.3) amorphous alloy.Moreover,the interaction between two kinds of atomic clusters with different types can increase the disorder degree of atoms or improve the mechanical stability of the disorder.The addition of 3 wt.%Cu_(50)Ti_(50) amorphous alloy can give rise to the cyclic amorphization transformation with increasing milling time.In addition,the diffusion of Cu and Ti atoms is inhomogeneous with increasing Cu_(50)Ti_(50) addition,resulting in the occupation of Ni sites by Ti in the icosahedral Zr_9Ni_4 cluster and the increase of interatomic affinity.Therefore, the disorder of atoms increases and the mechanical stability of the mixing amorphous powders can be improved.Under the same milling conditions, however,the thermal stability of the mixing amorphous powders decreases with increasing addition of the outphase amorphous alloy.
     In comparion to the MA method,we investigated the amorphization mechanism of Zr-Ni-M(M=Si,Pd or La) with the additions of Si with small atomic size,Pd with intermediate atomic size and La with large atomic size under rapid solidification conditions,using the single-roller melt-spinning technique.In combination with the MA results,we systematically discussed the influence of elemental additions with different atomic radii on the GFA,thermal stability and microstructure of Zr-Ni-based alloys.In addition,the corrosion-resisting experiments were carried out to study the correlation between the addition effect of different elements and the corrosion-resisting properties of the amorphous alloys,using the emerging method.It has been found that the addition of La with large atomic size can markedly improve the GFA of Zr-Ni amorphous alloys.In terms of atomic model for metallic glasses proposed by Miracle,the R value of Ni-La is possibly closest to the R_N~* value,leading to the most effective arrangement of atoms in clusters.This explains the good effect of the La addition,similar to the MA results.The additions of Si,Pd and La can improve the thermal stability of Zr-Ni-M amorphous alloys,and this has been further confirmed by the evaluation of activation energy of the amorphous alloys. Moreover,the thermal stability of the amorphous alloys increases with increasing addition,and the addition of 3 at.%Si exhibits the optimum effect on the improvement of the thermal stability of the amorphous phase.However,the variation tendency of thermal stability of the amorphous phase does not change with increasing cooling rate.Additionally,the corrosion-resisting experiments show that the addition of Pd with intermediate atomic size greatly decreases the corrosion-resisting properties of the amorphous ribbons.The substitution of La for Zr or Ni may lead to the passivation of Zr-based amorphous alloys.Therefore, the addition of La(3at.%) can markedly improve the corrosion-resisting properties of Zr-Ni amorphous ribbons.
引文
[1]A.Inoue.Stabilization of metallic supercooled liquid and bulk amorphous alloys[J].Acta Mater.,2000,48:279-306.
    [2]A.Inoue,B.L.Shen,C.T.Chang.Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in FeCoBSiNb system[J].Acta Mater.,2004,52:4093-4099.
    [3]A.Inoue,B.L.Shen,H.Koshiba,H.Kato,A.R.Yavari.Ultra-high strength above 5000MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys[J].Acta Mater.,2004,52:1631-1637.
    [4]H.Jones.Rapid solidification of metals and alloys[M].London:Inst.Of Metallurgists,1982.
    [5]黄胜涛.固体X射线学(二)[M].北京:高等教育出版社,1990.
    [6]K.Suzuki.Nanostructure of metallic amorphous alloys-characterization of medium-range structure and dynamics by pulsed neutron scatting[J].Mater.Trans.,1998,39:693-699.
    [7]R.Wang.Short-range structure for amorphous intertransition metal alloys[J].Nature,1979,278:700-704.
    [8]P.H.Gaskell.Similarities in amorphous and crystalline transition metal-metalloid alloy structures[J].Nature,1981,289:474-476.
    [9]J.M.Dubois,G.Le Caer.Local order and physical properties of Iron-rich metallic glasses[J].Acta Metall.,1984,32:2101-2114.
    [10]U.Koster,J.Meinhardt,S.Roos,R.Busch.Formaiton of quasicrystal in bulk glass forming Zr-Cu-Ni-Al alloys[J].Mater.Sci.Eng.1996,69:179-183.
    [11]P.J.Steinhardt,D.R.Nelson,M.Ronchetti.Icosahedral bond orientational order in supercooled liquids[J].Phys.Rev.Lett.,1981,47:1297-1300.
    [12]T.Takagi,T.Ohkubo,Y.Hirotsu,B.S.Murty,K.Hono,D.Shendo.Local structure of amorphous Zr_(70)P_(30) alloy studied by electron diffraction[J].Appl.Phys.Lett.,2001,79:485-492.
    [13]D.B.Miracle,W.S.Sanders,O.N.Senkov.The influence of efficient atomic packing on the constitution of metallic glasses[J].Philos.Mag.A,2003,83:2409-2428.
    [14]D.B.Miracle,O.N.Senkov.A geometric model for atomic configurations in amorphous Al alloys[J].J.Non-Cryst.Solids,2003,319:174-191.
    [15]D.B.Miracle.A structural model for metallic glasses[J].Nature Mater.,2004,3:697-702.
    [16]D.B.Miracle,E.A.Lord,S.Ranganathan.Candidate atomic cluster configurations in metallic glass structures[J].Mater.Trans.JIM,2006,47:1737-1742.
    [17]D.B.Miracle.The efficient cluster packing model - An atomic structural model for metallic glasses[J].Acta Mater.,2006,54:4317-4336.
    [18]I.Yamamoto,J.V.Zytveld,H.Endo.Local structure of Al-La-Ni amorphous alloys [J].J.Non-Cryst.Solids,1996,205-207:728-732.
    [19]A.Inoue,T.Zhang,T.Masumoto.Glass-forming ability of alloys[J].J.Non-Cryst.Solids,1993,156-158(2):473-480.
    [20]D.Tumbull.Under what conditions can a glass be formed[J].Contem.Phys.,1969,10:473-488.
    [21]Z.P.Lu,H.Tan,Y.Li,S.C.Ng.Correlation between reduced glass transition Temperature and glass forming ability of bulk metallicglasses[J].Scripta Mater.,2000,42(7):667-673.
    [22]Z.P.Lu,C.T.Liu.A new glass-forming ability criterion for bulk metallic Glasses[J].Acta Mater.,2002,50(13):3501-3512.
    [23]Z.P.Lu,C.T.Liu.A new approach to Understanding and measuring glass formation in bulk amorphous materials[J].Intermetallics,2004,12:1035-1043.
    [24]张荣生,刘海洪.快速凝固技术[M].北京:冶金出版社,1994,54.
    [25]王晓东,齐民.缓冷大块非晶合金的发展现状及其形成能力的考虑[J].材料科学与工程,2000,18:131-135.
    [26]A.Inoue.High-strength bulk amorphous-alloys with low critical cooling rates[J].Mater.Trans.JIM,1995,35(36):866-875.
    [27]A.Takeuchi,A.Inoue.Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys[J].Mater Trans JIM,2000,41(11):1372-1378.
    [28]Shoushi Fang,Ziqiang Zhou,Jinlong Zhang.Two mathematical models for the hydrogen storage properties of AB_2 type alloys[J].J.Alloys Comp.1999,293-295:10-13.
    [29]R.S.Amand,B.C.Giessen.Easy glass formation in simple metal alloys:Amorphous metals containing calcium and strontium[J].Scripta Metall.,1978,12:1021-1026.
    [30]P.Ramachandrarao.On glass formation in metal-metal systems[J].Z.Metallked.,1980,71:172-177.
    [31]T.Egami,Y.Waseda.Atomic size effect on the formability of metallic glasses[J].J.Non-Cryst.Solids,1984,64:113-134.
    [32]H.Y.Hsieh,B.H.Toby,T.Egami,Y.He,S.J.Pooh,G.J.Shiflet.Atomic structure of amorphous Al_(90)FexCe_(10)-x[J].J.Mater.Res.1990,5:2807-2812.
    [33]S.Uhnuma,J.Kanehira,K.Shiralcawa,T.Egami,T.Masumoto.Proc.4th Int.Conf.on Rapidly Quenched Metals,T.Masumoto and K.Suzuki,eds.,Japan Institute of Metals,Sendai,1982,2:1047.
    [34]S.Y.Su,Y.He,G.J.Shiflet,S.J.Poon.Formation and properties of Mg-based metallic glasses in Mg-TM-X alloys(TM=Cu or Ni;X=Sn,Si,Ge,Zn,Sb,Bi or In)[J].Mater.Sci.Eng.A,1994,185:115-121.
    [35]E.S.Park,W.T.Kim,D.H.Kim.A simple model for determining alloy composition with large glass forming ability in ternary alloys[J].Metall.Mater.Trans.A,2001,32:200-202.
    [36]闫相全,宋晓艳,张久兴.块体非晶合金材料的研究进展[J].稀有金属材料与工程,2008,37:931-935.
    [37]B.L.Shen,A.Inoue.Fabrication of large-size Fe-based glassy cores with good soft magnetic properties by spark plasma sintering[J].J.Mater.Res.,2003,18:2115-2121.
    [38]Taek-Soo Kim,Jin-Kyu Lee,Hwi-Jun Kim.Consolidation of Cu_(54)Ni_6Zr_(22)Ti_(18) bulk amorphous alloy powdersMater[J].Mater.Sci.Eng.A,2005,402:228-233.
    [39]Xiaoyan Song,Jiuxing Zhang,Ming Yue.Technique for Preparing Ultrafine Nanocrystailine Bulk Material of Pure Rare-Earth Metals[J].Adv.Mater.,2006,18:1210-1215.
    [40]T.Saito,T.Takeuchi,H.Kageyama.Structures and magnetic properties of Nd-Fe-B bulk nanocomposite magnets produced by the spark plasma sintering method[J].J.Mater.Res.,2004,19:2730-2737.
    [41]J.S.Benjamin.Dispersion strengthened superalloys by mechanical alloying[J].Metall.Trans.,1970,1:2943-2951.
    [42]陈振华,陈鼎.机械合金化与固液反应球磨[M].北京:化学工业出版社,2006.
    [43]刘晓,曹晶晶,云志等.金属间化合物及其制备方法-2,机械合金化、熔炼和熔铸、气相沉积技术[J].江苏工业学院学报,2003,15(3):5-8.
    [44]J.S.Benjamin,M.J.Bomford.Dispersion strengthened aluminum made by mechanical alloying[J].Metall.Trans.A,1977,8:1301-1305.
    [45]G.Jangg,F.K.Kutner.Production and Properties of Dispersion Hardened Aluminum[J].Aluminum,1975,51:641-645.
    [46]J.S.Benjamin.Mechanical alloying[J].Scientific American,1976,234:108-116.
    [47]C.C.Koch,O.B.Cavin,C.G.Mckamey.Preparation of amorphous Ni_(60)Nb_(40) by mechanical alloying[J].Appl.Phys.Lett.,1983,43:1017-1019.
    [48]D.Shechtman,I.Blech,D.Gratias.Metallic phase with long-rang orientational order and no translational symmetry[J].Phys.Rev.Lett.,1984,53(20):1951-1953.
    [49]E.Y.Ivanov,I.G.Konstanchuk,B.D.Bokhonov.Mechanochemical synthesis of icosahedral phases in Mg-Zn-Al and Mg-Cu-Al alloys[J].Reactivity of Solids,1989,7:167-172.
    [50]J.Eckert,L.Schultz,K.Urban.Formation of quasicrystals by mechanical alloying[J].Appl.Phys.Lett.,1989,55:117-119.
    [51]J.Eckert,L.Schultz,K.Urban.Progress of quasicrystals formation during mechanical alloying in Al-Cu-Mn and the influence of the milling intensity[J].Z.Metallkunde,1990,81:862-868.
    [52]Yan Wang,Ying Tian,Yi Wang,Haoran Geng,Zhonghua Zhang.On phase transformations in mechanically alloyed and subsequently annealed Al_(70)Cu_(20)Fe_(10)[J].Intermetallics,2008,16(2):121-129.
    [53]J.J.Hauser.Amorphous semiconducting Ag-Te films[J].J.de Physique,1981,42:943-946.
    [54]袁子洲,王冰霞,梁卫东,陈学定.高能球磨制备非品粉末的形成机理及形成能力的研究综述[J].粉末冶金工业,2006,16:30-34.
    [55]E.Ma,M.Arzmon.Calorimetric evidence for polymorphous constructs on metastable Zr-Al phase formation by mechanical alloying[J].Phys.Rev.Lett.,1991,67:1126-1129.
    [56]C.Gomez-Yanez,C.Benitez,H.Balmori-Ramirez.Mechanical activation of the synthesis reaction of BaTiO_3 from a mixture of BaCO_3 and TiO_2 powders[J].Ceram.Int.,2000,26:271-277.
    [57]M.Atzmon.In situ thermal observation of explosive compound formation reaction during mechanical alloying[J].Phys.Rev.Lett.,1990,64:487-490.
    [58]H.J.Fecht.Nanocrystalline metals prepared by high energybail milling[J].Nanostru.Mater.,1995,6:33-39.
    [59]C.C.Koch.Materials synthesis by mechanical alloying[J].Ann.Rev.Mater.Sci.,1989,19:121-143.
    [60]R.B.Schwarz,R.R.Petrich,C.K.Saw.The synthesis of amorphous Ni-Ti alloy powders by mechanical alloying[J].J.Non-Cryst.Solids,1985,76:281-302.
    [61]E.Helistem,L.Schuitz.Amorphization of transition metal Zr alloys by mechanical alloying[J].Appl.Phys.Left.,1986,48:124-126.
    [62]A.W.Weeber,H.Bakker.Amorphous NiZr powders by milling the crystalline alloys [J].J.Less-Com.Metals,1988,141:93-102.
    [63]A.W.Weeber,H.Bakker.Amorphous transition metal-zirconium alloys prepared by milling[J].Mater.Sci.Eng.,1988,97:133-135.
    [64]T.D.Shen,K.Y Wang,M.X.Quan,J.T.Wang.Amorphous Phase Formation in the Fe-W System Induced by Mechanical Alloying[J].Mater.Sci.Forum,1992,88-90:391-398.
    [65]T.G.Richards,G P.Jogari.A study of amorphization of crystalline Ag_(0.5)Cu_(0.5) during ball-milling[J].Philos.Mag.B,1989,58:445-454.
    [66]K Sakurai,Y Yamada,C.H Lee,T Fukunaga,U Mizutani.Solid state amorphization in the Cu-Ta alloy system[J].Mater.Sci.Eng.A,1991,134:1414-1417.
    [67]H.J.Fecht,G.Huan,Z.Fu,W.L.Johnson.Metastable phase formation in the Zr-Al binary system induced by mechanical alloying[J].J.Appl.Phys.,1990,67:1744-1748.
    [68]A.W.Weeber,H.Bakker.Amorphization by ball milling.A review[J].Physica B,1988,153,93-135.
    [69]W.Guo,S.Martelli,N.Burgio,M.Magini,F.Padella,E.Paradiso,I.Soletta.Mechanical alloying of the Ti-Al system[J].J.Mater.Sci.,1991,26:6190-6196.
    [70]G.J.Fan,M.X.Quan,Z.Q.Hu.Mechanically driven phase transformation from crystal to glass in Ti-Al binary system[J].Scripta Metall.Mater.,1995,32:247-252.
    [71]R.B.Schwarz,C.C.Koch.Formation of amorphous-alloys by the mechanical alloying of crystalline powders of pure metals and powders of intermetallics[J].Appl.Phys.Lett.1986,49:146-148.
    [72]Y Seki,W L.Johnson.In Solid State Powder Processing[M],A.H.Clauer and J.J.de Barbadillo eds.,Warrendale,PA:The Metallurgical Society,1990,287.
    [73]E.Gallet,M.Harmelin.Crystal-amorphous phase transition induced by ball-milling in silicon[J].J.Less-Com.Met.,1990,157:201-222.
    [74]A.Al-Hajry.Fast amorphization reaction in ZrNi system prepared by mechanical alloying[J].Mater.Res.Bull.,2000,35:1989-1998.
    [75]L.Liu,J.Zhang.Formation of Zr-Ni-based amorphous alloys with wide supercooled liquid region by mechanical alloying[J].Mater.Res.Bull.,2001,36:2073-2082.
    [76]M.S.El-Eskandarany,K.Aoki,K.Sumiyama,K.Suzuki.Cyclic phase transformations of mechanically alloyed Co_(75)Ti_(25) powders[J].Acta Mater.,2002,50:1113-1123.
    [77]M.S.El-Eskandarany,J.Saida,A.Inoue.Amorphization and crystallization behaviors of glassy Zr_(70)Pd_(30) alloys prepared by different techniques[J].Acta Mater.,2002,50:2725-2736.
    [78]M.S.El-Eskandarany,J.Saida,A.Inoue.Room-temperature mechanically induced solid-state devitrifications of glassy Zr_(65)Al_(7.5)Ni_(10)Cu_(12.5)Pd_5 alloy powders[J].Acta Mater.,2003,51:4519-4532.
    [79]M.S.El-Eskandarany,J.Saida,A.Inoue.Structural and calorimetric evolutions of mechanically induced solid-state devitrificated Zr_(60)Ni_(25)Al_(15) glassy alloy powder[J].Acta Mater.,2003,51:1481-1492.
    [80]M.S.El-Eskandarany,M.Matsushita,A.Inoue.Mechanically driven solid state amorphization reaction of ball-milled Nb_(50)Zr_(10)Al_(10)Ni_(10)Cu_(20) powders and the effect of annealing[J].J.Non-Crystal.Solids,2002,312-314:622-627.
    [81]M.S.El-Eskandarany,Wei Zhang,A.Inoue.Mechanically induced crystalline-glassy phase transformations of mechanically alloyed Ta_(55)Zr_(10)Al_(10)Ni_(10)Cu_(15) multicomponent alloy powders[J].J.Alloys Comp.,2003,350:222-231.
    [82]M.H.Enayati,P.Schumacher,B.Cantor.Amorphization of Ni_(60)Nb_(20)Zr_(20) by mechanical alloying[J].Mater.Sci.Eng.A,2004:375-377:812-814.
    [83]U.Patil,S.J.Hong,C.Suryanarayana.An unusual phase transformation during mechanical alloying of an Fe-based bulk metallic glass composition [J]. J. Alloys Comp.,2005,389:121-126.
    
    [84] I. Manna, P.P. Chattopadhyay, F. Banhart, H.J. Fec. Development of amorphous and nanocrystalline Al_(65)Cu_(35-x)Zr_x alloys by mechanical alloying [J]. Mater. Sci. Eng. A,2004,379:360-365.
    [85] Y. Birol. Crystallization of A Fe_(36)Ni_(36)B_(28) metallic glass during ball-milling [J]. Scripta Mater., 1996,34:1081-1085.
    [86] H. J. Jin, F. Zhou, L. B. Wang. Effect of plastic deformation on thermal stability in metallic glasses [J]. Scripta Mater., 2001,44:1083-1087.
    
    [87] M. L. Trudeau, L. Dignard-Bailey, R. Schulz. Fabrication of nanocrystalline iron-based alloys by the mechanical crystallization of amorphous materials [J]. Nanostruct. Mater.,1993,2:361-368.
    [88] B. Huang, R.J. Perez, A.A. Sharif. Mechanically induced crystallization of Fe_(78)B_(13)Si_9 during cryogenic high energy ball milling [J]. Nanostruct. Mater., 1995, 5: 545-553.
    [89] F.Q. Guo, K. Lu. Formation of a single a-Fe nanophase during mechanically driven crystallization of an FeMoSiB metallic glass [J]. Nanostruct. Mater., 1996, 7: 509-517.
    [90] G.J. Fan, M.X. Quan, Z.Q. Hu. Mechanically induced structural relaxation in an amorphous metallic Fe_(80)B_(20) alloy [J]. Appl. Phys. Lett., 1996,68: 319-321.
    [91] S. Sharma, C. Suryanarayana. Mechanical crystallization of Fe-based amorphous alloys [J]. J. Appl. Phys., 2007,102: 083544-1-7.
    [92] A.L. Greer. Metallic glasses [J]. Science, 1995,267:1947-1953.
    [93] W.L. Johnson. Bulk glass-forming metallic alloys: Science and technology [J]. MRS Bull., 1999,24:42-56.
    
    [94] A.L. Greer. Confusion by design [J]. Nature, 1993,366: 303-304.
    [95] Z.P. Lu, C.T. Liu. Glass Formation Criterion for Various Glass-Forming Systems [J].Phys. Rev. Lett., 2003,91:115505-115508.
    [96] C.T. Liu, C.L. White, J.A. Horton. Effect of boron on grain-boundaries in Ni_3Al [J].Acta Metall., 1985,33: 213-229.
    [97] T. Nishizawa Thermodynamics of micro-alloying [J]. Mater. Trans. 2001, 42:2027-2032.
    [98] K. Pattersen, P. Bakke, D. Albright. Magnesium die casting alloy design [M].Warrendale, PA: TMS, 2002: 241-246.
    [99] W.H. Wang, Z. Bian, P. Wen, M.X. Pan, D.Q. Zhao. Role of addition in formation and properties of Zr-based bulk metallic glasses [J]. Intermetallics, 2002; 10:1249-1257.
    [100] C.T. Liu, Z.P. Lu Effect of minor alloying additions on glass formation in bulk metallic glasses [J]. Intermetallics, 2005,13: 415-418.
    [101] B. Zhang, D. Q. Zhao, M. X. Pan, W. H. Wang, and A. L. Greer. Amorphous Metallic Plastic [J]. Phys. Rev. Lett. 2005, 94: 205502-205505.
    
    [102] X.K. Xi, L.L. Li, B. Zhang, W.H. Wang, Y. Wu. Correlation of Atomic Cluster Symmetry and Glass-Forming Ability of Metallic Glass [J]. Phys. Rev. Lett., 2007, 99:095501-095504.
    [103] W.H. Wang. Roles of minor additions in formation and properties of bulk metallic glasses [J]. Prog. Mater. Sci, 2007,52: 540-596.
    [104] Z. P. Lu, C. T. Liu. Role of minor alloying additions in formation of bulk metallic glasses: A Review [J]. J. Mater. Sci., 2004, 39: 3965-3974.
    [105] O. N. Senkov, D. B. Miracle. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys [J]. Mater. Res. Bull, 2001, 36: 2183-2189.
    [106] D. Xu, G. Duan, W. L. Johnson. Unusual Glass-Forming Ability of Bulk Amorphous Alloys Based on Ordinary Metal Copper [J]. Phys. Rev. Lett, 2004, 92:245504-245507.
    
    [107] J. Chen, Y. Zhang, J.P. He, K.F. Yao, B.C. Wei, G.L. Chen. Metallographic analysis of Cu-Zr-Al bulk amorphous alloys with yttrium addition [J]. Scripta Mater, 2006,54:1351-1355.
    [108] Y. Zhang, J. Chen, G.L. Chen, X.J. Liu. Influence of yttrium addition on the glass forming ability in Cu-Zr-Al alloys [J]. Mater. Sci. Eng. A, 2008, 483-484: 235-238.
    [109] Z.M. Wang, Y.T. Ma, J. Zhang, W.L. Hou, X.C. Chang, J.Q. Wang. Influence of yttrium as a minority alloying element on the corrosion behavior in Fe-based bulk metallic glasses [J]. Electrochim. Acta, 2008, 54: 261-269.
    
    [110] J.M. Park, J.S. Park, J.H. Na, D.H. Kim, D.H. Kim. Effect of Y addition on thermal stability and the glass forming ability in Fe-Nb-B-Si bulk glassy alloy [J]. Mater. Sci.Eng. A, 2006,435-436: 425-428.
    
    [111] K.K. Song, X.F. Bian, J. Guo, S.H. Wang, B.A. Sun, X.L. Li, CD. Wang. Effects of Ce and Mm additions on the glass forming ability of Al-Ni-Si metallic glass alloys [J].J. Alloys Comp, 2007, 440: L8-L12.
    
    [112] J.K. Lee, D.H. Bae, S. Yi, W.T. Kim , D.H. Kim. Effects of Sn addition on the glass forming ability and crystallization behavior in Ni-Zr-Ti-Si alloys [J]. J. Non-Cryst.Solids, 2004, 333: 212-220.
    [113] H.M. Fu, H. Wang, H.F. Zhang, Z.Q. Hu. The effect of Gd addition on the glass-forming ability of Cu-Zr-Al alloy [J]. Scripta Mater, 2006, 55: 147-150.
    [114] R. Li, S. Pang, C. Ma, T. Zhang. Influence of similar atom substitution on glass formation in(La-Ce)-Al-Co bulk metallic glasses [J]. Acta Mater, 2007, 55:3719-3726.
    
    [115] D.Q. Zhao, Y. Zhang, M.X. Pan. The effects of iron addition on the class-forming ability and properties of Zr-Ti-Cu-Ni-Be-Fe bulk metallic glass [J]. Mater. Trans.JIM, 2000,41: 1427-1431.
    
    [116] T. Zhang, T. Yamamoto, A. Inoue. Formation, thermal stability and mechanical properties (Cu_(0.6)Zr_(0.3)Ti_(0.1))_(100-x)M_x (M=Fe, Co, Ni) bulk glassy alloys [J]. Mater. Trans,2002, 43: 3222-3226.
    
    [117] C.L. Qin, K. Asami, T. Zhang, W. Zhang, A. Inoue. Effect of additional elements on the glass formation and corrosion behavior of bulk glassy Cu-Hf-Ti alloy [J]. Mater.Trans. JIM, 2003,44: 1042-1045.
    
    [118] H. Men, Z. Q. Hu, J. Xu, Bulk metallic glass formation in the Mg-Cu-Zn-Y system [J]. Scripta Mater., 2002,46:699-703.
    
    [119] N. Mitrovic, S. Roth, J. Eckert. Kinetics of the glass-transition and crystallization process of Fe_(72-x)Nb_xAl_5Ga_2P_(11)C_6B_4(x = 0, 2) metallic glasses [J]. Appl. Phys. Lett.,2001,78:2145-2147.
    [120] L.Q. Ma, L. Wang. Effect of Nb addition on glass-forming ability, strength, and hardness of Fe-B-Zr amorphous alloys [J]. Mater. Res. Bull., 1999,34:915-920.
    [121] B. Zhang, D.Q. Zhao, M.X. Pan, R.J. Wang, W.H. Wang. Formation of cerium-based bulk metallic glasses [J]. Acta Mater., 2006,54:3025-3032.
    [122] S. Sharma, C. Suryanarayana. Effect of Nb on the glass-forming ability of mechanically alloyed Fe-Ni-Zr-B alloys [J]. Scripta Mater., 2008,58: 508-511.
    [123] J.J. Oak, D.V.L. Luzgin, A. Inoue. Investigation of glass-forming ability, deformation and corrosion behavior of Ni-free Ti-based BMG alloys designed for application as dental implants [J]. Mater. Sci. Eng. C, 2009,29: 322-327.
    
    [124] M.K. Tarn, S.J. Pang, C.H. Shek. Effects of niobium on thermal stability and corrosion behavior of glassy Cu-Zr-Al-Nb alloys [J]. J. Phys.Chem. Solids, 2006, 67: 762-766.
    [125] CM. Zhang, X. Hui, Z.G. Li, G.L. Chen. Improving the strength and the toughness of Mg-Cu-(Y, Gd) bulk metallic glass by minor addition of Nb [J]. J. Alloys Comp.,2009,467: 241-245.
    
    [126] D.V. Louzguine-Luzgin, L.V. Louzguina-Luzgina, G. Xie, S. Lia, W. Zhang, A. Inoue. Glass-forming ability and crystallization behavior of some binary and ternary Ni-based glassy alloys [J]. J. Alloys Comp. 2008,460:409-413.
    
    [127] J.N. Mei, J.S. Li, H.C. Kou, J.L. Soubeyroux , H.Z. Fu, L. Zhou. Formation of Ti-Zr-Ni-Cu-Be-Nb bulk metallic glasses [J]. J. Alloys Comp., 2009,467:235-240.
    [128] J.K. Lee, W.T. Kim, D.H. Kim. Effects of Pd addition on the glass forming ability and crystallization behavior in the Ni-Zr-Ti alloys [J]. Mater. Lett., 2003, 57:1514-1519.
    [129] W. Qin, J. Li, H. Kou, X. Gu, X. Xue, L. Zhou. Effects of alloy addition on the improvement of glass forming ability and plasticity of Mg-Cu-Tb bulk metallic glass [J]. Intermetallics, in press.
    
    [130] J. Saida, T. Sanada, S. Sato, M. Imafuku, E. Matsubara, A. Inoue. Effect of Al on the local structure and stability of Zr-based metallic glasses [J]. J. Alloys Comp., 2007,434-435: 135-137.
    
    [131] J.B. Qiang, W. Zhang, A. Inoue. Effects of Al and Ti additions on the thermal stability,glass-forming ability and mechanical properties of Ni_(60)Nb_(20)Zr_(20) glassy alloy [J].Mater. Sci. Eng. B., 2008,148:114-118.
    
    [132] P. Yu , H.Y. Bai, M.B. Tang , W.L. Wang, S.F. Guo, Y.Y. Sun, J. Pan, L. Liu.Excellent glass-forming ability in simple Cu_(50)Zr_(50)-based alloys [J]. J. Non-Crystalline Solids, 2005, 351:1328-1332.
    [133] M. Xia, S. Zhang, H. Wang, J. Li. The effect of Cu on the properties of Nd-based bulk metallic glasses [J]. Mater. Design, 2009, 30: 1236-1239.
    
    [134] Z.L. Long, Y. Shao, X.H. Deng, Z.C. Zhang, Y. Jiang, P. Zhang, B.L. Shen, A. Inoue. Cr effects on magnetic and corrosion properties of Fe-Co-Si-B-Nb-Cr bulk glassy alloys with high glass-forming ability[J].Intermetallics,2007,15:1453-1458.
    [135]J.H.Na,J.M.Park,K.H.Han,B.J.Park,W.T.Kim,D.H.Kim.The effect of Ta addition on the glass forming ability and mechanical properties of Ni-Zr-Nb-Al metallic glass alloys[J].Mater.Sci.Eng.A,2006,431:306-310.
    [136]H.C.Yim,R.Busch,W.L.Johnson.The effect of silicon on the glass forming ability of the Cu_(47)Ti_(34)Zr_(11)Ni_8 bulk metallic glass forming alloy during processing of composites[J].J.Appl.Phys.,1998,83:7993-7997.
    [137]G.J.Fan,L.F.Fu,D.C.Qiao,H.Choo,P.K.Liaw,N.D.Browning,J.F.L(o|¨)ffler.Effect of microailoying on the glass-forming ability of Cu_(60)Zr_(30)Ti_(10) bulk metallic glass[J].J.Non-Crystalline Solids,2007,353:4218-4222.
    [138]H.Xie,J.Lin,Y.Li,P.Hodgson,C.Wen.Composition dependency of the glass forming ability(GFA) in Mg-Ni-Si system by mechanical alloying[J].Mater.Sci.Eng.A,2007,459:35-39.
    [139]W.M.Wang,A.Gebert,S.Roth,U.Kuehn,L.Schultz.Effect of Si on the glass-forming ability,thermal stability and magnetic properties of Fe-Co-Zr-Mo-W-B alloys[J].J.Alloys Comp.,2008,459:203-208.
    [140]B.Zhang,Y.Jia,S.Wang,X.F.Bian.Effect of silicon addition on the glass-forming ability of a Zr-Cu-based alloy[J].J.Alloys Comp.,2008,468:187-190.
    [141]W.Z.Liang,J.Shen,J.F.Sun.Effect of Si addition on the glass-forming ability of a NiTiZrAlCu alloy[J].J.Alloys Comp.,2006,420:94-97.
    [142]C.Ma,H.Soejima,K.Amiya,N.Nishiyama,A.Inoue.New Ti-based bulk glassy alloys with high glass-forming ability and superior mechanical properties[J].Mater.Trans.,2004,45:3223-3227.
    [143]Y.Wu,X.D.Hui,Z.P.Lu.,Z.Y.Liu,L.Liang,G.L.Chen.Effects of metalloid elements on the glass-forming ability of Fe-based alloys[J].J.Alloys Comp.,2009,467:187-190.
    [144]S.Yi,T.G.Park,D.H.Kim.Ni-based bulk amorphous alloys in the Ni-Ti-Zr-(Si,Sn)system[J].J.Mater.Res.,2000,15(11):2425-2430.
    [145]K.Mondal,B.S.Murty.On the parameters to assess the glass forming ability of liquids[J].J.Non-Crystalline Solids,2005,351:1366-1371.
    [146]Z.P.Lu,C.T.Liu,et al.Bulk glass formation in an Fe-based Fe-Y-Zr-M(M=Cr,Co,Al)-Mo-B system[J].J.Mater.Res.,2004,19:921-929.
    [1]B.Zhang,D.Q.Zhao,M.X.Pan,R.J.Wang,W.H.Wang.Formation of cerium-based bulk metallic glasses[J].Acta Mater.,2006,54:3025-3032.
    [2]H.T.Hu,L.Y.Chen,X.D.Wang,Q.P.Cao,J.Z.Jiang.Formation of Ni-Nb-Zr-X(X=Ti,Ta,Fe,Cu,Co) bulk metallic glasses[J].J.Alloys Compd.,2008,460:714-718.
    [3]W.Qin,J.Li,H.Kou,X.Gu,X.Xue,L.Zhou.Effects of alloy addition on the improvement of glass forming ability and plasticity of Mg-Cu-Tb bulk metallic glass[J].Intermetallics,2009,17:253-255.
    [4]D.V.Louzguine-Luzgin,L.V.Louzguina-Luzgina,G.Xie,S.Li,W.Zhang,A.Inoue.Glass-forming ability and crystallization behavior of some binary and ternary Ni-based glassy alloys[J].J.Alloys Compd.,2008,460:409-413.
    [5]X.Xu,L.Y.Chen,G.Q.Zhang,L.N.Wang,J.Z.Jiang.Formation of bulk metallic glasses in Cu_(45)Zr_(48_x)Al_7RE_x(RE=La,Ce,Nd,Gd and 0≤x≤5 at.%)[J].Intermetallics,2007,15:1066-1070.
    [6]A.Al-Hajry.Fast amorphization reaction in ZrNi system prepared by mechanical alloying[J].Mater Res Bull.,2000,35(12):1989-1998.
    [7]M.S.El-Eskandarany,A.Inoue.Solid-state crystalline-glassy cyclic phase transformations of mechanically alloyed Cu__(33)Zr_(67) powders [J]. Metall. Trans. A, 2002,33: 135-143.
    
    [8] M.S. El-Eskandarany, W. Zhang, A. Inoue. Mechanically induced solid-state reaction for synthesizing glassy Co_(75)Ti_(25) soft magnet alloy powders with a wide supercooled liquid region [J]. J. Mater. Res., 2002,17: 2447-2456.
    
    [9] M.S. El-Eskandarany, J. Saida, A.Inoue. Amorphization and crystallization behaviors of glassy Zr_(70)Pd_(30) alloys prepared by different techniques [J]. Acta Mater., 2002, 50:2725-2736.
    [10] M.S. El-Eskandarany, J. Saida, A. Inoue. Structural and calorimetric evolutions of mechanically-induced solid-state devitrificated Zr_(60)Ni_(25)Al_(15) glassy alloy powder [J].Acta Mater.,2003,51: 1481-1492.
    [11] M.S. El-Eskandarany, J. Saida, A. Inoue. Room-temperature mechanically induced solid-state devitrifications of glassy Zr_(65)Al_(7.5)Ni_(10)Cu_(12.5)Pd_5 alloy powders [J]. Acta Mater., 2003, 51: 4519-4532.
    [12] V.A. Palvov. Amorphization of metals and alloys with extremely high degrees of plastic deformation [J]. Phys. Met. Metallovd., 1985, 59:1-20.
    [13] I. Manna, P.P. Chattopadhyay, F. Banhart, H.J. Fecht. Development of amorphous and nanocrystalline A165Cu35-xZrx alloys by mechanical alloying [J]. Mater. Sci. Eng. A,2004, 379:360-365.
    
    [14] M. Seidel. Ph.D. Thesis, Technical University of Dresden, 1998.
    [15] M. Seidel, J. Eckert, I.bacher, M. Reibold, L. Schultz. Progress of solid-state reaction and glass formation in mechanically alloyed Zr_(65)Al_(7.5)Cu_(17.5)Ni_(10) [J]- Acta Mater., 2000,48: 3657-3670.
    [16] M.S. El-Eskandarany, K. Aoki, K. Sumiyama, K. Suzuki. Cyclic phase transformations of mechanically alloyed Co_(75)Ti_(25) powders [J]. Acta Mater., 2002,50: 1113-1123.
    [17] V T. Fukunaga, K. Itoh, T. Otomo, K. Moria, M. Sugiyama, H. Kato, M. Hasegawa, A.Hirata, Y. Hirotsu, A.C. Harmon. Voronoi analysis of the structure of Cu-Zr and Ni-Zr metallic glasses [J]. Intermetallics, 2006,14: 893-897.
    [18] Z.H. Huang, J.F. Li, Q.L. Rao, Y.H. Zhou. Effects of La content on the glass transition and crystallization process of Al-Ni-La amorphous alloys [J]. Intermetallics, 2007, 15:1139-1146.
    [19] F.R. Boer, R. Boom, W.C.M. Matterns, A.R. Miedema, A.K. Niessen. Cohesion in Metals [M], North-Holland, Amsterdam, 1988.
    [20] A. Guinier. X-ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies [M]. W.H. Freeman, San Francisco, 1963: 72-81.
    [21] S. Sharma, C. Suryanarayana. Effect of Nb on the glass-forming ability of mechanically alloyed Fe-Ni-Zr-B alloys [J]. Scripta Mater., 2008, 58: 508-511.
    [22] S.V. Madge, A.L. Greer. Effect of Ag addition on the glass-forming ability and thermal stability of Mg-Cu-Y alloys [J]. Mater. Sci. Eng. A, 2004, 375-377: 759-762.
    [23] E.S. Park, H.G. Kang, W.T. Kim, D.H. Kim. The effect of Ag addition on the glass-forming ability of Mg-Cu-Y metallic glass alloys [J]. J. Non-Cryst. Solids, 2001,279:154-160.
    [24] Wei Zhang, Fei Jia, Qingsheng Zhang, Akihisa Inoue. Effects of additional Ag on the thermal stability and glass-forming ability of Cu-Zr binary glassy alloys [J]. Mater. Sci. Eng. A, 2007, 459: 330-336.
    
    [25] D.V. Louzguine-Luzgin, G. Xie, W. Zhang, A. Inoue. Devitrification behavior and glass-forming ability of Cu-Zr-Ag alloys [J]. Mater. Sci. Eng. A, 2007,465: 146-152.
    [26] Fei Jia, Wei Zhang, Hisamichi Kimura, Akihisa Inoue. Effects of additional Ag on the thermal stability and glass-forming ability of La-Al-Cu bulk glassy alloys [J]. Mater.Sci. Eng. B, 2008,148: 119-123.
    
    [27] Z. Altounian, E. Batalla, J. Strom-Olsen. The influence of oxygen and other impurities on the crystallization of NiZr_2 and related metallic glasses [J]. J. Appl. Phys., 1987, 61:149-155.
    [28] G Cocco, I. Soletta, L. Battessati, M. Baricco, S. Enzo. Mechanical alloying of the Al-Ti system [J]. Philo. Mag. B, 61:473-486.
    [29] M.A. Morris, D.G Morris. Mechanical Alloying of Aluminium and Iron Powders to Produce Nanocrystalline Al_3Fe [J]. Mater. Sci. Forum, 1992, 529: 88-90.
    [30] B. Huang, R.J. Perez, P.J. Crawford, A.A. Sharif, S.R. Nutt, E.J. Lavernia.Mechanically induced crystallization of metglas Fe_(78)Bi_3Si_9 during cryogenic high energy ball milling [J]. Nanostruct. Mater., 1995, 5:545-533.
    [31] G-H. Chen, C. Suryanarayana, F.H. Froes. Structure of mechanically alloyed Ti-Al-Nb powders [J]. Met. Trans. A, 1995, 26: 1379-1387.
    [32] F. Spaepen. Microscopic mechanism for steady state inhomogeneous flow in metallic glasses [J]. Acta Mater., 1977, 25: 407-415.
    [33] A.S. Argon, H.Y. Kuo. Free energy spectra for inelastic deformation of five metallic glass alloys [J]. J. Non-Cryst. Solids, 1980,37: 241-266.
    [34] D.B. Miracle. A structural model for metallic glasses [J]. Nature Mater., 2004, 3:697-702.
    [35] H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature, 2006,439: 419-425.
    [36] U. K(?)ster and U. Herold. in Glassy Metals I, H. J. Guntherodt and H. Beck eds.,Springer-Verlag, Berlin, 1981, p. 225.
    [37] M. G. Scott, in Amorphous Metallic Alloys, F. E. Luborsky Butterworths eds., London,1983, p. 144.
    
    [38] C. Suryanarayana. Mechanical Alloying and Milling [M]. Dekker, New York, 2004.
    [39] C. Suryanarayana. Bibliography on Mechanical Alloying and Milling [M]. Cambridge International Science, Cambridge, 1995.
    [40] S. Sharma, C. Suryanarayana. Mechanical crystallization of Fe-based amorphous alloys [J]. J. Appl. Phys., 2007, 102: 0835441-7.
    
    [41] U. Patil, S.-J. Hong, C. Suryanarayana. An unusual phase transformation during mechanical alloying of an Fe-based bulk metallic glass composition [J]. J. Alloys Compd., 2005, 389: 121-126.
    [42] Y. He, G J. Shiflet, and S. J. Poon. Ball milling-induced nanocrystal formation in aluminum-based metallic glasses [J]. Acta Metall. Mater., 1995, 43: 83-91.
    [43] W. C. Johnson, J. K. Lee, G. J. Shiflet. Thermodynamic treatment of cyclic amorphization during ball milling [J]. Acta Mater., 2006, 54: 5123-5133.
    [44] C. Suryanarayana, W. K. Wang, H. Iwasaki, T. Masumoto. High-pressure synthesis of Al_(15)Nb_3Si phase from amorphous Nb-Si alloys [J]. Solid State Commun., 1980, 34: 861-863
    [45]R.M.Davis,B.McDermott,C.C.Koch.Mechanical alloying of brittle materials[J].Metall.Trans.A,1988,19:2867-2874.
    [46]D.R.Maurice,T.H.Courtney,The physics of mechanical alloying:A first report[J].Metall.Trans.A,1990,21:289-303.
    [47]B.Yao,S.-E.Liu,L.Liu,L.Si,W.-H.Su,Y.Li.Mechanism of mechanical crystallization of amorphous Fe-Mo-Si-B alloy[J].J.Appl.Phys.,2001,90:1650-1654.
    [48]惠希东,刘雄军,高蕊,侯怀宇,方华志,刘梓葵,陈国良.Zr基金属玻璃原子结构研究[J].中国科学,2008,38(4):406-416.
    [49]A.Inoue,A.Takeuchi.Recent progress in bulk glassy alloys[J].Mater.Trans.JIM,2002,43:1892-1906.
    [50]张庆生,张海峰.机械合金化Zr-Al-Ni-Cu-Ag非晶合金的品化行为[J].材料研究学报,2002,16:9-12.
    [51]王晓东,Zr基大块非晶合金的稳定性及其团簇模型的研究[D],大连理工大学博士学位论文,2003,7.
    [52]杨爽.添加元素对Zr基大块非品的GFA及耐腐蚀性影响机理研究[D].沈阳师范大学,硕士学位论文,2008,5,1
    [53]T.L.Cheung,C.H.Shek.Thermal and mechanical properties of Cu-Zr-Al bulk metallic glasses[J].J.Alloys Compd.,2007,434:71-74.
    [54]R.Ray,L.E.Tanner.Molybdenum-based metallic glasses[J].J.Mater.Sci.,1980,15:1596-1598.
    [55]W.Zhang,C.Qin,X.Zhang,A.Inoue.Effects of additional noble elements on the thermal stability and mechanical properties of Cu-Zr-Al bulk glassy alloys[J].Mater.Sci.Eng.A,2007,449:631-635.
    [1]D.V.Louzguine-Luzgin,L.V.Louzguina-Luzgina,Guoqiang Xie,Song Li,Wei Zhang,Akihisa Inoue.Glass-forming ability and crystallization behavior of some binary and ternary Ni-based glassy alloys[J].J.Alloys Comp.,2008,460:409-413.
    [2]J.K.Lee,W.T.Kim,D.H.Kim.Effects of Pd addition on the glass forming ability and crystallization behavior in the Ni-Zr-Ti alloys[J].Mater.Lett.,2003,57:1514-1519.
    [3]E.S.Park,H.G.Kang,W.T.Kim,D.H.Kim.The effect of Ag addition on the glass-forming ability of Mg-Cu-Y metallic glass alloys[J].J.Non-Cryst.Solids,2001,279:154-160.
    [4]Weidong Qin,Jinshan Li,Hongchao Kou,Xiaofeng Gu,Xiangyi Xue,Lian Zhou.Effects of alloy addition on the improvement of glass forming ability and plasticity of Mg-Cu-Tb bulk metallic glass[J].Intermetallics,2009,17:253-255.
    [5]Wei Zhang,Fei Jia,Qingsheng Zhang,Akihisa Inoue.Effects of additional Ag on the thermal stability and glass-forming ability of Cu-Zr binary glassy alloys[J].Mater.Sci.Eng.A,2007,459:330-336.
    [6]S.V,Madge,A.L.Greer.Effect of Ag addition on the glass-forming ability and thermal stability of Mg-Cu-Y alloys[J].Mater.Sci.Eng.A,2004,375-377:759-762.
    [7]Dmitri V.Louzguine-Luzgin,Guoqiang Xie,Wei Zhang,Akihisa lnoue.Devitrification behavior and glass-forming ability of Cu-Zr-Ag alloys[J].Mater.Sci.Eng.A,2007,465:146-152.
    [8]Satyajeet Sharma,C.Suryanarayana.Effect of Nb on the glass-forming ability of mechanically alloyed Fe-Ni-Zr-B alloys[J].Scripta Mater.,2008,58:508-511.
    [9]N.Mitrovic,S.Roth,J.Eckert.Kinetics of the glass-transition and crystallization process of Fe_(72-x)Nb_xAl_5Ga_2P_(11)C_6B_4(x=0,2) metallic glasses[J].Appl.Phys.Lett.,2001,78:2145-2147.
    [10]L.Q.Ma,L.Wang,T.Zhang,A.Inoue.Effect of Nb addition on glass-forming ability,strength,and hardness of Fe-B-Zr amorphous alloys[J].Mater.Res.Bull.,1999,34:915-920.
    [11]A.Inoue,B.Shen.Formation and Soft Magnetic Properties of Co-Fe-Si-B-Nb Bulk Glassy Alloys[J].Mater.Trans.JIM,2002,43:1230-1234.
    [12]C.L.Qin,K.Asami,T.Zhang,W.Zhang,A.Inoue.Effects of Additional Elements on the Glass Formation and Corrosion Behavior of Bulk Glassy Cu-Hf-Ti Alloys[J].Mater.Trans.JIM,2003,44:1042-1045.
    [13]C.Fan,C.Li,A.Inoue.Effects of Nb addition on icosahedral quasicrystalline phase formation and glass-forming ability of Zr-Ni-Cu-Al metallic glasses[J].Appl.Phys.Lett.,2001,79:1024-1026.
    [14]C.Fan,A.Inoue.Formation of nanoscale icosahedral quasicrystals and glass-forming ability in Zr-Nb-Ni-Cu-Al metallic glasses[J].Scr.Mater.,2001,45:115-120.
    [15]C.H.Shek,Y.F.Sun,B.C.Wei.Effect of Nb content on the microstructure and mechanical properties of Zr-Cu-Ni-A-Nb glass forming alloys[J].J.Alloys Comp.,2005,403:239-244.
    [16]J.Oak,D.V.Louzguine-Luzgin,A.Inoue.Investigation of glass-forming ability,deformation and corrosion behavior of Ni-free Ti-based BMG alloys designed for application as dental implants[J].Mater.Sci.Eng.C,2009,29:322-327.
    [17]M.K.Tam,S.J.Pang,C.H.Shek.Effects of niobium on thermal stability and corrosion behavior of glassy Cu-Zr-Al-Nb alloys[J].J.Phys.Chem.Solid.,2006,67:762-766.
    [18]C.M.Zhang,X.Hui,Z.G.Li,G.L.Chen.Improving the strength and the toughness of Mg-Cu-(Y,Gd) bulk metallic glass by minor addition of Nb[J].J.Alloys Comp.,2009,467:241-245.
    [19]J.N.Mei,J.S.Li,H.C.Kou,J.L.Soubeyroux,H.Z.Fu,L.Zhou.Formation of Ti-Zr-Ni-Cu-Be-Nb bulk metallic glasses[J].J.Alloys Comp.,2009,467:235-240.
    [20]B.Zhang,D.Q.Zhao,M.X.Pan,R.J.Wang,W.H.Wang.Formation of cerium-based bulk metallic glasses[J].Acta Mater.,2006,54:3025-3032.
    [21]D.Xu,G.Duan,W.L.Johnson.Unusual Glass-Forming Ability of Bulk Amorphous Alloys Based on Ordinary Metal Copper[J].Phys.Rev.Lett.,2004,92:2455041-4.
    [22]P.Yu,H.Y.Bai,W.H.Wang.Superior glass-forming ability of CuZr alloys from minor additions[J].J.Mater.Res.,2006,21:1674-1679.
    [23]P.Yu,H.Y.Bai.Excellent glass-forming ability in simple Cu_(50)Zr_(50)-based alloys[J].J.Non-Cryst.Solids.,2005,351:1328-1332.
    [24]W.H.Wang,J.J.Lewendowski,A.L.Greer.Understanding the glass-forming ability of Cu_(50)Zr_(50) alloys in terms of a metastable eutectic[J].J.Mater.Res.,2005,20:2307-2313.
    [25]F.R.Boer,R.Boom,W.C.M.Matterns,A.R.Miedema,A.K.Niessen,Cohesion in Metals[M].North-Holland,Amsterdam,1988.
    [26]M.S.El-Eskandarany,A.Inoue.Solid-state crystalline-glassy cyclic phase transformations of mechanically alloyed Cu_(33)Zr_(67) powders[J].Metall.Trans.A,2002,33:135-143.
    [27]M.H.Enayati,P.Schumacher,B.Cantor.Amorphization of Ni_(60)Nb_(20)Zr_(20) by mechanical alloying[J].Mater.Sci.Eng.A.,2004,375-377:812-814.
    [28]A.Inoue.Bulk Amorphous Alloys:Preparation and Fundamental Characteristics,Materials Science Foundations[M],vol.4,Trans Tech Publications,Zurich,1998.
    [29]E.S.Park,D.H.Kim,Phase separation and enhancement of plasticity in Cu-Zr-Al-Y bulk metallic glasses[J].Acta Mater.2006,54:2597-2604.
    [30]杨君友,张同俊.球磨过程中的碰撞行为分析[J].金属学报,1997,33:381-385.
    [1]Tao Liu,Ping Shen,Feng Qiu,Zhongfa Yin,Qiaoli Lin,Qichuan Jiang,Tao Zhang.Synthesis and mechanical properties of TiC-reinforced Cu-based bulk metallic glass composites[J].Scripta Mater.,2009,60:84-87.
    [2]H.M.Fu,H.F.Zhang,H.Wang,Q.S.Zhang,Z.Q.Hu.Synthesis and mechanical properties of Cu-based bulk metallic glass composites containing in-situ TiC particles [J].Scripta Mater.2005,52:669-673.
    [3]孙玉峰,张国胜,魏炳忱,李维火,王育人.TiC原位增强块状Cu_(47)Ti_(34)Zr_(11)Ni_8非晶合金复合材料[J].科学通报,2004,49:115-119.
    [4]H.Choi-Yim,R.Busch,U.Koester,W.L.Johnson.Synthesis and Characterization of Particulate Reinforced Zr_(57)Nb_5Al_(10)Cu_(15.4)Ni_(12.6) Bulk Metallic Glass Composites[J].Acta Mater.,1999,47:2455-2462.
    [5]Y.Kawamura,H.Mano,A.Inoue.Synthesis of ZrC/Zr_(55)Al_(10)Ni_5Cu_(30) metallic-glass matrix composite powders by high pressure gas atomization[J].Scripta Mater.,2000,43:1119-1124.
    [6]武晓峰,邱克强,张海峰,王爱民,杨洪才,胡壮麒.SiC颗粒对Zr_(55)Al_(10)Ni_5Cu_(30)非晶形成能力和热稳定性的影响[J].金属学报,2003,39:414-418.
    [7]Z.P.Lu,C.T.Liu.Role of minor alloying additions in formation of bulk metallicg lasses:A review.[J].J.Mater.Sci.,2004,39:3965-3974.
    [8]W.H.Wang,P.Wen,Z.Bian,M.X.Pan,D.Q.Zhao.Role of addition in formation and properties of Zr-based bulk metallic glasses[J].Intermetallics,2002,10:1249-1257.
    [9]武晓峰,张海峰,邱克强,杨洪才,胡壮麒.原位合成ZrC颗粒增强锆基非晶复合材料及力学性能[J].金属学报,2003,39:555-560.
    [1]D.B.Miracle.The efficient cluster packing model-An atomic structural model for metallic glasses[J].Acta Mater.,2006,54:4317-4336.
    [2]U.Gerold,A.Wiedenmann,R.Bellissent.Local atomic correlations of bulk amorphous ZrTiCuNiBe alloys[J].Nanostruct.Mater.,1999,12:605-608.
    [3]M.P.Macht,N.Wanderka.Phase separation and crystallization in the bulk amorphous alloy Zr_(41)Ti_(14)Cu_(12.5)Ni_(10)Be_(22.5)[J].Mater.Res.Soc.Symp.Proc.,1996,398:375-380.
    [4]W.H.Wang,Q.Wei,S.Friedrich.Microstructure,decomposition,and crystallization in Zr_(41)Ti_(14)Cu_(12.5)Ni_(10)Be_(22.5) bulk metallic glass[J].Phys.Rev.B,1998,57:8211-8217.
    [5]N.Mattern,U.K(u|¨)hn,H.Hermann.Short-range order of Zr_(62-x)Ti_xAl_(10)Cu_(20)Ni_8 bulk metallic glasses[J].Acta Mater.,2002,50:305-314.
    [6]A.Inoue.Stabilization of metallic supercooled liquid and bulk amorphous alloys.Acta Mater.,2000,48:279-306.
    [7]E.Matsubara,T.Tamura,Y.Waseda.Structural study of amorphous Mg_(50)Ni_(30)La_(20) alloy by the anomalous X-ray scattering(AXS) method[J].Mater.Trans.JIM,1990,31:228-231.
    [8]E.Matsubara,T.Tamura,Y.Waseda.Structural study of Zr_(60)Al_(15)Ni_(25) alloys with a wide supercooled liquid region by the anomalous X-ray scattering(AXS) method[J].Mater.Trans.JIM,1992,33:873-878.
    [9]E.Matsubara,Y.Tamura,Y.Waseda,et al..An anomalous X-ray structural study of an amorphous La_(55)Al_(25)Ni_(20) alloy with a wide supercooled liquid region[J].J.Non-Cryst.Solids,1992,150:380-385.
    [10]惠希东,刘雄军,高蕊,侯怀宁,方华志,刘梓葵,陈国良.Zr基金属玻璃原子结构研究[J].中国科学,2008,38:406-416.
    [11]S.Bratler,J.O.Sen,M.Sutton,Y.S.Yang,A.Zaluska.In situ X-ray studies of rapid crystallization of amorphous NiZr_2[J].Phys.Rev.B,1992,45:7704-7715.
    [12]F.Paul,R.Frahm.Short-range order in amorphous Ni-Zr alloys[J].Phys.Rev.B,1990,42:10945-10949.
    [13]M.Laridjani,J.F.Sadoc,Amorphous CuZr_2 partial distribution functions using the anomalous diffraction technique[J].J.Non-cryst.Solids,1988,106:42-46.
    [14]U.K(o|¨)ster,J.Meinhardt,A.Aronin,Y.Biron,Crystallization of Cu+)50)Zr_(50) glasses and undercooled melt.Z.Metallkunde,1995,86:171-175.
    [15]R.S.Mulliken.Electronic population analysis on LCAO-MO molecular wave functions [J].J.Chem.Phys.,1955,23:1833-46;2338-2346.
    [1]A.Inoue,T.Zhang.Fabrication of bulk.glassy Zr_(55)Al_(10)Ni_5Cu_(30) alloy of 30 mm in diameter by a suction casting method[J].Mater.Tran.,1996,37:185-187.
    [2]F.G.Zu,Z.H.Chen,J.J.Tao,L.J.Liu,J.Yu,Y.Xi.Corrosion resistance of Zr-Al-Ni-Cu (Nb) bulk amorphous alloys[J].Trans.Nonferrous.Met.Soc.(China),2004,14:961-965.
    [3]V.R.Raju,U.Kuhn,U.Wolff,F.Schneider.Corrosion behavior of Zr-based bulk glass-forming alloys containing Nb or Ti[J].Mater.Lett.,2002,57:173-177.
    [4]S.J.Pang,T.Zhang,H.Kimura,K.Asami,A.Inoue.Corrosion behavior of Zr-(Nb)-Al-Ni-Cu Glassy Alloy[J].Mater.Trans.JIM,2000,41:1490-1494.
    [5]C.T.Liu,Z.P.Lu.Effect of minor alloying additions on glass formation in bulk metalic glasses[J].Intermetallics,2005,13:415-418.
    [6]T.Aburada,N.Unluu,J.M.Fitz-Gerald,G.J.Shiet,J.R.Scully.Effect of Ni as a minority alloying element on the corrosion behavior in Al-Cu-Mg-(Ni) metallic glasses [J].Scripta Mater.,2008,58:623-626.
    [7]Z.M.Wang,Y.T.Ma,J.Zhang,W.L.Hou,X.C.Chang,J.Q.Wang.Influence of yttrium as a minority alloying element on the corrosion behavior in Fe-based bulk metallic glasses[J].Electrochim.Acta,2008,54:261-269.
    [8]刘兵,柳林,陈振宇.加微量Mo对铜基块体非晶合金耐蚀性的影响[J].金属学报,2007.43:82-86.
    [9]A.Inoue,T.Zhang,T.Masumoto.Glass-forming ability of alloys[J].J.Non-Cryst.Solids,1993,156-158:473-480.
    [10]A.Inoue.Stabilization of metallic supercooled liquid and bulk amorphous alloys[J].Acta Mater.,2000,48:279-306.
    [11]A.Inoue,T.Zhang,M.W.Chen,T.Sakurai.Formation and properties of Zr-based bulk quasicrystalline alloys with high strength and good ductility[J].J.Mater.Res.,2000,15:2195-2208.
    [12]D.B.Miracle.The efficient cluster packing model - An atomic structural model for metallic glasses[J].Acta Mater.,2006,54:4317-4336.
    [13]D.B.Miracle,W.S.Sanders,O.N.Senkov.The influence of efficient atomic packing on the constitution of metallic glasses[J].Philos.Mag.A,2003,83:2409-2428.
    [14]Z.Altounian,G.H.Tu,J.O.Strom-Olsen.Crystallization characteristics of Cu-Zr metallic glasses from Cu_(70)Zr_(30) to Cu_(25)Zr_(75)[J].J.Appl.Phys.,1982,53:4755-4760.
    [15]K.G.Cheng.Evaluation of crystallization kinetics of glasses by non-isothermal analysis[J].J.Mater.Sci.,2001,36:1043-1048.
    [16]卢柯.非晶态合金的晶化及微观机制[D].中国科学院金属研究所博士学位论文,1989.64.
    [17]R.Jain,N.S.Saxena,D.Bhandari,S.K.Sharma,K.V.R.Rao.Crystallization kinetics of Cu_xTi_(100-x)(x=43,50 and 53) glasses[J].Phys.B.,2001,301:341-348.
    [18]F.X.Qin,H.F.Zhang.,Y.F.Deng,B.Z.Ding,Z.Q.Hu.Corrosion resistance of Zr-based bulk amorphous alloys containing Pd[J].J.Alloys Compd.,2004,375:318-323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700