用户名: 密码: 验证码:
飞秒激光烧蚀硅的分子动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于三维“x-分区”模型和SW势,编写了可以处理晶体硅的飞秒激光烧蚀过程的分子动力学程序,在国内首次开展了飞秒激光烧蚀晶体硅的分子动力学模拟;通过与实验结果和其它分子动力学模拟结果的比较,证明了分子动力学模拟是一种很有价值的研究方法。
     对比研究了硅的五种经验势函数,考察了原子间距、键角对系统总能量的影响。结果表明,SW势由于截断半径适中、参数较少、形式简单且具有一定的物理基础,因而应用广泛。本文选择了SW势进行分子动力学模拟,并推导出基于SW势的受力计算公式。
     模拟了给定系统向NVT系综和NVE系综演化的过程以及系统自由演化的过程,以便调试程序和考察各趋衡过程的性质。其中,FREE过程能很好地保持系统的总能量守恒,并驱动系统很快达到合理的平衡,通常用于动力学加载后的趋衡过程;NVT模拟可以保持温度恒定,适用于描述系统在特定温度下的趋衡过程。在激光烧蚀过程的模拟中,将会用到这两种平衡态分子动力学模拟。
     发展了用于描述激光能量沉积过程的三维“x-分区”模型,研究了飞秒激光光斑完全覆盖Si(100)表面和小于Si(100)表面两种情况下的烧蚀现象,得到了飞秒激光烧蚀现象的一般特征。烧蚀过程自材料内部气泡的产生开始,由气泡的发展最终导致。烧蚀材料可分成晶体区、熔化区和烧蚀区三部分,三个区域中原子的运动分别具有固体、液体和气体粒子的运动特征。观察到烧蚀过程中激光诱导应力波的产生与传播。熔化区的应力波是由原子的飞散引起的稀疏波。晶体区的应力波以声速传播。
     系统地分析了激光参数和激光加载方式对烧蚀现象的影响。结果表明:对于能通量相同的短脉冲和长脉冲激光,短脉冲的烧蚀现象比长脉冲剧烈,热效应比长脉冲小;脉宽一定的情况下,随着激光能通量的增加,烧蚀现象加剧,存在一个能恰好使材料烧蚀的能通量,即烧蚀阈值;空间谱决定激光能量的空间分布,不同的空间分布将会产生不同的烧蚀现象;随着波长的增加,光子能量降低,相应激光在晶体硅中的吸收系数减小,烧蚀过程的热损伤和热影响区域大大增加。激光加载有长时间加载和瞬时加载两种方式,两者的区别在于激光能量沉积过程是否伴随系统的趋衡过程。瞬时加载和长时间加载对飞秒激光烧蚀现象的影响差别很小,因此可以用瞬时加载代替长时间加载以简化计算。但是瞬时加载在很大程度上夸大了皮秒激光的烧蚀现象,故不能用瞬时加载简化皮秒激光的作用过程,可以采用将长脉冲激光离散为飞秒激光的方法来简化计算。
In this paper, a molecular dynamics program has been written out to handle the femtosecond laser ablation of crystal silicon. The program is written in FORTRAN, parallelized by the mean of decomposing atoms, and optimized by the neighbor-list method to reduce the time expended in the force calculation. The results agree with the experimental and other numerical results, which indicate the molecular dynamics method is valuable for problems of laser ablation.
     Comparative study of five empirical potentials for silicon was performed. Influences of bond angles and distances between atoms on the system energy were investigated. The results show SW potential is widely used because of its moderate cutoff radius, less parameters, simpler form and physical foundations. Thus, SW potential was chosen to describe the interactions between atoms in this paper. Equations of force calculation were educed based on SW potential.
     Evolutions of initial systems to NVT and NVE ensembles besides the free evolution were simulated in order to debug the program and investigate the characteristics of the balancing processes. The FREE process can conserve the total energy well and drive the system to reach a reasonable equilibrious state quickly, so is usually used in the balancing process after a dynamics loading. The NVT process can keep the temperature constant and is suitable for the balancing process at a given temperature. Both of the two processes were used in the simulations of laser ablation.
     A 3-D“x-section”model was developed to describe the deposition process of laser energy. Based on the 3-D“x-section”model, femtosecond laser ablations of Si(100) were simulated under two conditions which were total covering of the laser spot on the target surface and less laser spot than the target surface. Through the simulations, common characteristics of the femtosecond laser ablation were gotten. The ablation begins from the emergence of bubbles and is eventually induced by developments of the bubbles. The ablated material is composed of crystal, melted and ablated regions in which atoms move just like particles in solid, liquid and gas respectively. Moreover, two kinds of laser-induced stress waves were captured. One in the melted region is caused by the dispersion of surface atoms; the other in the crystal region propagates with the sound velocity.
     Influences of laser parameters (such as pulse width, intensity, spatial spectrum and wave length) and loading styles on ablation phenomena were analyzed systemically. The results show: with the same energy flux, the short pulse produces more serious ablation phenomena than the long pulse; at a given pulse width, ablation becomes more and more serious with the increase of laser intensity, the least intensity with which the laser can ablate the target is called ablation threshold; the spatial spectrum determines the spatial distribution of laser energy, and will lead specific ablation phenomena; the laser with longer wave length has photons with lower energy and a larger thermal-affected region in the ablation process. There are two loading styles of the incident laser, one is long-time loading and the other is instantaneous loading. The difference between them is whether the deposition process of laser energy is accompanied with the balancing process of the system. The ablation phenomena of femtosecond lasers under the two loading styles are almost same, so the instantaneous loading can be used in femtosecond laser ablations to reduce the simulation time. However, it is not effective to the picoseoncd laser ablation because of magnifying the ablation phenomena. Decomposing the long laser pulse into femtosecond lasers may be used to simplify the simulation.
引文
[1]孙承纬主编.激光辐照效应.北京:国防工业出版社, 2002: 3.
    [2]王又良.激光加工的最新应用领域.应用激光, 2005, 25(5): 329.
    [3] Brannon J. Excimer laser ablation and etching. Circuits & Devices, 1997.3: 11.
    [4]郑翠微,王欲民.超短脉冲激光在导体中穿透深度的估算.激光与光电子学进展, 2000, 9: 40.
    [5] Fork R L, Green B L, and Shank C U. Generation of optical pulses shorter than 0.1psec by colliding pule mode locking. Appl. Phys. Lett., 1981, 38(9):671.
    [6] Spence D E, Kean P N, and Sibbett W. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett., 1991, 16: 42.
    [7]孟绍贤.超强激光场物理学.物理学进展, 1999, 19(3): 236.
    [8]盛政明,张杰.强场物理新进展——强激光在等离子体中加速电子的新机制.物理, 2003, 32: 16.
    [9] Banks P S, Stuart B C, and Perry M D et al.. Femtosecond laser machining. Laser and Electro-Optics, 1998, CLEO’98: 510.
    [10] Juhasz T, Loesel F H, and Kurtz R M et al.. Corneal refractive surgery with femtosecond lasers. IEEE J. Selected Topics in Quantum Electronics, 1999, 5(4): 902.
    [11] Chan J W, Huserl T R, and Risbud S H et al.. Modification of the fused silica glass network associated with waveguide fabrication. Appl. Phys. A, 2003, 76: 367.
    [12] Li Y, Itoh K, and Watanabe W et al.. Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Opt. Lett., 2001, 26(23): 1912.
    [13]宋云夺.飞秒激光的应用.光机电信息, 2004.12: 12.
    [14]车会生编译.飞秒激光及其应用.激光与光电子学进展, 2003, 40(8): 5.
    [15] Steinvall O. Technical considerations on the construction of antipersonnel laser weapons. FOA Report A 30075-8.4-3.1, Swedish National Defense Research Establishment, ISSN 0281-0212, 1992.
    [16] Sj?qvist L. Laser induced damage in detector materials and detectors. FOA Report R 96-00281-3.1, Swedish National Defense Research Establishment, ISSN 1104-9154, 1996.
    [17] Sauerbrey R, and Pettit G H. Theory for the etching of organic materials by ultraviolet laser pulses. Appl. Phys. Lett., 1989, 55: 421.
    [18] Pettit G H, and Sauerbrey R. Pulsed ultraviolet laser ablation. Appl. Phys. A, 1993, 56: 51.
    [19]黄峻峰.飞秒激光开辟了新的微细加工领域.光机电信息, 2004.10: 10.
    [20] Nadeem H. Femtosecond laser micromachining: current status and applications. RIKEN Review, 2003, 50: 107.
    [21] Ostendorf. Precise structuring using femtosecond lasers. The Review of Engeering, 2002, 30(5): 221.
    [22] Li C D, Wang D L, and Luo L et al.. Feasibility of femtosecond laser writing multi-layered bit planes in fused silica for three-dimensional optical data storage. Chin. Phys. Lett., 2001, 18(4): 541.
    [23] Chen X, and Liu X. Short pulsed laser machining: how short is short enough? J. Laser Appl., 1999, 11(6): 268.
    [24] Davis K M, Miura K, and Sugimoto N et al.. Writing waveguides in glass with a femtosecond laser. Opt. Lett., 1996, 21: 1729.
    [25] Miura K, Qiu J R, and Inouye H et al.. Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett., 1997, 71: 3329.
    [26] Will M, Nolte S, and Tuennermann A. Three-dimensional integrated optical device fabrication in glass by femtosecond laser processing. CLEO Technical Digest, 2002: 127.
    [27] Streltsov A M, and Borrelli N F. Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses. Opt. Lett., 2001, 26: 42.
    [28] Kawamura K, Ogawa T, and Sarukura N et al.. Fabrication of surface relief gratings on transparent dielectric materials by two beam holographic method using infrared femtosecond laser pulses. Appl. Phys. B, 2000, 71: 119.
    [29] Venkatakrishnan K, Sivakumar N R, and Hee C W et al.. Direct fabrication of surface-relief grating by interferometric technique using a femtosecond laser. Appl. Phys. A, 2003, 77: 959.
    [30] Glezer E N, Milosavljevic M, and Huang L et al.. Three-dimensional optical storage inside transparent materials. Opt. Lett., 1996, 21: 2023.
    [31] Watanabe W, Toma T, and Yamada K et al.. Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses. Opt. Lett., 2000, 25: 1669.
    [32] Tien A, Backus S, and Kapteyn H et al.. Short-pulse laser damage in transparent materials as a function of pulse duration. Phys. Rev. Lett., 1999, 82(19): 3883.
    [33] Miotello A, and Kelly R. Critical assessment of thermal models for laser sputtering at high fluences. Appl. Phys. Lett., 1995, 67:3535.
    [34] Allmen von M. Laser beam interaction with materials. New York: Springer-Verlag, 1987.
    [35] Andrew J E, Dyer P E, and Greenough R D et al.. Metal film removal and patterning using a XeCl laser. Appl. Phys. Lett., 1983, 43: 1076.
    [36] Dingus R S, and Scammon R J. Grüneisen-stress induced ablation of biological tisssue. Proc. SPIE: Laser-Tissue InteractionⅡ, 1991, 1427: 45.
    [37] Srinivasan R, and Braren B. Ultraviolet laser ablation of organic polymers. Chem. Rev., 1989, 89: 1303.
    [38] Dreyfus R W, McDonald F A, and Gutfeld von R J. Energy deposition at insulator surfaces below the ultraviolet photoablation threshold. J. Vac. Sci. Technol. B, 1987, 5(5): 1521
    [39]孙晓慧,周常河,余昺鲲.飞秒激光加工最新进展.激光与光电子学进展, 2004, 41(9): 37.
    [40] Anisimov S I, Kapeliovich B L, and Perelman T L. Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov. Phys. JETP, 1974, 39: 375.
    [41] B?uerle D. Laser processing and chemistry, 3rd edition. Berlin: Springer-Verlag,2000.
    [42]邓素辉,陶向阳,刘明萍等.飞秒-纳秒脉冲激光烧蚀金属热效应分析.激光技术, 2007, 31(1): 4.
    [43] Norris P M, Smith A N, and Stevens R J et al.. Femtosecond pump-probe nondestructive examination of materials. Rev. Sci. Instrum., 2003, 74: 400.
    [44] Hostetler J L, Smith A N, and Cazjkowsky D M et al.. Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au, Cr and Al. Appl. Opt., 1999, 38: 3614.
    [45] Schmidt V, Husinsky W, and Betz G. Ultrashort laser ablation of metals: Pump-probe experiments, the role of ballistic electrons and the two-temperature model. Appl. Surf. Sci., 2002, 197: 145.
    [46] Chichkov B N, Momma C, and Nolte S et al.. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A, 1996, 63: 109.
    [47] Nolte S, Momma C, and Jacobs H et al.. Ablation of metals by ultrashort laser pulses. J. Opt. Soc. Am. B, 1997, 14: 2716.
    [48] Glezer E N, and Mazur E. Ultrafast-laser driver micro-explosions in transparent materials. Appl. Phys. Lett., 1997, 71: 882.
    [49] Schneider D H, Briere M A, and McDonald J et al.. Ion/surface interaction studies with 1-3keV/amu ions up to Th80+. Radiat. Eff. Defects Solids, 1993, 127(2): 113.
    [50] Bitenskii I S, Murakhmetov M N, and PariliséS. Sputtering of nonmetals by intermediate-energy multiply charged ions through a Coulomb“explosion”. Sov. Phys., 1979, 24: 618.
    [51] Cheng H P, and Gillaspy J D. Nanoscale modification of silicon surfaces via Coulomb explosion. Phys. Rev. B, 1997, 55: 2628.
    [52] Henyk M, Mitzner R, and Wolfframm D et al.. Laser induced ion emission from dielectrics. Appl. Surf. Sci., 2000, 154-155: 249.
    [53] Henyk M, Wolfframm D, and Reif J. Ultra short laser pulse induced charged particle emission from wide bandgap crystals. Appl. Surf. Sci., 2000, 168: 263.
    [54] Jeschke H O, Garcia M E, and Bennemann K H. Theory for the ultrafast ablation of graphite films. Phys. Rev. Lett., 2001, 87: 015003.
    [55]倪晓昌,王清月.飞秒激光烧蚀研究进展.激光与光电子学进展, 2002, 39(12): 4.
    [56] Pronko P P, Dutta S K, and Squier J et al.. Machining of sub-micron holes using a femtosecond laser at 800nm. Opt. Commun., 1995, 114: 106.
    [57] Juodkazis S, Matsuo S, and Misawa H et al.. Application of femtosecond laser pulses for microfabrication of transparent media. Appl. Surf. Sci., 2002, 197-198: 705.
    [58] Meirmanov A M. The Stefan problem. Berlin-New York: Walter de Gruyter, 1992.
    [59]陶应学,沈隆钧,关吉利等.激光热烧蚀问题的数值模拟与相变界面的跟踪计算方法.计算物理, 1996, 13(1): 14.
    [60]张田忠,郭万林.纳米力学的数值模拟方法.力学进展, 2002, 32(2) : 175.
    [61]杨卫,马新玲,王宏涛等.纳米力学进展.力学进展, 2002, 32(2): 161.
    [62] Herrmann R F W, Gerlach J, and Campbell E E B. Molecular dynamics simulation of laser ablation of silicon. Nuclear Instruments and Methods in Physics Research B, 1997, 122: 401.
    [63] Herrmann R F W, Gerlach J, and Campbell E E B. Ultrashort pulse laser ablation of silicon: an MD simulation study. Appl. Phys. A, 1998, 66: 35.
    [64] Ohmura E, and Miyamoto I. Computer simulation on fusion and vaporization of metal due to laser irradiation. J. High Temp. Soc., 1994, 20(6): 228.
    [65] Ohmura E, and Miyamoto I. Molecular dynamics simulation on laser ablation of metals and silicon. Int. J. Japan. Soc. Prec. Eng., 1998, 34(4): 248.
    [66] Watanabe K, Ishizaka Y, and Ohmura E et al.. Analysis of laser ablation process in semiconductor due to ultrashort pulsed laser with molecular dynamics simulation. Proceedings of SPIE, 2000, 3933: 46.
    [67] Lorazo P, Lewis L J, and Meunier M. Molecular-dynamics simulations of picosecond pulsed laser ablation and desorption of silicon. Proc. SPIE, 2000, 3935: 66.
    [68] Lorazo P, Lewis L J, and Meunier M. Simulation of picosecond pulsed laser ablation of silicon: the molecular- dynamics thermal-annealing model. Proc. SPIE, 2001, 4276: 57.
    [69] Lorazo P, Lewis L J, and Meunier M. Short-pulse laser ablation of solids: from phase explosion to fragmentation. Phys. Rev. Lett., 2003, 91:225502.
    [70] Holenstein R. Simulation of femtosecond laser ablation of silicon. Dissertition of Master Degree of university of Alberta, 2005.
    [71] Jiang L, and Tsai H L. Femtosecond laser ablation: challenges and opportunities. Proceedings of NSF Workshop on Research Needs in Thermal, 2003: 1.
    [72] Etcheverry J I, and Mesaros M. Molecular dynamics simulation of the production of acoustic waves by pulsed laser irradiation. Phys. Rev. B, 1999, 60:9430.
    [73] Ohmura E, Fukumoto I, and Miyamoto I. Thermohydrodynamics analysis of fusion phenomena accompanied by evaporation due to laser irradiation. Int. J. JSPE, 1998, 32(3): 196.
    [74] Kotake S, and Kuroki M. Molecular dynamics study of solid melting and vaporization by laser irradiation. Int. J. Heat Mass Transfer, 1993, 36: 2061.
    [75] Zhigilei L V, Kodali P B S, and Garrison B J. Molecular dynamics model for laser ablation and desorption of organic solids. J. Phys. Chem. B, 1997, 101: 2028.
    [76]王丽梅,曾新吾.飞秒激光与晶体硅相互作用的理论建模研究.光学与光电技术, 2007, 5(5): 210.
    [77]辛建婷,祝文军,刘仓理.飞秒激光辐照铝材料的分子动力学数值模拟.爆炸与冲击, 2004, 24: 207.
    [78] Zhigilei L V, Kodali P B S, and Garrison B J. A microscopic view of laser ablation. J. Phys. Chem. B, 1998, 102: 2845.
    [79] Zhigilei L V, and Garrison B J. Molecular dynamics simulation study of the fluence dependence of particle yield and plume composition in laser desorption and ablation of organic solids. Appl. Phys. Lett., 1999, 74: 1341.
    [80] Zhigilei L V, and Garrison B J. Microscopic mechanisms of laser ablation of organic solids in the thermal stress confinement irradiation regimes. J. Appl. Phys., 2000, 88: 1281.
    [81] Ohmura E, and Fukumoto I. Study on thermal shock phenomena due to laser irradiation using molecular dynamics. Int. J. Japan Soc. Prec. Eng., 1995, 29(2): 148.
    [82] Ishizaka Y, Watanabe K, and Fukumoto I et al.. Three-dimensional molecular dynamics simulation on laser materials processing of silicon. ICALEO: Proc. Of Laser Materials Processing, 1998, 1: A55.
    [83] Harada Y, Kanemitsu Y, and Tanaka Y et al.. Picosecond laser generation of ultrashort acoustic pulses in silicon. J. Phys. D, 1989, 22: 569.
    [84] Cox-Smith I R, Liang H C, and Dillon R O. Sound velocity in amorphous films of germanium and silicon. J. Vac. Sci. Tech. A, 1985, 3: 674.
    [85] Jeschke H O, Garcia M E, and Lenzner M et al.. Laser ablation thresholds of silicon for different pulse duration: theory and experiment. Appl. Surf. Sci., 2002, 197-198: 839.
    [86] Cavalleri A, Sokolowski-Tinten K, and Bialkowski J et al.. Femtosecondmelting and ablation of semiconductors studied with time of flight mass spectroscopy. J. Appl. Phys., 1999, 85: 3301.
    [87] Jee Y, Becker M F, and Walser R M. Laser-induced damage on single-crystal metal surfaces. J. Opt. Soc. Am. B, 1988, 5: 648.
    [88] Bonse J, Wrobel J M, and Krüger J et al.. Ultrashort-pulse laser ablation of indium phosphide in air. Appl. Phys., 2001, A72: 89.
    [89] Ozono K, Obara M, and Usui A et al.. High-speed ablation etching of GaN semiconductor using femtosecond laser. Opt. Commun., 2001, 189: 103.
    [90] Baudach S, Bonse J, and Krüger J et al.. Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate. Appl. Surf. Sci., 2000, 154-155: 555.
    [1] Alder B J, and Wainwright T E. Phase transition for a hard-sphere system. J. Chem. Phys., 1957, 27: 1208.
    [2]徐锡申,张万箱等著.实用物态方程理论导引.北京:科学出版社, 1986: 39.
    [3]谭晓丽.固体炸药冲击起爆的分子动力学研究.长沙:国防科技大学工学博士论文, 2006: 11.
    [4] Yang C N, and Lee T D. Statistical theory of equations of state and phase transitions.Ⅰ. Theory of condensation. Phys. Rev., 1952, 87: 404.
    [5] Pearson E M, Takai T, and Halicioglu T et al.. Computer modeling of Si and SiC surfaces and surface processes relevant to ctystal growth from the vapor. J. Cryst. Growth, 1984, 70: 33.
    [6] Stillinger F H, and Weber T A. Computer simulation of local order in condensed phases of silicon. Physical Review B, 1985, 31(8): 5262.
    [7] Biswas R, and Hamann D R. Interatomic potentials for silicon structural energies. Physical Review Letters, 1985, 55(19): 2001.
    [8] Biswas R, and Hamann D R. New classical models for silicon structural energies. Physical Review B, 1987, 36(12): 6434.
    [9] Tersoff J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B, 1988, 37(12):6991.
    [10] Tersoff J. Empirical interatomic potential for silicon with improved elastic properties. Phys. Rev. B, 1988, 38(14): 9902.
    [11] Dodson B W. Development of a many-body tersoff-type potential for silicon. Phys. Rev. B, 1987, 35(6): 2795.
    [12] Dodson B W. Atomistic simulation of silicon beam deposition. Phys. Rev. B, 1987, 36(2): 1068.
    [13] Baskes M I. Application of the embedded-atom method to covalent materials: asemiempirical potential for silicon. Phys. Rev. Lett., 1987, 59(23): 2666.
    [14] Khor K E, and Das Sarma S. Proposed universal interatomic potential for elemental tetrahedrally bonded semiconductors. Phys. Rev. B, 1988, 38: 3318.
    [15] Chelikowsky J R, Phillips J C, and Kamal M et al.. Surface and Thermodynamic Interatomic Force Fields for Silicon Clusters and Bulk Phases. Phys. Rev. Lett., 1989, 62: 292.
    [16] Bolding B C, and Andersen H C. Interatomic potential for silicon clusters, crystals, and surfaces. Phys. Rev. B, 1990, 41: 10568.
    [17] Rapaport D C. The art of molecular dynamics simulation. Cambridge: Cambridge University Press, 1995: 19.
    [18] Holenstein R. Simulation of femtosecond laser ablation of silicon. Alberta: Master Thesis of Science of University of Alberta, 2005: 44.
    [19] Allen M P, and Tildesley D J. Computer simulation of liquids. Oxford: Oxford University Press, 1987: 345.
    [20]周正有.半导体材料的计算机模拟.上海:中科院上海冶金研究所硕士论文, 1999: 12.
    [21] Zhigilei L V, and Garrison B J. Pressure waves in microscopic simulations of laser ablation. Mat. Res. Soc. Proc., 1999, 538: 491.
    [22] Sch?fer C, Urbassek H M, and Zhigilei L V et al.. Pressure-transmitting boundary conditions for molecular-dynamics simulations. Comp. Mat. Sci., 2002, 24: 421.
    [23] Smirnova J A, Zhigilei L V, and Garrison B J. A combined molecular dynamics and finite element method technique applied to laser induced pressure wave propagation. Comp. Phys. Comm., 1999, 118: 11.
    [24] Swope W C, Anderson H C, and Berens P H et al.. A computer simulation method for calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water cluster. J. Chem. Phys., 1982, 76: 637.
    [25]徐锡申,张万箱等著.实用物态方程理论导引.北京:科学出版社, 1986: 28.
    [26]文玉华,朱如曾,周富信等.分子动力学模拟的主要技术.力学进展, 2003, 33(1): 65.
    [27]王丽梅,曾新吾.硅的平衡态分子动力学模拟.计算机与应用化学, 2008, 25(5): 518.
    [1] Pearson E M, Takai T, and Halicioglu T et al.. Computer modeling of Si and SiC surfaces and surface processes relevant to ctystal growth from the vapor. J. Cryst. Growth, 1984, 70: 33.
    [2] Stillinger F H, and Weber T A. Computer simulation of local order in condensed phases of silicon. Physical Review B, 1985, 31(8): 5262.
    [3] Biswas R, and Hamann D R. New classical models for silicon structuralenergies. Physical Review B, 1987, 36(12): 6434.
    [4] Tersoff J. Empirical interatomic potential for silicon with improved elastic properties. Phys. Rev. B, 1988, 38(14): 9902.
    [5] Dodson B W. Development of a many-body tersoff-type potential for silicon. Phys. Rev. B, 1987, 35(6): 2795.
    [6] Tersoff J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B, 1988, 37(12):6991.
    [7] Balamane H, Halicioglu T, and Tiller W A. Comparative study of silicon empirical interatomic potentials. Phys. Rev. B, 1992, 46(4): 2250.
    [8] Axilrod B M, and Teller E. Interaction of the Van der Waals type between three atoms. J. Chem. Phys., 1943, 11: 299.
    [9] Tan X L, Zeng X W, and Wang P. Molecular dynamics investigation of detonation in energetic solids. Theory and Practice of Energetic Materials, 2005, 4: 669.
    [10]辛建婷,祝文军,刘仓理.飞秒激光辐照铝材料的分子动力学数值模拟.爆炸与冲击, 2004, 24(3): 207.
    [11]王丽梅,曾新吾.硅的平衡态分子动力学模拟.计算机与应用化学, 2008, 25(5): 518.
    [12]谭晓莉,曾新吾,王裴. REBO模型的平衡态分子动力学模拟.国防科大学报, 2005, 27(1): 30.
    [1]周南,乔登江著.脉冲束辐照材料动力学.北京:国防工业出版社, 2002:Ⅸ.
    [2] Ohmura E, Fukumoto I, and Miyamoto I. Molecular dynamics simulation of ablation process with ultrashort-pulse laser. RIKEN Review, 2001, 32: 19.
    [3] Etcheverry J I, and Mesaros M. Molecular dynamics simulation of the production of acoustic waves by pulsed laser irradiation. Phys. Rev. B, 1999, 60: 9430.
    [4] Ohmura E, Fukumoto I, and Miyamoto I. Thermohydrodynamics analysis of fusion phenomena accompanied by evaporation due to laser irradiation. Int. J. JSPE, 1998, 32(3): 196.
    [5]辛建婷,祝文军,刘仓理.飞秒激光辐照铝材料的分子动力学数值模拟.爆炸与冲击, 2004, 24(3): 207.
    [6] Ohmura E, Miyamoto I. Computer simulation on fusion and vaporization of metal due to laser irradiation. J. High Temp. Soc., 1994, 20(6): 228.
    [7]王丽梅,曾新吾.硅的平衡态分子动力学模拟.计算机与应用化学, 2008, 25(5): 518.
    [8] Herrmann R F W, Gerlach J, Campbell E E B. ultrashort pulse laser ablation of silicon: an MD simulation study. Appl. Phys. A, 1998, 66: 35.
    [10] Watanabe K, Ishizaka Y, Ohmura E et al.. Analysis of laser ablation process in semiconductor due to ultrashort pulsed laser with molecular dynamics simulation. Proceedings of SPIE, 2000, 3933: 46.
    [11] Zhigilei L V, and Garrison B J. Pressure waves in microscopic simulations of laser ablation. Mater. Res. Soc. Symp. Proc., 1999, 538: 491.
    [9]马大猷,沈(山豪).声学手册.北京:科学出版社,2004:165.
    [1]周南,乔登江.脉冲数辐照材料动力学.国防工业出版社,北京, 2002: 290.
    [2]郑翠微,王欲民.超短脉冲激光在导体中穿透深度的估算.激光与光电子学进展, 2000, 9: 40.
    [3] Herrmann R F W, Gerlach J, and Campbell E E B. Ultrashort pulse laser ablation of silicon: an MD simulation study. Appl. Phys. A, 1998, 66: 35.
    [4] Jeschke H O, Garcia M E, and Bennemann K H. Theory for the ultrafast ablation of graphite films. Phys. Rev. Lett., 2001, 87: 015003.
    [5]孙晓慧,周常河,余昺鲲.飞秒激光加工最新进展.激光与光电子学进展, 2004, 41(9): 37.
    [6] Watanabe K, Ishizaka Y, and Ohmura E et al.. Analysis of laser ablation process in semiconductor due to ultrashort pulsed laser with molecular dynamics simulation. Proceedings of SPIE, 2000, 3933: 46.
    [7] Lorazo P, Lewis L J, and Meunier M. Simulation of picosecond pulsed laser ablation of silicon: the molecular-dynamics thermal-annealing model. Proc. SPIE, 2001, 4276: 57.
    [8] Lorazo P, Lewis L J, and Meunier M. Short-pulse laser ablation of solids: from phase explosion to fragmentation. Phys. Rev. Lett., 2003, 91:225502.
    [9] Ohmura E, and Miyamoto I. Computer simulation on fusion and vaporization of metal due to laser irradiation. J. High Temp. Soc., 1994, 20(6): 228.
    [10] Lorazo P, Lewis L J, and Meunier M. Molecular-dynamics simulations of picosecond pulsed laser ablation and desorption of silicon. Proc. SPIE, 2000, 3935: 66.
    [11] Bonse J, Wrobel J M, and Krüger J et al.. Ultrashort-pulse laser ablation of indium phosphidee in air. Appl. Phys. A, 2001, 72: 89.
    [12]汤文辉.国防科技大学“脉冲X射线与材料响应”课程讲义.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700