用户名: 密码: 验证码:
中国西部地区WNV感染初步流行病学研究以及WNV和NiV主要蛋白的免疫信息学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     调查西尼罗病毒(West nile virus, WNV)在中国西部地区人和动物中的自然感染及流行情况,以获得我国西部地区WNV的流行病学资料,评估我国西部地区的生物安全现状。预测WNV和Nipah病毒( Nipah virus, NiV)主要蛋白的二级结构和B细胞表位,为WNV和NiV的免疫预防和免疫治疗提供理论依据。
     方法:
     1对课题组前期开发的WNV一步法实时RT-PCR检测方法进行活病毒验证。提取WNV、登革热病毒(dengue virus,DENV)、日本乙型脑炎病毒(Japanese encephalitis virus,JEV)细胞培养液上清和WNV接种鼠脑组织的RNA。对WNV细胞培养液上清所提的RNA倍比稀释,然后进行一步法Real time RT-PCR反应。对WNV接种的鼠脑组织提取的RNA倍比稀释,并进行一步法Real time RT-PCR反应。对DEN、JEV细胞培养液提取RNA,进行一步法real time RT-PCR反应。
     2自2007年5月起,收集重庆地区发热患者外周血标本100份并采集重庆地区饲养的猪外周血标本300份,使用密度梯度离心法分离外周血单个核细胞,应用Trizol法提取细胞总RNA。收集重庆地区病毒性脑炎患者脑脊液22份,应用Trizol法提取细胞总RNA。用已建立的WNV一步法实时RT-PCR检测方法,对RNA样本进行WNV检测,并提交流行病学调查报告。
     3自2007年6月起,采集新疆地区驴外周血标本200份,使用密度梯度离心法分离外周血单个核细胞,应用Trizol法提取细胞总RNA。用已建立的WNV一步法实时RT-PCR检测方法,对RNA样本进行WNV检测,并提交流行病学调查报告。
     4自2008年6月起,采集宁夏地区羊外周血标本200份和牛外周血标本100份,使用密度梯度离心法分离外周血单个核细胞,应用Trizol法提取细胞总RNA。用已建立的WNV一步法实时RT-PCR检测方法,对RNA样本进行WNV检测,并提交流行病学调查报告。
     5根据WNV的E蛋白基因组序列,采用Garnier-Robson方案、Chou-Fasman方案和Karplus-Schulz方案预测蛋白质的二级结构,采用Kyte-Doolittle亲水性方案、Emini表面可及性方案和Jameson-Wolf抗原指数方案,辅以对E蛋白的二级结构中的柔性区域的分析,预测WNV的E蛋白的B细胞表位。
     6根据NiV的G蛋白和F蛋白基因组序列,采用Garnier-Robson方案、Chou-Fasman方案和Karplus-Schulz方案预测蛋白质的二级结构,采用Kyte-Doolittle亲水性方案、Emini表面可及性方案和Jameson-Wolf抗原指数方案,辅以对G蛋白和F蛋白的二级结构中的柔性区域的分析,预测NiV的G蛋白和F蛋白的B细胞表位。
     结果:
     1WNV一步法实时RT-PCR方法能检测的WNV细胞培养液上清RNA的浓度范围为103~10-2 PFU/ml,能检测的WNV接种鼠脑组织RNA的浓度范围为10-3~10-1(0原液起始浓度100)。该方法检测DEN、JEV细胞培养液上清RNA结果为阴性。
     2对重庆地区收集的人血、脑脊液和采集的猪血样本进行WNV核酸检测,成功进行了一步法实时RT-PCR反应,所有样本荧光扩增曲线均无Takeoff点,曲线平坦,判为阴性结果。
     3对新疆地区采集的驴血样本进行WNV核酸检测,成功进行了一步法实时RT-PCR反应,所有样本荧光扩增曲线均无Takeoff点,曲线平坦,判为阴性结果。
     4对宁夏采集的羊血和牛血样本进行WNV核酸检测,成功进行了一步法实时RT-PCR反应,所有样本荧光扩增曲线均无Takeoff点,曲线平坦,判为阴性结果。
     5 WNV的E蛋白N端第41-56, 68-73, 129-139, 209, 214-220, 239-250, 261-267, 285-296, 365-371, 412-416, 468和471-472区域形成α螺旋可能大;N端第32-34, 61-65, 140-143, 157-159, 166-170, 185-189, 201-207, 210-213, 301-304, 322-328, 238-344, 354-358, 406-411, 434-436, 442-447, 450-453, 460-463和482-496区域形成β折叠的可能大;E蛋白的柔性结构区域位于N端第8, 15-17, 27, 36-38, 100-101, 103-104, 109-112, 145-147, 152-155, 173, 175, 181, 192-195, 226-230,257, 276-277, 298-299, 317-320, 334-335, 377-381, 389, 399-401, 430-432和439区段。综合分析推测WNV的E蛋白B细胞表位最有可能位于N端第35-42, 147-156, 191-198, 226-249, 329-337和375-382区段,另外E蛋白N端第275-284, 313-320和396-403区段也可能存在B细胞表位。
     6 Nipah病毒G蛋白N端第2-6区域形成α螺旋可能大;N端第24-26, 47-73, 80-84, 87-95, 110-112, 117-120, 178-182, 200-210, 215-219, 229-231, 245-256, 264-269, 279-285, 290-301, 362-374, 384-386, 398-401, 406-409, 427-430, 435-436, 450-456, 462-472, 483-485, 511-517, 519-526, 560-567, 573-581, 586-589, 592-596和600-602区域形成β折叠的可能大;G蛋白的柔性结构区域位于N端第13-19, 76-78, 106-107, 140-146, 151-153, 162-165, 174-175, 185-186, 194, 227, 240-243, 257, 259-260, 275-277, 288, 309-312, 324-329, 343-346, 352-354, 379-382, 390-394, 402-404, 419-421, 423-424, 432-434, 440-441, 481-482, 488-490, 494-500, 527-530, 541-543, 555-558和582-585区段。综合分析推测Nipah病毒G蛋白的B细胞表位最有可能位于N端第140-153, 270-278和401-408区段,另外G蛋白N端第7-23, 72-79, 162-175, 192-198, 255-262, 340-348, 373-394, 416-424, 432-448, 479-489, 527-534, 540-547和552-561区段也可能存在B细胞表位。
     Nipah病毒F蛋白N端第92-96, 108-111, 122-127, 131-139, 157-165, 194-203, 251, 352, 355, 467-469和474-479区域形成α螺旋可能大;N端第1-4, 11-19, 37-41, 44-47, 57-60, 78, 82-88, 102-107, 112-117, 121, 128-130, 170-179, 184-190, 209-214, 226-231, 240-246, 263-271, 276-285, 292-299, 308-311, 316-321, 324-331, 338-340, 368-377, 382-386, 390-391, 396-401, 408-412, 416, 421-429, 447-460, 480-484, 491-515和541-546区域形成β折叠的可能大;F蛋白的柔性结构区域位于N端第52, 66-67, 98-100, 216-218, 222, 236-239, 303-306, 334-336, 343, 348-351, 357-359, 380-381, 402-405, 439, 462-463, 470-472, 523-524和537-539区段。综合分析推测Nipah病毒F蛋白的B细胞表位最有可能位于N端第95-105和519-539区段,另外F蛋白N端第42-54, 216-225, 301-307, 356-365和470-482区段也可能存在B细胞表位。
     结论:
     1本课题组前期开发的西尼罗病毒一步法Real-time RT-PCR方法敏感性高、特异性好,能准确定量,适用于大规模的流行病学调查和病毒性疾病检测。
     2初步流行病学研究提示我国西部重庆地区部分人群和猪群中暂未发现WNV感染。
     3初步流行病学研究提示我国西部新疆地区部分驴群中暂未发现WNV感染。
     4初步流行病学研究提示我国西部宁夏地区部分羊群和牛群中暂未发现WNV感染。
     5应用生物信息学方法分析了WNV主要抗原蛋白E蛋白的二级结构B细胞表位,为进一步研究WNV的蛋白特征、研制疫苗和制备单克隆抗体奠定了基础。
     6应用生物信息学方法分析了NiV主要抗原蛋白G蛋白和F蛋白的二级结构B细胞表位,为进一步研究NiV的蛋白特征、研制疫苗和制备单克隆抗体奠定了基础。
Objective
     To investigate the natural infection and epidemic of West Nile Virus (WNV) in human and animal in western region of China, obtain the epidemiologic data of WNV in western region of China and assess of the biosafety status in these areas. To predict the secondary structure and B-cell epitopes of major proteins of WNV and nipah virus (NiV), provide a basis for immunoprophylaxis and immunotherapy of WNV and NiV.
     Methods
     1 The sensitivity and specificity of the established WNV One-step real-time RT-PCR was verified by live virus. WNV RNA of cell culture and mice brain was extracted using Qiagen RNeasy Mini Kit. Serial 10-fold dilutions of WNV RNA extracted from cell culture and WNV RNA extracted from mice brain were performed One-step real-time RT-PCR to assess the sensitivity. DEN and JEV RNA extracted from cell culture was performed One-step real-time RT-PCR to assess the specificity.
     2 Peripheral blood samples of 100 patients with fever and 300 domestic pigs, and cerebrospinal fluid of 22 patients with Viral Encephalitis were collected from Chongqing since May, 2007. The lymphocytes were separated by density gradient centrifugation and total RNA was extracted using Trizol method for detection of WNV with one-step real-time RT-PCR methods established before. And epidemiologic reports were submitted.
     3 Peripheral blood samples of 200 donkeys were collected from Xinjiang Uygur Autonomous Region since June, 2007. The lymphocytes were separated by density gradient centrifugation and total RNA was extracted using Trizol method for detection of WNV with one-step real-time RT-PCR methods established before. And epidemiologic reports were submitted.
     4 Peripheral blood samples of 200 sheep and 100 cattle were collected from Ningxia Hui Autonomous Region since June, 2008. The lymphocytes were separated by density gradient centrifugation and total RNA was extracted using Trizol method for detection of WNV with one-step real-time RT-PCR methods established before. And epidemiologic reports were submitted.
     5 Based on the amino acid sequence of the E protein of WNV, three methods was used to find the probable secondary structure of the E protein including Garnier-Robson method, Chou-Fasman method and Karplus-Schulz method. Based on the flexible regions of E protein, probable B-cell epitopes of the E protein of WNV were predicted by the above parameters, Kyte-Doolittle method was used for hydrophilicity prediction, Emini method was used for accessibility prediction and Jameson-Wolf method was used for antigenicity prediction.
     6 Based on the amino acid sequence of the G protein and the F protein of NiV, three methods was used to find the probable secondary structure of the G protein and the F protein including Garnier-Robson method, Chou-Fasman method and Karplus-Schulz method. Based on the flexible regions of G protein and the F protein, probable B-cell epitopes of the G protein and the F protein of NiV were predicted by the above parameters, Kyte-Doolittle method was used for hydrophilicity prediction, Emini method was used for accessibility prediction and Jameson-Wolf method was used for antigenicity prediction.
     Results
     1 The quantitative ranges of one-step real-time RT-PCR for WNV RNA extracted from cell culture were 103~10-2 PFU/ml, and the quantitative ranges for WNV RNA extracted from mice brain were10-3~10-10 (The initial concentration of the RNA was 100). Nonspecific PCR amplification with DEN and JEV RNA extracted from cell culture.
     2 Nucleic acid detections searching for WNV were successfully performed in blood samples of patients with fever and domestic pigs, and cerebrospinal fluid of patient with Viral encephalitis collected from Chongqing, using One-step real time RT-PCR. We found no“takeoff points”in fluorescence amplification curves of all samples. Curves kept the same slope, and assays were judged as negative.
     3 Nucleic acid detections searching for WNV were successfully performed in blood samples of donkeys collected from Xinjiang Uygur Autonomous Region, using One-step real time RT-PCR. We found no“takeoff points”in fluorescence amplification curves of all samples. Curves kept the same slope, and assays were judged as negative.
     4 Nucleic acid detections searching for WNV were successfully performed in blood samples of sheep and cattle collected from Ningxia Hui Autonomous Region, using One-step real time RT-PCR. We found no“takeoff points”in fluorescence amplification curves of all samples. Curves kept the same slope, and assays were judged as negative.
     5 As to the E protein of WNV, it showed that the N-terminal No. 41-56, 68-73, 129-139, 209, 214-220, 239-250, 261-267, 285-296, 365-371, 412-416, 468 and 471-472 were theα-helix regions; the N-terminal No. 32-34, 61-65, 140-143, 157-159, 166-170, 185-189, 201-207, 210-213, 301-304, 322-328, 238-344, 354-358, 406-411, 434-436, 442-447, 450-453, 460-463 and 482-496 were theβ-helix regions; and the flexible regions located at the N-terminal No. 8, 15-17, 27, 36-38, 100-101, 103-104, 109-112, 145-147, 152-155, 173, 175, 181, 192-195, 226-230, 257, 276-277, 298-299, 317-320, 334-335, 377-381, 389, 399-401, 430-432 and 439 regions. The results indicated the most probable B-cell epitopes of E protein were located within or nearby its N-terminal No. 35-42, 147-156, 191-198, 226-249, 329-337 and 375-382. The N-terminal No. 275-284, 313-320 and 396-403may be the possible B cell epitopes.
     6 As to the G protein of NiV, it showed that the N-terminal No. 2-6 was theα-helix regions; the N-terminal No. 24-26, 47-73, 80-84, 87-95, 110-112, 117-120, 178-182, 200-210, 215-219, 229-231, 245-256, 264-269, 279-285, 290-301, 362-374, 384-386, 398-401, 406-409, 427-430, 435-436, 450-456, 462-472, 483-485, 511-517, 519-526, 560-567, 573-581, 586-589, 592-596 and 600-602were theβ-helix regions; and the flexible regions located at the N-terminal No. 13-19, 76-78, 106-107, 140-146, 151-153, 162-165, 174-175, 185-186, 194, 227, 240-243, 257, 259-260, 275-277, 288, 309-312, 324-329, 343-346, 352-354, 379-382, 390-394, 402-404, 419-421, 423-424, 432-434, 440-441, 481-482, 488-490, 494-500, 527-530, 541-543, 555-558 and 582-585 regions. The results indicated the most probable B-cell epitopes of NiV G protein were located within or nearby its N-terminal No. 140-153, 270-278 and 401-408, the N-terminal No. 7-23, 72-79, 162-175, 192-198, 255-262, 340-348, 373-394, 416-424, 432-448, 479-489, 527-534, 540-547 and 552-561 may be the possible B-cell epitopes.
     As to the F protein of NiV, it showed that the N-terminal No. 92-96, 108-111, 122-127, 131-139, 157-165, 194-203, 251, 352, 355, 467-469 and 474-479 was theα-helix regions; the N-terminal No. 1-4, 11-19, 37-41, 44-47, 57-60, 78, 82-88, 102-107, 112-117, 121, 128-130, 170-179, 184-190, 209-214, 226-231, 240-246, 263-271, 276-285, 292-299, 308-311, 316-321, 324-331, 338-340, 368-377, 382-386, 390-391, 396-401, 408-412, 416, 421-429, 447-460, 480-484, 491-515 and 541-546 were theβ-helix regions; and the flexible regions located at the N-terminal No. 52, 66-67, 98-100, 216-218, 222, 236-239, 303-306, 334-336, 343, 348-351, 357-359, 380-381, 402-405, 439, 462-463, 470-472, 523-524 and 537-539 regions. And the most probable B-cell epitopes of NiV F protein were located within or nearby its N-terminal No. 95-105 and 519-539, the N-terminal No. 42-54, 216-225, 301-307, 356-365 and 470-482 may be the possible B-cell epitopes.
     Conclusions
     1The WNV one-step real-time RT-PCR is sensitive and reliable and allows rapid detection and quantitation of WNV in field and experimental materials used for epidemiological surveillance and specific diagnosis.
     2 Until now, we found no infections of WNV in either patients or pigs blood samples or patients cerebrospinal fluid sample collected from Chongqing.
     3 Until now, we found no infections of WNV in donkey blood samples collected from Xinjiang Uygur Autonomous Region.
     4 Until now, we found no infections of WNV in either sheep or cattle blood samples collected from Ningxia Hui Autonomous Region.
     5 The secondary structure and B cell epitopes of E protein on multi-parameters were predicted successfully, which would establish the basis for studies of the characterization of the protein , development of epitope based vaccine , and preparation of monoclonal antibody against E protein.
     6 The secondary structure and B cell epitopes of G protein and F protein of NiV on multi-parameters were predicted successfully, which would establish the basis for studies of the characterization of the G protein and F protein, development of epitope based vaccine, and preparation of monoclonal antibody against G protein and F protein.
引文
[1]王滨有.西尼罗病毒感染的流行[M].李立明,詹思延.流行病学研究实例第四卷.第1版.北京:人民卫生出版社, 2006: 129-147.
    [2] CDC. Outbreak of Hendra-Like Virus--Malaysia and Singapore, 1998-1999 [J]. MMWR Morb Mortal Wkly Rep, 1999, 48(13):265-269.
    [3]郭俊成.从禽流感看动物疫病与人类的关系[J].现代畜牧兽医, 2005, 12:1-2
    [4] Peiris JS,Yu WC,Leung CW,et al. Reemergence of fatal human influenza A subtype H5N1 disease [J]. Lancet,2004,363(9409):617-619.
    [5] Lanciotti RS, Ebel GD, Deubel V, et al. Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East [J]. Virology, 2002; 298(1): 96-105.
    [6] Huhn GD, Sejvar JJ, Montgomery SP, et al. West Nile virus in the United States: an update on an emerging infectious disease [J]. Am Fam Physician, 2003, 68(4):653-660.
    [7] Centers for Disease Control and Prevention. West Nile virus transmission through blood transfusion--South Dakota [J], 2006. MMWR Morb Mortal Wkly Rep, 2007, 56(4): 76-79.
    [8] Iwamoto M, Jernigan DB, Guasch A, et al. Transmission of West Nile virus from an organ donor to four transplant recipients [J]. N Engl J Med, 2003, 348(22): 2196-2203.
    [9] Centers for Disease Control and Prevention. Possible West Nile virus transmission to an infant through breast-feeding—Michigan [J], 2002. JAMA, 2002, 288(16): 1976-1977.
    [10] Centers for Disease Control and Prevention. Intrauterine West Nile virus infection—New York [J], 2002. JAMA, 2003, 289(3): 295-296.
    [11] Bowen RA, Nemeth NM. Experimental infections with West Nile virus [J]. Curr Opin Infect Dis, 2007, 20(3): 293-297.
    [12] Docherty DE,Long RR,Griffin KM, et al. Corvidae Feather Pulp and West Nile Virus Detection [J]. Emerg Infect Dis, 2004, 10(5): 907-909.
    [13] Mukhopadhyay S, Kim BS, Chipman PR, et al. Structure of West Nile virus [J]. Science, 2003, 302(5643): 248.
    [14] Jeha LE, Sila CA, Lederman RJ, et al. West Nile virus infection: a new acute paralytic illness [J]. Neurology, 2003, 61(8): 55-59.
    [15] Sejvar JJ, Haddad MB, Tierney BC, et al. Neurologic manifestations and outcome of West Nile virus infection [J]. JAMA, 2003, 290(10): 511-515.
    [16] Brener ZZ, Harbord NB, Zhuravenko I, et al. Acute renal failure in a patient with West Nile viral encephalitis [J]. Nephrol Dial Transplant, 2007, 22(2): 662-663.
    [17] Li J, Loeb JA, Shy ME, et al. Asymmetric flaccid paralysis: a neuromuscular presentation of West Nile virus infection [J]. Ann neurol, 2003, 53(6): 703-710.
    [18]陈晓,曾志磊,朱丹等. Real-time RT-PCR检测西尼罗病毒一步法的建立[J].中国人兽共患病学报, 2008, 24(12): 24-27.
    [19] Chua KB, Goh KJ, Wong KT, et al. Fatal encephalitis due to Nipah virus amongpig-farmers in Malaysia [J]. Lancet, 1999, 354(9186):1257-1259.
    [20] CDC. Outbreak of Hendra-Like Virus--Malaysia and Singapore, 1998-1999[J]. MMWR Morb Mortal Wkly Rep, 1999, 48(13):265-269.
    [21] Hsu VP, Hossain MJ, Parashar UD, et al. Nipah virus encephalitis reemergence, Bangladesh [J]. Emerg Infect Dis, 2004, 10(12):2082-2087.
    [22] Harcourt BH, Lowe L, Tamin A, et al. Genetic characterization of Nipah virus, Bangladesh, 2004[J]. Emerg Infect Dis, 2005, 11(10):1594-1597.
    [23] Chadha MS, Comer JA, Lowe L, et al. Nipah virus-associated encephalitis outbreak, Siliguri, India[J]. Emerg Infect Dis, 2006, 12(2):235-240.
    [24]刘妍汐,谢鹏,曾志磊,等.新疆伊犁地区马的尼帕病毒感染情况研究[J].重庆医科大学学报(临床神经化学专辑). 2008, 33(s1): 27-29.
    [25]曾志磊.三种嗜神经病毒的核酸检测方法和初步流行病学研究[D].重庆医科大学, 2008.
    [26]陈元鼎,戴长柏.抗原表位亚单位疫苗研究现状及策略[J].中华预防医学杂志, 1999, 33(5):315- 316.
    [27] Rowlands DJ. Experimental determination of immunogenic sites [M]. In: Nicholson BH, eds. Oxford: Blackwell scientific publishing, 1994:137-168.
    [1] Lanciotti RS, Ebel GD, Deubel V, et al. Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East [J]. Virology, 2002; 298(1): 96-105.
    [2] Huhn GD, Sejvar JJ, Montgomery SP, et al. West Nile virus in the United States: an update on an emerging infectious disease [J]. Am Fam Physician, 2003, 68(4): 653-660.
    [3] Centers for Disease Control and Prevention. West Nile virus transmission through blood transfusion--South Dakota [J], 2006. MMWR Morb Mortal Wkly Rep, 2007, 56(4): 76-79.
    [4] Iwamoto M, Jernigan DB, Guasch A, et al. Transmission of West Nile virus from an organ donor to four transplant recipients [J]. N Engl J Med, 2003, 348(22): 2196-2203.
    [5] Centers for Disease Control and Prevention. Possible West Nile virus transmission to an infant through breast-feeding—Michigan [J], 2002. JAMA, 2002, 288(16): 1976-1977.
    [6] Centers for Disease Control and Prevention. Intrauterine West Nile virus infection—New York [J], 2002. JAMA, 2003, 289(3): 295-296.
    [7] Bowen RA, Nemeth NM. Experimental infections with West Nile virus [J]. Curr Opin Infect Dis, 2007, 20(3): 293-297.
    [8] Docherty DE,Long RR,Griffin KM, et al. Corvidae Feather Pulp and West Nile Virus Detection [J]. Emerg Infect Dis, 2004, 10(5): 907-909.
    [9] Hubálek Z, Halouzka J, JuricováZ. West Nile fever in Czechland [J]. Emerg Infect Dis, 1999, 5(4): 594-595.
    [10] Mostashari F, Bunning M, Kitsutani P, et al. Epidemic West Nile encephalitis, New York, 1999: results of a household- based seroepidemiological survey [J]. Lancet, 2001, 358(9278): 261-264.
    [11] Ahmed S, Libman R, Wesson K, et al. Guillain–Barrésyndrome: An unusual presentation of West Nile virus infection [J]. Neurology, 2000, 55(1): 144-146.
    [12] Lvov DK, Butenko AM, Gromashevsky VL, et al. Isolation of two strains of West Nile virus during an outbreak in southern Russia, 1999 [J]. Emerg Infect Dis. 2000 Jul-Aug;6(4):373-6.
    [13]陈晓,曾志磊,朱丹等. Real-time RT-PCR检测西尼罗病毒一步法的建立[J].中国人兽共患病学报, 2008, 24(12): 24-27.
    [14] Shi P-Y, Wong SJ. Serologic diagnosis of West Nile virus infection [J]. Expert Rev Mol Diagn, 2003, 3(6):733-741.
    [15] Johnson DJ, Ostlund EN, Pedersen DD, et al. Detection of North American West Nile virus in animal tissue by a reverse transcription-nested polymerase chain reaction assay [J]. Emerg Infect Dis, 2001, 7(4):739-741.
    [16]张久松,张泮河,左曙青,等.西尼罗病毒RT-PCR检测方法的建立及其初步应用[J].中国人兽共患病杂志, 2004, 20(9): 737-740.
    [17]邓永强,姜涛,范宝昌,等.西尼罗病毒的RT-PCR检测与鉴定[J].微生物学免疫学进展, 2004, 32(4): 31-35.
    [18]姜焱,张常印,陈国强.西尼罗热病毒RT-PCR检测方法的建立[J].中国动物检疫, 2005, 22(5): 25-27.
    [19] Johnson DJ, Ostlund EN, Pedersen DD, et al. Detection of North American West Nile virus in animal tissue by a reverse transcription nested polymerase chain reaction assay[J]. Emerg Infect Dis,2001, 7(4):739-741.
    [20] Lanciotti R, Kerst A, Nasci R, et al. Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay [J]. J Clin Microbiol, 2000, 38(11):4066-4071.
    [21] Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays [J]. J Mol Endocrinol, 2000, 25(2):169-193.
    [1] Centers for Disease Control and Prevention. Possible West Nile virus transmission to an infant through breast-feeding--Michigan, 2002. JAMA, 2002, 288(16): 1976-1977.
    [2] Cao NJ, Ranganathan C, Kupsky WJ, et al. Recovery and prognosticators of paralysis in West Nile virus infection [J]. J Neurol Sci, 2005, 236(1-2): 73–80.
    [3]何小娟,曾振灵.西尼罗河病毒病[J].中国兽医科学, 2003, 33(5): 74-77.
    [4] Huhn GD, Sejvar JJ, Montgomery SP, et al. West Nile virus in the United States: an update on an emerging infectious disease [J]. Am Fam Physician, 2003, 68(4): 653-660.
    [5] Wang T, Town T, Alexoppulou L, et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis [J]. Nat Med, 2004, 10(12): 1366-1373.
    [6] Glass WG, Lim JK, Cholera R, et al. Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection [J]. J Exp Med, 2005, 202(8): 1087-1098.
    [7] Klein RS, Lin E, Zhang B, et al. Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis [J]. J Virol, 2005, 79(17): 11457–11466.
    [8] Lee J, Chu J, Ng M. Quantifying the specific binding between West Nile virus envelope domain III protein and the cellular receptor alphaVbeta3 integrin [J]. J Biol Chem, 2006, 281: 1352-1360.
    [9] Nash D, Mostashari F, Fine A, et al. The outbreak of West Nile virus infection in the New York city area in 1999 [J]. N Engl J Med, 2001, 344(24): 1807-1814.
    [10] Córdoba L, Escribano-Romero E, Garmendia A, et al. Pregnancy increases the risk of mortality in West Nile virus-infected mice [J]. J Gen Virol, 2007, 88(Pt 2): 476-480.
    [11] Hubálek Z, Halouzka J, JuricováZ. West Nile fever in Czechland [J]. Emerg InfectDis, 1999, 5(4): 594-595.
    [12] Mostashari F, Bunning M, Kitsutani P, et al. Epidemic West Nile encephalitis, New York, 1999: results of a household- based seroepidemiological survey [J]. Lancet, 2001, 358(9278): 261-264.
    [13] Ahmed S, Libman R, Wesson K, et al. Guillain–Barrésyndrome: An unusual presentation of West Nile virus infection [J]. Neurology, 2000, 55(1): 144-146.
    [14] Zeller HG, Schuffenecker I. West Nile virus: an overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas [J]. Eur J Clin Microbiol Infect Dis, 2004, 23(3):147-56.
    [15]高玉然.西尼罗病毒与流行性乙型脑炎病毒感染的流行病学调查及其免疫交叉保护作用研究[D].北京:中国人民解放军军事医学科学院, 2006.
    [16] Staprans S, Marlowe N, Glidden D, Novakovic-Agopian T, Grant RM, Heyes M, Aweeka F, Deeks S, Price RW. Time course of cerebrospinal fluid responses to antiretroviral therapy: evidence for variable compartmentalization of infection [J]. AIDS. 1999, 13(9):1051-61.
    [17] Thomas W. Smalling, Susan E. Sefers, Haijing Li, et al. Molecular approaches to detecting herpes simplex virus and enteroviruses in the central nervous system[J]. Journal of clinical microbiology, 2002, 40(7): 2317–2322
    [18]王滨有.西尼罗病毒感染的流行[M].李立明,詹思延.流行病学研究实例第四卷.第1版.北京:人民卫生出版社, 2006: 129-147.
    [19] Nash D, Mostashari F, Fine A, et al. The outbreak of West Nile virus infection in the New York city area in 1999[J]. N Engl J Med, 2001, 344(24): 1807-1814.
    [20]于萍.西尼罗病毒巢式RT-PCR和荧光定量RT-PCR两种检测方法的建立[D].福州:福建农林大学, 2005.
    [21] Mukhopadhyay S, Kim BS, Chipman PR, et al. Structure of West Nile virus [J]. Science, 2003, 302(5643): 248.
    [22] Jeha LE, Sila CA, Lederman RJ, et al. West Nile virus infection: a new acute paralytic illness [J]. Neurology, 2003, 61(8): 55-59.
    [23] Sejvar JJ, Haddad MB, Tierney BC, et al. Neurologic manifestations and outcomeof West Nile virus infection [J]. JAMA, 2003, 290(10): 511-515.
    [24] Brener ZZ, Harbord NB, Zhuravenko I, et al. Acute renal failure in a patient with West Nile viral encephalitis [J]. Nephrol Dial Transplant, 2007, 22(2): 662-663.
    [25] Li J, Loeb JA, Shy ME, et al. Asymmetric flaccid paralysis: a neuromuscular presentation of West Nile virus infection [J]. Ann neurol, 2003, 53(6): 703-710.
    [26] Hayes EB, Gubler DJ. West Nile virus: epidemiology and clinical features of an emerging epidemic in the United States[J]. Ann Rev Med. 2006, 57:181~194
    [27] Gibbs SE, Marlenee NL, Romines J, et al. Antibodies to West Nile virus in feral swine from Florida, Georgia, and Texas, USA [J].Vector Borne Zoonotic Dis. 2006, 6(3):261-5.
    [28]崔君兆,刘明团,古漓,等.广西沙田、大路居民首次登革流行后2~4年登革血清流行病学监测及西尼罗阳性抗体的发现[J].广西医学, 1987, 9(5): 228-231.
    [29]张久松,张泮河,高玉然,等.西尼罗病毒外膜蛋白的表达及其抗原性鉴定[J].中华微生物学和免疫学杂志,2006,26(12):1102-1103.
    [30]姜焱,张常印,王凯民,等.检测马西尼罗热病毒抗体的重组E蛋白-ELISA的建立[J].农业生物技术学报,2007,15(2):323-326.
    [31]姜焱,侯玉峰,张常印,等.马西尼罗热病毒E蛋白部分基因在大肠杆菌中的表达[J].微生物学通报,2007, 34(1):101-104.
    [32]罗招凡,丁鹤林,刘建伟.SYBR Green I荧光定量PCR检测西尼罗病毒[J].中华医院感染学杂志,2007, 17(8): 1031-1034.
    [33]陈晓,曾志磊,朱丹等. Real-time RT-PCR检测西尼罗病毒一步法的建立[J].中国人兽共患病学报, 2008, 24(12): 24-27.
    [1] Lanciotti RS, Ebel GD,Deubel V, et al. Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East [J]. Virology, 2002, 298 (1): 96-105.
    [2] Beasley DW, Holbrook MR, Travassos Da Rosa AP, et al. Use of a recombinant envelope protein subunit antigen for specific serological diagnosis of West Nile virus infection[J]. J Clin Microbiol. 2004, 42(6):2759-65.
    [3] Volk DE, Beasley DW, Kallick DA, et al. Solution structure and antibody bindingstudies of the envelope protein domain III from the New York strain of West Nile virus[J]. Biol Chem. 2004, 279(37):38755-61.
    [4]何小娟,曾振灵.西尼罗河病毒病[J].中国兽医科学, 2003, 33(5): 74-77.
    [5] Zeller HG, Schuffenecker I. West Nile virus: an overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas [J]. Eur J Clin Microbiol Infect Dis, 2004, 23(3):147-56.
    [6] Lvov DK, Butenko AM, Gromashevsky VL, et al. Isolation of two strains of West Nile virus during an outbreak in southern Russia, 1999 [J]. Emerg Infect Dis. 2000 Jul-Aug;6(4):373-6.
    [7] Nash D, Mostashari F, Fine A, et al. The outbreak of West Nile virus infection in the New York city area in 1999 [J]. N Engl J Med, 2001, 344(24): 1807-1814.
    [8]于萍.西尼罗病毒巢式RT-PCR和荧光定量RT-PCR两种检测方法的建立[D].福州:福建农林大学, 2005.
    [9] Huhn GD, Sejvar JJ, Montgomery SP, et al. West Nile virus in the United States: an update on an emerging infectious disease [J]. Am Fam Physician, 2003, 68(4): 653-660.
    [10] Savini G, Monaco F, Calistri P, et al. Phylogenetic analysis of West Nile virus isolated in Italy in 2008 [J]. Euro Surveill. 2008, 13(48): 19048.
    [11] Steinman A, Banet C, Sutton GA, et al. Clinical signs of West Nile virus encephalomyelitis in horses during the outbreak in Israel in 2000 [J]. Vet Rec, 2002, 151(2):47-49.
    [12] Epp T, Waldner C, Leighton FA, et al. Seroprevalence and risk factors for infection with West Nile virus in Saskatchewan horses, 2003 [J]. Can J Vet Res, 2007, 71(4):256-263.
    [13] Epp T, Waldner C, West K, et al. Factors associated with West Nile virus disease fatalities in horses [J]. Can Vet J, 2007, 48(11): 1137-1145.
    [14] Sebastian MM, Stewart I, Williams NM, et al. Pathological, entomological, avian and meteorological investigation of a west nile virus epidemic in a horse farm [J]. Transbound Emerg Dis, 2008, 55(2):134-139.
    [15]王滨有.西尼罗病毒感染的流行[M].李立明,詹思延.流行病学研究实例第四卷.第1版.北京:人民卫生出版社, 2006: 129-147.
    [16] Murgue B, Murri S, Zientara S, et al.West Nile outbreak in horses in southern France, 2000: the return after 35 years [J]. Emerg Infect Dis. 2001, 7(4):692-6.
    [17]魏荣,王志亮,李其平.在中国可以传播西尼罗河病毒的蚊虫种类[J].中国媒介生物学及控制杂志, 2004,15(1): 65-66.
    [18]崔君兆,刘明团,古漓,等.广西沙田、大路居民首次登革流行后2~4年登革血清流行病学监测及西尼罗阳性抗体的发现[J].广西医学, 1987, 9(5): 228-231.
    [19]高玉然.西尼罗病毒与流行性乙型脑炎病毒感染的流行病学调查及其免疫交叉保护作用研究[D].北京:中国人民解放军军事医学科学院, 2006.
    [20] Wong ML, Medrano JF. Real-time PCR for mRNA quantitation [J]. Biotechniques, 2005, 39(1):75-85.
    [1] Lanciotti RS, Ebel GD,Deubel V, et al. Complete genome sequences andphylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East [J]. Virology, 2002, 298 (1): 96-105.
    [2] Beasley DW, Holbrook MR, Travassos Da Rosa AP, et al. Use of a recombinant envelope protein subunit antigen for specific serological diagnosis of West Nile virus infection[J]. J Clin Microbiol. 2004, 42(6):2759-65.
    [3] Volk DE, Beasley DW, Kallick DA, et al. Solution structure and antibody binding studies of the envelope protein domain III from the New York strain of West Nile virus[J]. Biol Chem. 2004, 279(37):38755-61.
    [4] Lee JW, Chu JJ, Ng ML. Quantifying the specific binding between West Nile virus envelope domain III protein and the cellular receptor alphaVbeta3 integrin [J]. J Biol Chem. 2006, 281(3):1352-60.
    [5] Mukhopadhyay S, Kim BS, Chipman PR, et al. Structure of West Nile virus [J]. Science, 2003, 302: 248.
    [6]周康凤,姜立民,庄昉成.西尼罗河病毒[J].国际病毒学杂志, 2006, 13(4): 108-112.
    [7]俞永新.西尼罗热流行现状及实验诊断[J].疾病控制杂志, 2003, 7(3):185-188.
    [8] Burt FJ, Grobbelaar AA, Leman PA, et a1. Phylogenetic relationships of southern African west Nile Virus isolates [J]. Emerg Infect Dis, 2002, 8(8):820-825.
    [9] Lanciotti RS, Ebel GD, Deubel V, et a1. Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the M iddle East [J]. Virology, 2002, 298(1):96-105.
    [10] Bakonyi T, Ivanics E, Erdélyi K, et al. Lineage 1 and 2 strains of encephalitic West Nile virus, central Europe [J]. Emerg Infect Dis. 2006, 12(4):618-23.
    [11] Erdélyi K, Ursu K, Ferenczi E, et al. Clinical and pathologic features of lineage 2 West Nile virus infections in birds of prey in Hungary [J]. Vector Borne Zoonotic Dis. 2007, 7(2):181-8.
    [12]王滨有.西尼罗病毒感染的流行[M].李立明,詹思延.流行病学研究实例第四卷.第1版.北京:人民卫生出版社, 2006: 129-147.
    [13]何小娟,曾振灵.西尼罗河病毒病[J].中国兽医科学, 2003, 33(5): 74-77.
    [14] Zeller HG, Schuffenecker I. West Nile virus: an overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas [J]. Eur J Clin Microbiol Infect Dis, 2004, 23(3):147-56.
    [15] Mukhopadhyay S, Kim BS, Chipman PR, et al. Structure of West Nile virus [J]. Science, 2003, 302(5643): 248.
    [16] Jeha LE, Sila CA, Lederman RJ, et al. West Nile virus infection: a new acute paralytic illness [J]. Neurology, 2003, 61(8): 55-59.
    [17] Sejvar JJ, Haddad MB, Tierney BC, et al. Neurologic manifestations and outcome of West Nile virus infection [J]. JAMA, 2003, 290(10): 511-515.
    [18] Brener ZZ, Harbord NB, Zhuravenko I, et al. Acute renal failure in a patient with West Nile viral encephalitis [J]. Nephrol Dial Transplant, 2007, 22(2): 662-663.
    [19] Nash D, Mostashari F, Fine A, et al. The outbreak of West Nile virus infection in the New York city area in 1999 [J]. N Engl J Med, 2001, 344(24): 1807-1814.
    [20]于萍.西尼罗病毒巢式RT-PCR和荧光定量RT-PCR两种检测方法的建立[D].福州:福建农林大学, 2005.
    [21] Huhn GD, Sejvar JJ, Montgomery SP, et al. West Nile virus in the United States: an update on an emerging infectious disease [J]. Am Fam Physician, 2003, 68(4): 653-660.
    [22] Centers for Disease Control and Prevention. West Nile virus transmission through blood transfusion--South Dakota [J], 2006. MMWR Morb Mortal Wkly Rep, 2007, 56(4): 76-79.
    [23] Iwamoto M, Jernigan DB, Guasch A, et al. Transmission of West Nile virus from an organ donor to four transplant recipients [J]. N Engl J Med, 2003, 348(22): 2196-2203.
    [24] Centers for Disease Control and Prevention. Possible West Nile virus transmission to an infant through breast-feeding--Michigan [J], 2002. JAMA, 2002, 288(16): 1976-1977.
    [25] Centers for Disease Control and Prevention. Intrauterine West Nile virusinfection--New York [J], 2002. JAMA, 2003, 289(3): 295-296.
    [26] Bowen RA, Nemeth NM. Experimental infections with West Nile virus [J]. Curr Opin Infect Dis, 2007, 20(3): 293-297.
    [27] Docherty DE,Long RR,Griffin KM, et al. Corvidae Feather Pulp and West Nile Virus Detection [J]. Emerg Infect Dis, 2004, 10(5): 907-909.
    [28] Barnard BJ, Voges SF. Flaviviruses in South Africa: pathogenicity for sheep [J]. Onderstepoort J Vet Res. 1986, 53(4):235-8.
    [29] Kecskeméti S, Bajmócy E, Bacsadi A, Kiss I, Bakonyi T. Encephalitis due to West Nile virus in a sheep [J]. Vet Rec. 2007, 161(16):568-9.
    [30] Tyler JW, Turnquist SE, David AT, Kleiboeker SB, Middleton JR. West Nile virus encephalomyelitis in a sheep [J]. J Vet Intern Med. 2003;17(2):242-4.
    [31] Yaeger M, Yoon KJ, Schwartz K, Berkland L. West Nile virus meningoencephalitis in a Suri alpaca and Suffolk ewe [J]. J Vet Diagn Invest. 2004;16(1):64-6.
    [1]王滨有.西尼罗病毒感染的流行[M].李立明,詹思延.流行病学研究实例第四卷.第1版.北京:人民卫生出版社, 2006: 129-147.
    [2] Zeller HG, Schuffenecker I. West Nile virus: an overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas [J]. Eur J Clin Microbiol Infect Dis, 2004, 23(3):147-56.
    [3] Lanciotti RS, Ebel GD,Deubel V, et al. Complete genome sequences andphylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East [J]. Virology, 2002, 298 (1): 96-105.
    [4] Beasley DW, Holbrook MR, Travassos Da Rosa AP, et al. Use of a recombinant envelope protein subunit antigen for specific serological diagnosis of West Nile virus infection[J]. J Clin Microbiol. 2004, 42(6):2759-65.
    [5] Volk DE, Beasley DW, Kallick DA, et al. Solution structure and antibody binding studies of the envelope protein domain III from the New York strain of West Nile virus[J]. Biol Chem. 2004, 279(37):38755-61.
    [6] Lee JW, Chu JJ, Ng ML. Quantifying the specific binding between West Nile virus envelope domain III protein and the cellular receptor alphaVbeta3 integrin [J]. J Biol Chem. 2006, 281(3):1352-60.
    [7] Garnier J, Osguthorpe DJ, Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins [J]. J Mol Biol, 1978; 120 (1): 97-120.
    [8] Chou PY, Fasman GD. Prediction of the secondary structure of proteins from their amino acid sequence [J]. Adv Enzymol Relat Areas Mol Biol, 1978; 47: 45-148.
    [9] Karplus PA, Schulz GE. Prediction of chain flexibility in proteins [J]. Naturwissenschaften. 1985; 72(4): 212-213.
    [10] Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein [J]. J Mol Biol, 1982; 157 (1): 105-132.
    [11] Emini EA , Hughes JV, Perlow DS, et al . Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide [J]. J Virol, 1985; 55(3) :836-839.
    [12] Jameson BA, Wolf H. The antigenic index: a novel algorithm for predicting antigenic determinants [J]. Comput Appl Biosci, 1988, 4(1): 181-186.
    [13]吴玉章,朱锡华.一种病毒蛋白B细胞表位预测方法的建立[J].科学通报, 1994; 39(24): 2275-2279.
    [14] Huhn GD, Sejvar JJ, Montgomery SP, et al. West Nile virus in the United States: an update on an emerging infectious disease [J]. Am Fam Physician, 2003, 68(4):653-660.
    [15] Centers for Disease Control and Prevention. West Nile virus transmission through blood transfusion--South Dakota [J], 2006. MMWR Morb Mortal Wkly Rep, 2007, 56(4): 76-79.
    [16] Iwamoto M, Jernigan DB, Guasch A, et al. Transmission of West Nile virus from an organ donor to four transplant recipients [J]. N Engl J Med, 2003, 348(22): 2196-2203.
    [17] Centers for Disease Control and Prevention. Possible West Nile virus transmission to an infant through breast-feeding-Michigan [J], 2002. JAMA, 2002, 288(16): 1976-1977.
    [18] Centers for Disease Control and Prevention. Intrauterine West Nile virus infection--New York [J], 2002. JAMA, 2003, 289(3): 295-296.
    [19] Bowen RA, Nemeth NM. Experimental infections with West Nile virus [J]. Curr Opin Infect Dis, 2007, 20(3): 293-297.
    [20] Docherty DE,Long RR,Griffin KM, et al. Corvidae Feather Pulp and West Nile Virus Detection [J]. Emerg Infect Dis, 2004, 10(5): 907-909.
    [21]于萍.西尼罗病毒巢式RT-PCR和荧光定量RT-PCR两种检测方法的建立[D].福州:福建农林大学, 2005.
    [22] Nash D, Mostashari F, Fine A, et al. The outbreak of West Nile virus infection in the New York city area in 1999 [J]. N Engl J Med, 2001, 344(24): 1807-1814.
    [23] Mukhopadhyay S, Kim BS, Chipman PR, et al. Structure of West Nile virus[J]. Science, 2003, 302(5643): 248.
    [24] Jeha LE, Sila CA, Lederman RJ, et al. West Nile virus infection: a new acute paralytic illness[J]. Neurology, 2003, 61(8): 55-59.
    [25] Sejvar JJ, Haddad MB, Tierney BC, et al. Neurologic manifestations and outcome of West Nile virus infection[J]. JAMA, 2003, 290(10): 511-515.
    [26] Brener ZZ, Harbord NB, Zhuravenko I, et al. Acute renal failure in a patient with West Nile viral encephalitis[J]. Nephrol Dial Transplant, 2007, 22(2): 662-663.
    [27]邓永强,秦鄂德.虫媒黄病毒包膜E蛋白的研究进展.军事医学科学院院刊,2006, 30(6):575-579.
    [28]陈义平,杨艳菊,吴晓东,等,西尼罗病毒E蛋白结构域Ⅲ特异性单克隆抗体的研制.中华实验和临床病毒学杂志, 2006, 20(3):313-315.
    [29]陈元鼎,戴长柏.抗原表位亚单位疫苗研究现状及策略[J].中华预防医学杂志, 1999, 33(5):315- 316.
    [30]毛华伟,赵晓东.人类偏肺病毒F蛋白的B细胞表位预测[J].免疫学杂志, 2006, 22(3): 289-293.
    [1] Tan CT, Wong KT. Nipah encephalitis outbreak in Malaysia [J]. Ann Acad Med Singapore, 2003, 32(1):112-117.
    [2] Aguilar HC, Matreyek KA, Choi DY, et al. Polybasic KKR motif in the cytoplasmic tail of Nipah virus fusion protein modulates membrane fusion by inside-out signaling [J]. J Virol, 2007, 81(9):4520-4532.
    [3] Chua KB, Goh KJ, Wong KT, et al. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia [J]. Lancet, 1999, 354(9186):1257-1259.
    [4] Chua KB, Bellini WJ, Rota PA, et al. Nipah virus: a recently emergent deadly paramyxovirus [J]. Science, 2000, 288(5470):1432–1435.
    [5] Hsu VP, Hossain MJ, Parashar UD, et al. Nipah virus encephalitis reemergence, Bangladesh [J]. Emerg Infect Dis, 2004, 10(12):2082-2087.
    [6] Harcourt BH, Lowe L, Tamin A, et al. Genetic characterization of Nipah virus, Bangladesh [J]. Emerg Infect Dis, 2005, 11(10):1594-1597.
    [7] Chadha MS, Comer JA, Lowe L, et al. Nipah virus-associated encephalitis outbreak, Siliguri, India [J]. Emerg Infect Dis, 2006, 12(2):235-240.
    [8] Olson JG, Rupprecht C, Rollin PE, et al. Antibodies to Nipah-like virus in bats (Pteropus lylei), Cambodia [J]. Emerg Infect Dis, 2002, 8(9):987-988.
    [9] Yob JM, Field H, Rashdi AM, et al. Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia [J]. Emerg Infect Dis, 2001, 7(3):439-441.
    [10] Reynes JM, Counor D, Ong S, et al. Nipah virus in Lyle's flying foxes, Cambodia [J]. Emerg Infect Dis, 2005, 11(7):1042-1047.
    [11] Wacharapluesadee S, Lumlertdacha B, Boongird K, et al. Bat Nipah virus, Thailand [J]. Emerg Infect Dis, 2005, 11(12):1949-1951.
    [12] Hayman DT, Suu-Ire R, Breed AC, et al. Evidence of henipavirus infection in West African fruit bats [J]. PLoS ONE, 2008, 3(7):e2739.
    [13] Anonymous. Nipah virus outbreak(s) in Bangladesh, January-April 2004 [J]. Wkly Epidemiol Rec, 2004, 79(17):168-171.
    [14] Middleton DJ, Westbury HA, Morrissy CJ, et al. Experimental Nipah virus infection in pigs and cats [J]. J Comp Pathol, 2002, 126(2-3):124–136.
    [15] Yoneda M, Guillaume V, Ikeda F, et al. Establishment of a Nipah virus rescue system [J]. Proc Natl Acad Sci U S A, 2006, 103(44):16508-16513.
    [16] Xu K, Rajashankar KR, Chan YP, et al. Host cell recognition by the henipaviruses: Crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3 [J]. Proc Natl Acad Sci U S A, 2008, 105(29):9953-9958.
    [17] Diederich S, Moll M, Klenk HD, et al. The Nipah virus fusion protein is cleaved within the endosomal compartment [J]. J Biol Chem, 2005, 280(33):29899-29903.
    [18] Garnier J, Osguthorpe DJ, Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins [J]. J Mol Biol, 1978, 120(1):97-120.
    [19] Chou PY, Fasman GD. Prediction of the secondary structure of proteins from their amino acid sequence [J]. Adv Enzymol Relat Areas Mol Biol, 1978, 47:45-148.
    [20] Karplus PA, Schulz GE. Prediction of chain flexibility in proteins [J]. Naturwissenschaften, 1985, 72(4): 212-213.
    [21] Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein [J]. J Mol Biol, 1982, 157(1):105-132.
    [22] Emini EA, Hughes JV, Perlow DS, et al. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide [J]. J Virol, 1985, 55(3):836-839.
    [23] Jameson BA, Wolf H. The antigenic index: a novel algorithm for predicting antigenic determinants [J]. Comput Appl Biosci, 1988, 4(1):181-186.
    [24] Wu Y, Zhu X. A new approach for B-cell epitope prediction in viral protein [J]. Chin Sci Bull, 1995, 40(9):761-763.
    [25] Chua KB, Chua BH, Wang CW. Anthropogenic deforestation, El Nino and the emergence of Nipah virus in Malaysia [J]. Malays J Pathol, 2002, 24(1):15-21.
    [26] Goh KJ, Tan CT, Chew NK, et al. Clinical features of Nipah virus encephalitis among pig farmers in Malaysia [J]. N Engl J Med, 2000, 342(17):1229-1235.
    [27]吴晓丰,许金俊,沈毅诚,等.一种新的人兽共患副黏病毒病--尼帕病毒病[J].动物医学进展, 2005, 26(2):109-111.
    [28] Guillaume V, Contamin H, Loth P, et al. Nipah virus: vaccination and passive protection studies in a hamster model [J]. J Virol, 2004, 78(18):10211.
    [29]陈元鼎,戴长柏.抗原表位亚单位疫苗研究现状及策略[J].中华预防医学杂志, 1999, 33(5):315- 316.
    [30] Rowlands DJ. Experimental determination of immunogenic sites [M]. In: Nicholson BH, eds. Oxford: Blackwell scientific publishing, 1994:137-168.
    [31]毛华伟,赵晓东.人类偏肺病毒F蛋白的B细胞表位预测[J].免疫学杂志, 2006, 22(3): 289-293.
    [1] Lanciotti RS, Ebel GD, Deubel V, et al. Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East [J]. Virology, 2002, 298:96-105.
    [2]魏荣,王志亮,李其平.在中国可以传播西尼罗河病毒的蚊虫种类[J].中国媒介生物学及控制杂志, 2004, 15:65-66.
    [3] Huang C, Slater B, Rudd R, et al. First isolation of West Nile virus from a patient with encephalitis in the United States [J]. Emerg Infect Dis, 2002, 8:1367-1371.
    [4] Lvov DK, Butenko AM, Gromashevsky VL, et al. Isolation of two strains of West Nile virus during an outbreak in southern Russia, 1999 [J]. Emerg Infect Dis, 2000, 6:373-376.
    [5] Turell MJ, Morrill JC, Rossi CA, et al. Isolation of west nile and sindbis viruses from mosquitoes collected in the Nile Valley of Egypt during an outbreak of Rift Valley fever [J]. J Med Entomol, 2002, 39:248-250.
    [6]任军.西尼罗病毒研究进展[J].生命科学, 2005, 17:445-448.
    [7] Kauffman EB, Jones SA, DupuisⅡAP, et al. Virus detection protocols for westnile virus in vertebrate and mosquito specimens [J]. J Clin Microbiol, 2003, 41:3661-3667.
    [8] Pisarev VB, Butenko AM, Petrov VA, et al. Morphological and immunohistochemical changes in tissues of the lung , myocardium and kidney in experimental West Nile fever [J]. Vopr Virusol, 2005, 50:37-38.
    [9] Gibbs SE, Ellis AE, Mead DG, et al. West Nile virus detection in the organs of naturally infected blue jays (Cyanocitta cristata) [J]. J Wildl Dis, 2005, 41:354-362.
    [10] Sampson BA, Ambrosi C, Charlot A, Reiber K, Veress JF, Armbrustmacher V. The pathology of human West Nile Virus infection [J]. Hum Pathol. 2000 May;31(5):527-31.
    [11]佟颖,曾晓芃,刘婷,等.两种快速检测西尼罗病毒方法的研究[J].中国媒介生物学及控制杂志, 2006, 17: 307-310.
    [12] Stone WB, Therrien JE, Benson R, et al. Assays to detect West Nile virus in dead birds [J]. Emerg Infect Dis, 2005, 11:1770-1773.
    [13] Burkhalter KL, Lindsay R, Anderson R, et al. Evaluation of commercial assays for detecting West Nile virus antigen [J].J Am Mosq Control Assoc, 2006, 22:64-69.
    [14] Lanciotti RS, Kerst AJ, Nasci RS, et al. Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay [J]. J Clin Microbiol, 2000, 38:4066-4071.
    [15] Johnson DJ, Ostlund EN, Pedersen DD, et al. Detection of North American West Nile virus in animal tissue by a reverse transcription nested polymerase chain reaction assay [J]. Emerging Infectious Diseases. 2001, 7:739-741.
    [16]张久松,张泮河,左曙青,等.西尼罗病毒RT-PCR检测方法的建立及其初步应用[J].中国人兽共患病杂志, 2004, 20:737-740.
    [17]邓永强,姜涛,范宝昌,等.西尼罗病毒的RT-PCR检测与鉴定[J].微生物学免疫学进展, 2004, 32: 31-35.
    [18]姜焱,张常印,陈国强.西尼罗热病毒RT-PCR检测方法的建立[J].中国动物检疫, 2005, 22:25-27.
    [19] Wong ML, Medrano JF. Real-time PCR for mRNA quantitation [J]. Biotechniques, 2005, 39:75-85.
    [20]郑夔,周惠琼,柯昌文. TaqMan MGB Real-time RT-PCR检测西尼罗病毒方法的建立[J].中国病原生物学杂志, 2008, 3:170-172.
    [21]徐昌平,卢亦愚,严菊英,等. TaqMan荧光定量RT-PCR快速检测西尼罗病毒的研究[J].中国媒介生物学及控制杂志, 2008, 19:135-137.
    [22]秦成峰,秦鄂德.多重PCR及其在病毒性疾病诊断中的应用[J].生命的化学, 2005, 25:402-404.
    [23]姜涛,邓永强,于曼,等. 3种重要脑炎病毒的多重RT-PCR检测方法的建立[J].军事医学科学院院刊, 2007, 31:218-220.
    [24] D'Souza DH, Jaykus LA. Nucleic acid sequence based amplification for the rapid and sensitive detection of Salmonella enterica from foods [J]. J Appl Microbiol, 2003, 95:1343-1350.
    [25] Deiman B, van Aarle P, Sillekens P. Characteristics and applications of nucleic acid sequence-based amplification (NASBA) [J]. Mol Biotechnol, 2002, 20:163-179.
    [26] Lanciotti RS, Kerst AJ.Nucleic acid sequence-based amplification assays for rapid detection of West Nile and St. Louis encephalitis viruses [J]. J Clin Microbiol, 2001, 39:4506-4513.
    [1]高志勇,庄辉.西尼罗病毒研究进展[J].中华流行病学杂志, 2005, 26(1): 62-64.
    [2] Cohen JK, Kilpatrick AM, Stroud FC, et al. Seroprevalence of West Nile virus in nonhuman primates as related to mosquito abundance at two national primate research centers [J]. Comp Med, 2007, 57(1):115-119.
    [3] Weingartl HM, Drebot MA, Hubalek Z, et al. Comparison of assays for the detection of West Nile virus antibodies in chicken serum [J]. Can J Vet Res, 2003, 67(2):128-132.
    [4] Lindh E, Huovilainen A, R?tti O, et al.Orthomyxo-, paramyxo- and flavivirus infections in wild waterfowl in Finland [J].Virol J, 2008, 5:35.
    [5] Kuno G. Serodiagnosis of flaviviral infections and vaccinations in humans [J]. Adv Virus Res, 2003, 61:3-65.
    [6] Shi PY, Wong SJ. Serologic diagnosis of West Nile virus infection [J]. Expert RevMol Diagn, 2003, 3(6):733-741.
    [7]魏荣,王志亮.美国西尼罗病毒感染的实验室诊断进展[J].中华微生物学和免疫学杂志, 2004, 24(2):162-164.
    [8] Magnarelli LA, Bushmich SL, Anderson JF, et al. Serum antibodies to West Nile virus in naturally exposed and vaccinated horses [J]. J Med Microbiol. 2008, 57(9):1087-93.
    [9] Patiris PJ, Oceguera LF 3rd, Peck GW, et al. Serologic diagnosis of West Nile and St. Louis encephalitis virus infections in domestic chickens [J]. Am J Trop Med Hyg, 2008, 78(3): 434-41.
    [10] Johnson BW, Chambers TV, Crabtree MB, et al. Analysis of the replication kinetics of the chimerivaxTM-DEN 1, 2, 3, 4 tetravalent virus mixture in Aedes aegypti by real-time reverse transcriptase-polymerase chain reaction [J]. Am J Trop Med Hyg, 2004, 70(1): 89–97.
    [11] Malan AK, Stipanovich PJ, Martins TB, et al. Detection of IgG and IgM to West Nile Virus. Development of an immunofluorescence assay [J]. Am J Clin Pathol, 2003, 119(4):508-515.
    [12] Hukkanen RR, Liggitt HD, Kelley ST, et al. Comparison of commercially available and novel West Nile virus immunoassays for detection of seroconversion in pig-tailed macaques (Macaca nemestrina) [J]. Comp Med, 2006, 56(1):46- 54.
    [13] Lequin RM. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA) [J]. Clin Chem, 2005, 51(12): 2415-8.
    [14]于萍.西尼罗病毒巢式RT-PCR和荧光定量RT-PCR两种检测方法的建立[D].福建农林大学, 2005.
    [15] Martin DA, Muth DA, Brown T, et al. Standardization of Immunoglobulin M capture enzyme-linked immunosorbent assays for routine diagnosis of arboviral infections [J]. J Clin Microbiol, 2000, 38(5):1823-1826.
    [16] Johnson AJ, Martin DA, Karabatsos N, et al. Detection of anti-arboviral Immunoglobulin G by using a monoclonal antibody-based capture enzyme-linked immunosorbent assay [J]. J Clin Microbiol, 2000, 38(5):1827-1831.
    [17] Wang T, Magnarelli LA, Anderson JF, et al. A recombinant envelope protein-based enzyme-linked immunosorbent assay for West Nile Virus serodiagnosis [J]. Vector Borne Zoonotic Dis, 2002, 2(2):105-109.
    [18] Chang GJ, Hunt AR, Davis B. A single intramuscular injection of recombinant plasmid DNA induces protective immunity and prevents Japanese encephalitis in mice [J]. J Virol , 2000, 74(9):4244-4252.
    [19] Malan AK, Martins TB, Hill HR, et al. Evaluations of commercial West Nile Virus Immunoglobulin G (IgG) and IgM enzyme immunoassays show the value of continuous validation [J]. J Clin Microbiol, 2004, 42(2):727-733.
    [20] Hogrefe WR, Moore R, Lape-Nixon M, et al. The performance of West Nile Virus recombinant (preM/E)-based IgG and IgM ELISA for the detection of West Nile Virus and other flavivirus antibodies [J]. J Clin Microbiol, 2004, 42(10):4641-4648.
    [21] Prince HE, Tobler LH, Yeh C, et al. Persistence of West Nile virus-specific antibodies in viremic blood donors [J]. Clin Vaccine Immunol, 2007, 14(9):1228-30.
    [22]陈茹,刘林琳,许如苏.液相蛋白芯片技术及其在免疫诊断和分析领域的应用进展[J].国际检验医学杂志, 2007, 28(3):232-234.
    [23] Wong SJ, Boyle RH, Demarest VI, et a1. Immunoassay targering nonstructural protein 5 to differentiate West Nile virus inlettion from dengue and St. Louis encephalitis virus infections and from flavivirus vaccination [J]. J Clin Microbiol, 2003, 41(9):4217-4223.
    [24] Wong SJ, Demarest VL, Boyle RH, et al. Detection of human anti-flavivirus antibodies with a West Nile Virus recombinant antigen microsphere immunoassay [J]. J Clin Microbiol, 2004, 42(1):65-72.
    [25] Johnson AJ, Cheshier RC, Cosentino G, et al. Validation of a microsphere-based immunoassay for detection of anti-West Nile virus and anti-St. Louis encephalitis virus immunoglobulin m antibodies [J]. Clin Vaccine Immunol, 2007, 14(9):1084-1093.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700