用户名: 密码: 验证码:
BACE1在糖尿病大鼠海马组织中的表达及胰岛素信号通路对其表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     观察糖尿病大鼠行为学、海马病理组织学特征与β-淀粉样蛋白(β-amyloid protein,Aβ)、β-淀粉样前体蛋白(β-amyloid precursor protein,APP)、淀粉蛋白前体β位分解酶1(β-site APP-cleaving enzyme 1,BACE1)在海马组织中的表达,通过检测糖尿病大鼠海马组织中主要信号通路分子的表达,分析主要信号通路分子与海马BACE1表达的关系,探讨糖尿病糖代谢异常在阿尔茨海默病中的作用机制。
     方法
     高脂高糖喂养后腹腔注射链脲佐菌素(streptozocin,STZ)诱发糖尿病大鼠动物模型,随机分为对照组(S组)、4周模型组(M4组)、6周模型组(M6组)、8周模型组(M8组)。Morris水迷宫实验和穿梭箱实验检测大鼠认知功能和行为学改变。刚果红染色检测大鼠脑内淀粉样物质沉着,Bielschowsky氏法银染色检测老年性痴呆特征性病理改变:老年斑和神经纤维缠结。生物化学法检测血糖、血胆固醇和糖化血红蛋白,放射免疫法检测胰岛素血清浓度,蛋白质免疫印迹法、RT-PCR和酶联免疫吸附法检测APP,免疫组织化学法、蛋白质免疫印迹法、RT-PCR和酶联免疫吸附法检测BACE1,酶联免疫吸附法检测Aβ,蛋白质免疫印迹法和RT-PCR检测p38MAPK、PKC、PKA、JAK-2、PI-3K、Akt和ERK1/2,用图象分析仪测定光密度值。
     结果
     1.糖尿病模型及行为学检查:
     与对照组的体重(482.2±16.5)g相比较,模型组的体重明显降低(P<0.05),模型组内体重无明显差异。血糖浓度从对照组的(6.23±0.62)mmol/dl升至模型组的(23.21±3.46)mmol/dl(P<0.01),血清糖化血红蛋白从对照组的3.44±0.26%升至模型组的12.56±0.67%(P<0.01),胆固醇浓度从对照组的(121.6±26.2)mg/dl升至模型组的(291.1±27.5)mg/dl(P<0.01),血清胰岛素浓度从对照组的(365.3±26.5)pmol/l升至模型组的(406.2±24.5)pmol/l(P<0.01)。模型组内体重、血糖、血清糖化血红蛋白、胆固醇浓度和血清胰岛素浓度无差异。体重减轻、血糖高于16 mmol/dl以及胰岛素抵抗、胆固醇升高为建模成功。定向航行实验检测大鼠的空间辨别学习能力:模型组大鼠搜索平台的潜伏期比对照组明显延长(P<0.01),模型鼠组间未见显著性差异(P>0.05)。空间探索试验检测大鼠的空间记忆能力:模型组大鼠跨越平台次数分比对照组显著减少(P<0.01)。模型鼠组间未见显著性差异(P>0.05)。穿梭箱实验测试其条件性学习能力:模型组大鼠遭受电击的次数比对照组明显增加(P<0.01),从对照组的7.43±2.01次增至模型鼠的15.46±3.62次,模型鼠组间比较未见显著性差异(P>0.05)。模型鼠被电击的时间比对照组明显延长(P<0.01),从对照组的7.43±2.01秒增至模型鼠的15.46±3.62秒,模型鼠组间比较未见显著性差异(P>0.05)。表明模型组有明显的学习、记忆障碍,学习记忆力明显下降。
     2.病理组织学检测
     刚果红染色可见对照组大鼠脑内见到轻微淀粉样物质沉着,与对照组比较,模型组大鼠淀粉样物质沉着明显,组织与胞浆中均有红染,模型鼠脑组织内有淀粉样物质沉着,染色阳性。在刚果红染色的3组脑切片上未见刚果红显示的SP散在分布于海马各部的分子层。Bielschowsky氏银染色可见对照组大鼠神经纤维排列整齐、紧密。与对照组比较,模型组大鼠神经纤维增粗、肿胀,排列紊乱、扭曲、稀疏,间隙扩大,但未找到SP和NFT。刚果红染色阳性,Bielschowsky氏法银染色未出现老年斑和神经纤维缠结。糖尿病大鼠脑内未见阿尔茨海默病特征性病理改变。
     3.APP、Aβ和BACE1检测
     模型组与假手术组比较,模型组APP、Aβ和BACE1表达明显增高(P<0.01)。三个模型组比较无显著性差异,Aβ与APP正相关,APP表达水平与学习、记忆损伤负相关,Aβ与学习、记忆损伤正相关。BACE1表达水平与学习、记忆负相关。
     ELISA法检测Aβ1-40和Aβ1-42显示糖尿病模型鼠脑组织内Aβ1-40水平明显增高,从正常组的(64.13±6.76)pg/mg升至模型组的(86.43±7.03)pg/mg(P<0.001);Aβ1-42也明显升高,从正常组的(67.43±5.12)pg/mg升至(89.45±5.28)pg/mg(P<0.001)。ELISA法检测
     APP显示从正常组的116.65±9.21 pg/mg升至模型组的156.73±8.24pg/mg(P<0.001),Western blotting法OD值从正常组的0.63±0.12升至模型组的1.56±0.19(P<0.001),RT-PCR法OD值从正常组的1.68±0.2 1升至模型组的3.54±0.22(P<0.001)。
     糖尿病模型鼠脑组织内BACE1水平显著增高,ELISA法从正常组的(116.46±8.10)pg/mg升至模型组的(158.73±6.24)pg/mg(P<0.001),Western blotting法OD值从正常组的0.61±0.11升至模型组的1.52±0.16(P<0.001),RT-PCR法OD值从正常组的1.62±0.26升至模型组的3.61±0.32(P<0.001),免疫组织化学法OD值从正常组的0.81±0.21升至模型组的2.01±11.36(P<0.001)。BACE1、Ap表达水平与学习、记忆能力负相关。
     4.胰岛素信号通路主要信号分子检测
     PKC、PKA、JAK-2结果蛋白质印迹结果均显示:与对照组比较,模型组PKC、PKA、JAK-2蛋白质表达水平无显著差异(P>0.05);RT-PCR结果显示模型组PKC、PKA、JAK-2 mRNA表达虽然轻微增高,但无统计学意义(P>0.05)。Werstern blot光密度分析结果显示PI-3K/Akt蛋白表达较对照组下调,从对照组的0.914±0.065降至模型组的0.511±0.051(p=0.000);RT-PCR对PI-3K/Akt分子水平的检测同样显示PI-3K mRNA表达较对照组显著下调,从对照组的1.289±0.072降至模型组的0.821±0.066(P=0.000)。模型组之间差异无统计学意义(P=0.352)。Werstern blot光密度分析结果显示p38MAPK/ERK蛋白表达较对照组下调,从对照组的0.926±0.072降至模型组的0.631±0.056(P=0.000);RT-PCR对p38MAPK/ERK分子水平的检测同样显示p38MAPK/ERK mRNA表达较对照组显著下调,从对照组的1.350±0.071降至模型组的0.96±0.069(P=0.000)。模型组之间差异无统计学意义(P=0.367)。与对照组比较,糖尿病模型组大鼠海马组织内PI-3K/Akt、p38MAPK/ERK表达下调(P=0.000),同时BACE1的表达较对照组上调(P=0.000)。BACE1与PI-3K呈负相关(P<0.05),BACE1与Akt也呈负相关(P<0.05);BACE1与p38MAPK无相关(P>0.05),BACE1与ERK1/2无相关(P>0.05),Aβ40/42与p38MAPK负相关(P<0.05),Aβ40/42与ERK1/2负相关(P<0.05)。
     结论
     1.APP、Aβ在糖尿病大鼠脑组织表达增高,糖尿病糖代谢异常增强Aβ表达参与了阿尔茨海默病的发病机,APP具有双重作用机制,既具有脑保护作用,又有增高Aβ表达作用。
     2.BACE1、Aβ在糖尿病大鼠脑组织表达增高,糖尿病糖代谢异常增强BACE1、Aβ表达参与了阿尔茨海默病的发病机制。
     3.信号通路MAPK/ERK影响Aβ的代谢、信号通路PI-3K/Akt可以调节BACE1的表达参与了阿尔茨海默病的发病机制。
Objective
     To measure praxiological and pathological change progress of diabetes mellitus of Wistar rats,to investigate expression of APP,BACE1 and Aβin brain for diabetes mellitus of Wistar rats,to investigate expression of BACE1 and molecules of signal pathway in brain for diabetes mellitus of Wistar rats,to study pathophysiological mechanism of Alzheimer's disease from diabetic metabolic disorder.
     Methods
     Animal model of diabetes mellitus was established by high fat and suger and streptozocin with intraperitoneal injection.Wistar rats were randomly divided into control group(S),4 week diabetes mellitus model group(M4),6 week diabetes mellitus model group(M6) and 8 week diabetes mellitus model group(M8).Behaviour was tested with Morris water maze task and shuttle box.Congo red detected deposition of beta-amyloid in the brain tissues.Bielschowsky stained silver determined senile plaques and neurofibillary tangles in the brain tissues,biochemical assay for blood glucose,blood cholesterol and glycosylated hemoglobin, serum concentration of insulin by radioimmunoassay detection,Expression of Aβwas measured by enzyme linked immunosorbent assay and APP by enzyme linked immunosorbent assay,Western blotting and RT-PCR, BACE1 by immunohistochemistry,enzyme linked immunosorbent assay, Western blotting and RT-PCR,p38MAPK,PKC,PKA,JAK-2,PI-3K,Akt and ERK1/2 by Western blotting and RT-PCR.The light density value was measured by imaging analysis.
     Results
     Animal model and praxiologicai disorder
     The model group in weighting significantly decreased compared with the control group(482.2±16.5) g(P<0.05).Blood glucose concentration increased from the control group(6.23±0.62) mmol/ dl to the model group (23.21±3.46) mmol/dl(P<0.01).Glycosylated hemoglobin levels increased from the control group to 3.44±0.26%of the model group 12.56±0.67% (P<0.01).Cholesterol concentration increased from the control group (121.6±26.2) mg/dl the model group(291.±27.5) mg/dl(P<0.01).Serum insulin concentration increased from the control group(365.3±26.5) pmol/l to the model group(406.2±24.5) pmol/l(P<0.01).Weight,blood glucose, serum glycosylated hemoglobin,cholesterol concentration and serum insulin concentration is no difference in model groups.Weight loss,higher than 16mmol/dl blood sugar,insulin resistance and elevated cholesterol stand for success modeling.Navigation experiments in rats to identify the spatial learning ability:in the morris water maze test,the sample rats' latency of searching for the platform is obviously longer than the control rats(P<0.01),model group mice no significant difference(P>0.05).Space exploration test of spatial memory in rats:The times of crossing platform within 120 seconds of sample rats are obviously less than the control ones (P<0.01),model groups no significant difference(P>0.05).Shuttle box to test the learning ability for condition reflex:the number of rats subjected to electric shocks increased in model groups than the control group significantly(P<0.01) from 7.43±2.01 times in control group to 15.46±3.62 times,the model rats no significant differences(P>0.05).The time of electric stimulation in model groups was significantly longer than the control group from 7.43±2.01 second in control group to 15.46±3.62 second in model.These results show that the model group capacity of learning and memory significantly decreasd in diabetes mellitus model groups and has a clear learning and memory impairment.
     Histopathological changes
     Congo Red staining forms non-polar hydrogen bonds with amyloid when viewed by polarised light due to parallel alignment of the dye molecules on the linearly arranged amyloid fibrils.The Alkaline Congo Red Technique uses high concentrations of sodium chloride which act as ionic competitors for the dye thus eliminating background electrochemical (polar) staining while enhancing the hydrogen(non-polar) binding of Congo Red and amyloid.The results by Congo Red staining showed that deposition of amyloid in model group is more significant than control group,but amyloid plaque.Bielschowsky's silver staining shows that nerve fibers in the control group of rats were arranged regularly and closely. Compared with the control group,model groups of nerve fibers is thickening,swelling and disorder,but SP and NFT.Congo red staining and Bielschowsky's silver staining method does not appear senile plaques and neurofibrillary tangles.Diabetic rat brain has no characteristic pathological changes of Alzheimer's disease.
     Measurement of APP,Aβand BACE1
     The expression of APP,Aβand BACE1 in MT groups is higher than that of in S group(P<0.01).The level of Aβand BACE1 has positive correlation with cognitive impairment.The level of APP has negative correlation with cognitive impairment.Three model groups have no significant difference in the expression of APP,Aβand BACE1.
     The expression of Aβ1-40 increases from(64.13±6.76) pg/mg in normal group to(86.43±7.03) pg/mg in model group by ELISA(P<0.001) and Aβ1-42 from(67.43±5.12) pg/mg in normal group to(89.45±5.28) pg/mg(P<0.001) in model group.ELISA assay showed that the expression of APP increases from(116.65±9.21) pg/mg in normal group to(156.73± 8.24) pg/mg in model group(P<0.001),Western blotting method from 0.63±0.12 in normal group to 1.56±0.19 in model group(P<0.001),RT-PCR method from 1.68±0.21 in normal group to 3.54±0.22 in model group (P<0.001).
     The expression of BACE1 increases from(116.46±8.10)pg/mg in normal group to(158.73±6.24)pg/mg in model group by ELISA and from 0.61±0.11 in normal group to 1.52±0.16 by Western blotting OD valule and from 1.62±0.26 in normal group to 3.61±0.32 by RT-PCR OD valule and from 0.81±0.21 in normal group to 2.01±0.36 by immunohistochemistry OD valule(P<0.001)。The expression of BACE1 and Aβin MT group is higher than that of in S group(P<0.01).The level of BACE1 and Aβhas positive correlation with cognitive impairment.
     The major molecules in insulin signal pathway
     The results of PKC,PKA and JAK-2 by Western blotting show that: the level of protein expression of p38MAPK in model groups was no significant difference,compared with the control group(P>0.05);RT-PCR results showed that the mRNA level of PKC,PKA and JAK-2 in the model group has been slightly increased,but no statistical significance(P>0.05).Optical density by Werstern blot analysis revealed that protein level of PI-3K/Akt in model groups has lower than the control group,from the control group 0.914±0.065 to the model group 0.511±0.051(P=0.000); RT-PCR for molecular PI-3K/Akt show the same level of detection of PI-3K mRNA expression than in the control group significantly decreased from the control group 1.289±0.072 to the model group 0.821±0.066 (P=0.000),there was no significant difference in model groups(P=0.352). Optical density by Werstern blot analysis revealed that protein expression p38MAPK/ERK in model groups has lower than the control group,from the control group 0.926±0.072 to the model group 0.631±0.056(P = 0.000);RT-PCR for the detection of the molecular level p38MAPK/ERK mRNA expression showed a more significant downward adjustment from the control group 1.350±0.071 to the model group 0.96±0.069(P = 0.000),there was no significant difference in model groups(P = 0.367). Compared with the control group,,the expression of PI-3K/Akt, p38MAPK/ERK in the hippocampal tissue of diabetes mellitus model group decreased significantly(P=0.000),while the expression of BACE1 increased than the control group(P=0.000).BACE1 and PI-3K negatively correlated(P<0.05),BACE1 and Akt is also negatively correlated(P<0.05);BACE1 and p38MAPK was no correlation(P>0.05),BACE1 and ERK1/2 was no correlation(P>0.05),Aβ40/42 and p38MAPK negative correlation(P<0.05),Aβ40/42 and ERK1/2 negative correlation(P<0.05).
     Conclusions
     1.The expression of Aβ,APP increased in diabetes mellitus rats. Diabetes mellitus contributes to the pathogenesis of Alzheimer's disease that diabetic metabolic disorder increases expression of Aβbut APP.APP has a dual mechanism,both the role of cerebral protection, and increased expression of the role of Aβ.
     2.The expression of BACE1 and Aβincreased in diabetes mellitus rats. Diabetes mellitus contributes to Alzheimer's disease that Diabetic metabolic disorder increases expression of BACE1 and Aβ.
     3.Signaling pathway MAPK/ERK affect Aβmetabolism and signaling pathway regulates PI-3K/Akt involved in BACE1 expression in the pathogenesis of Alzheimer's disease.PI-3K/Akt signaling pathway might effect the expression of BACE1,which demonstrates that impaired signaling pathway shoud make amyloid precursor protein easy to be processed by BACE1 to involve the pathology of Alzheimer's disease.
引文
[1]Hampel H,Burger K,Teipel SJ,et al.Core candidate neurochemical and imaging biomarkers of Alzheimer's disease.Alzheimers Dement[J],2008,4:38-48.
    [2]Wen Y,Yu WH,Maloney B,et al.Transcriptional regulation of beta-secretase by p25/cdk5 leads to enhanced amyloidogenic processing.Neuron[J],2008,57:680-90.
    [3]Rossner S,Sastre M,Bourne K,et al.Transcriptional and translational regulation of BACE1 expression--implications for Alzheimer's disease.Prog Neurobiol[J],2006,79:95-111.
    [4]Wu J,Basha MR,Brock B,et al.Alzheimer's disease(AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead(Pb):evidence for a developmental origin and environmental link for AD.J Neurosci[J],2008,28:3-9.
    [5] Chiocco MJ, Lamb BT. Spatial and temporal control of age-related APP processing in genomic-based beta-secretase transgenic mice. Neurobiol Aging[J], 2007,28:75-84.
    [6] Ohno M, Chang L, Tseng W, et al. Temporal memory deficits in Alzheimer's mouse models: rescue by genetic deletion of BACE1. Eur J Neurosci[J], 2006,23:251-60.
    [7] Larbig G, Schmidt B. Synthesis of tetramic and tetronic acids as beta-secretase inhibitors. J Comb Chem[J], 2006,8:480-90.
    [8] Wang WX, Rajeev BW, Stromberg AJ, et al. The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci[J], 2008,28:1213-23.
    [9] Borghi R, Patriarca S, Traverso N, et al. The increased activity of BACE1 correlates with oxidative stress in Alzheimer's disease. Neurobiol Aging[J], 2006,21:1156-67.
    [10] Sastre M, Dewachter I, Rossner S, et al. Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma. Proc Natl Acad Sci U S A[J], 2006,103:443-8.
    [11] Sun X, Tong Y, Qing H, et al. Increased BACE1 maturation contributes to the pathogenesis of Alzheimer's disease in Down syndrome. FASEB J[J], 2006,20:1361-8.
    [12] Vanhanen M, Koivisto K, Moilanen L, et al. Association of metabolic syndrome with Alzheimer disease: a population-based study. Neurology[J], 2006,67:843-7.
    [13] Martins IJ, Hone E, Foster JK, et al. Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer's disease and cardiovascular disease. Mol Psychiatry[J], 2006,11:721-36.
    [14] Biessels GJ, Kappelle LJ. Increased risk of Alzheimer's disease in Type II diabetes: insulin resistance of the brain or insulin-induced amyloid pathology?. Biochem Soc Trans[J], 2005,33:1041-4.
    [15] Qin W, Jia J. Down-regulation of insulin-degrading enzyme by presenilin 1 V97L mutant potentially underlies increased levels of amyloid beta 42. Eur J Neurosci[J], 2008,27:2425-32.
    [16] Lester-Coll N, Rivera EJ, Soscia SJ, et al. Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer's disease. J Alzheimers Dis[J], 2006,9:13-33.
    [17] Sun MK, Alkon DL. Links between Alzheimer's disease and diabetes. Drugs Today (Barc) [J], 2006,42:481-9.
    [18] Dore S, Kar S, Zheng WH, et al. Rediscovering good old friend IGF-I in the new millenium: possible usefulness in Alzheimer's disease and stroke. Pharm Acta Helv[J], 2000,74:273-80.
    [19] Steen E, Terry BM, Rivera EJ, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease-is this type 3 diabetes?. J Alzheimers Dis[J], 2005,7:63-80.
    [20] Velliquette RA, O'Connor T, Vassar R. Energy inhibition elevates beta-secretase levels and activity and is potentially amyloidogenic in APP transgenic mice: possible early events in Alzheimer's disease pathogenesis. J Neurosci[J], 2005,25:10874-83.
    [21] Hoyer S, Riederer P. [Pathomechanisms and hypothesis-guided therapeutic strategies for late-onset Alzheimer's disease]. Fortschr Neurol Psychiatr[J], 2003,71 Suppl 1:S16-26.
    [22] Jolivalt CG, Lee CA, Beiswenger KK, et al. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer's disease and correction by insulin. J Neurosci Res[J], 2008,86:3265-74.
    [23] Revill P, Moral MA, Prous JR. Impaired insulin signaling and the pathogenesis of Alzheimer's disease. Drugs Today (Barc) [J], 2006,42:785-90.
    [24] de la Monte SM, Tong M, Lester-Coll N, et al. Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer's disease. J Alzheimers Dis[J], 2006,10:89-109.
    [25] Cairo E, Trejo JL, Spuch C, et al. Blockade of the insulin-like growth factor I receptor in the choroid plexus originates Alzheimer's-like neuropathology in rodents: new cues into the human disease?. Neurobiol Aging[J], 2006,27:1618-31.
    [26] Moroz N, Tong M, Longato L, et al. Limited Alzheimer-type neurodegeneration in experimental obesity and type 2 diabetes mellitus. J Alzheimers Dis[J], 2008,15:29-44.
    [27] Lanz TA, Salatto CT, Semproni AR, et al. Peripheral elevation of IGF-1 fails to alter Abeta clearance in multiple in vivo models. Biochem Pharmacol[J], 2008,75:1093-103.
    [28] Rhein V, Eckert A. Effects of Alzheimer's amyloid-beta and tau protein on mitochondrial function -- role of glucose metabolism and insulin signalling. Arch Physiol Biochem[J], 2007,113:131-41.
    [29] Puglielli L. Aging of the brain, neurotrophin signaling, and Alzheimer's disease: is IGF 1-R the common culprit?. Neurobiol Aging[J], 2008,29:795-811.
    [30] Cao D, Lu H, Lewis TL, et al. Intake of sucrose-sweetened water induces insulin resistance and exacerbates memory deficits and amyloidosis in a transgenic mouse model of Alzheimer disease. J Biol Chem[J], 2007, 282:36275-82.
    [31] Ho L, Qin W, Pompl PN, et al. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease. FASEB J[J], 2004,18:902-4.
    [32] Liolitsa D, Powell J, Lovestone S. Genetic variability in the insulin signalling pathway may contribute to the risk of late onset Alzheimer's disease. J Neurol Neurosurg Psychiatry [J], 2002,73:261-6.
    [33]Shibata M, Yamada S, Kumar SR, et al. Clearance of Alzheimer's amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest[J], 2000,106:1489-99.
    [34] Herz J, Marschang P. Coaxing the LDL receptor family into the fold. Cell[J], 2003,112:289-92.
    [35] Deane R, Du Yan S, Submamaryan RK, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med[J], 2003,9:907-13.
    [36] Donahue JE, Flaherty SL, Johanson CE, et al. RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta Neuropathol (Berl) [J], 2006,112:405-15.
    [37] Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science[J], 2002,297:353-6.
    [38] Ghiso J, Frangione B. Amyloidosis and Alzheimer's disease. Adv Drug Deliv Rev [J], 2002, 54:1539-51.
    [39] Bowman GL, Kaye JA, Moore M, et al. Blood-brain barrier impairment in Alzheimer disease: stability and functional significance. Neurology [J], 2007, 68:1809-14.
    [40] Leal MC, Dorfman VB, Gamba AF, et al. Plaque-associated overexpression of insulin-degrading enzyme in the cerebral cortex of aged transgenic tg2576 mice with Alzheimer pathology. J Neuropathol Exp Neurol[J], 2006,65:976-87.
    [41] Vepsalainen S, Hiltunen M, Helisalmi S, et al. Increased expression of Abeta degrading enzyme IDE in the cortex of transgenic mice with Alzheimer's disease-like neuropathology. Neurosci Lett[J], 2008,438:216-20.
    [42] Zhao Z, Xiang Z, Haroutunian V, et al. Insulin degrading enzyme activity selectively decreases in the hippocampal formation of cases at high risk to develop Alzheimer's disease. Neurobiol Aging [J], 2007, 28:824-30.
    [43] Messier C, Teutenberg K. The role of insulin, insulin growth factor, and insulin-degrading enzyme in brain aging and Alzheimer's disease. Neural Plast [J], 2005,12:311-28.
    [44] Jaya Prasanthi RP, Schommer E, Thomasson S, et al. Regulation of beta-amyloid levels in the brain of cholesterol-fed rabbit, a model system for sporadic Alzheimer's disease. Mech Ageing Dev [J], 2008,129:649-55.
    [45] Xie L, Helmerhorst E, Taddei K, et al. Alzheimer's beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci [J], 2002,22:RC221.
    [46] Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer's disease: review and hypothesis. Neurobiol Aging[J], 2006,27:190-8
    [1]Vanhanen M,Koivisto K,Moilanen L,et al.Association of metabolic syndrome with Alzheimer disease:a population-based study.Neurology[J],2006,67:843-7.
    [2]Martins IJ,Hone E,Foster JK,et al.Apolipoprotein E,cholesterol metabolism,diabetes,and the convergence of risk factors for Alzheimer's disease and cardiovascular disease. Mol Psychiatry [J], 2006,11:721-36.
    [3] Biessels GJ, Kappelle LJ. Increased risk of Alzheimer's disease in Type II diabetes: insulin resistance of the brain or insulin-induced amyloid pathology?. Biochem Soc Trans[J], 2005,33:1041-4.
    [4] Lester-Coll N, Rivera EJ, Soscia SJ, et al. Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer's disease. J Alzheimers Dis[J], 2006,9:13-33.
    [5] Sun MK, Alkon DL. Links between Alzheimer's disease and diabetes. Drugs Today (Barc) [J], 2006,42:481-9.
    [6] Steen E, Terry BM, Rivera EJ, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease—is this type 3 diabetes?. J Alzheimers Dis[J], 2005,7:63-80.
    [7] Alzheimer research forum live discussion: is Alzheimer's a type 3 diabetes?. J Alzheimers Dis[J], 2006,9:349-53.
    [8] Tahirovic I, Sofic E, Sapcanin A, et al. Brain antioxidant capacity in rat models of betacytotoxic-induced experimental sporadic Alzheimer's disease and diabetes mellitus. J Neural Transm Suppl[J], 2007:235-40.
    [9] Salkovic-Petrisic M, Tribl F, Schmidt M, et al. Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem[J], 2006,96:1005-15.
    [10] Miu AC, Andreescu CE, Vasiu R, et al. A behavioral and histological study of the effects of long-term exposure of adult rats to aluminum. Int J Neurosci[J], 2003,113:1197-211.
    
    [11] Janus C, D'Amelio S, Amitay O, et al. Spatial learning in transgenic mice expressing human presenilin 1 (PS 1) transgenes. Neurobiol Aging[J], 2000,21:541-9.
    [12] Zhang JX, Lu XJ, Wang XC, et al. Intermittent hypoxia impairs performance of adult mice in the two-way shuttle box but not in the Morris water maze. J Neurosci Res[J], 2006,84:228-35.
    [13] Montag-Sallaz M, Montag D. Severe cognitive and motor coordination deficits in tenascin-R-deficient mice. Genes Brain Behav[J], 2003,2:20-31.
    [14] Arvanitakis Z, Wilson RS, Li Y, et al. Diabetes and function in different cognitive systems in older individuals without dementia. Diabetes Care[J], 2006,29:560-5.
    [15] Wahlin A, Nilsson E, Fastbom J. Cognitive performance in very old diabetic persons: the impact of semantic structure, preclinical dementia, and impending death. Neuropsychology[J], 2002,16:208-16.
    [16] Goldstein LE, Muffat JA, Cherny RA, et al. Cytosolic beta-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer's disease. Lancet[J], 2003,361:1258-65.
    [17] Sasaki A, Shoji M, Harigaya Y, et al. Amyloid cored plaques in Tg2576 transgenic mice are characterized by giant plaques, slightly activated microglia, and the lack of paired helical filament-typed, dystrophic neurites. Virchows Arch[J], 2002,441:358-67.
    [18] Wisniewski HM, Wen GY, Kim KS. Comparison of four staining methods on the detection of neuritic plaques. Acta Neuropathol[J], 1989,78:22-7.
    [19] Suenaga T, Hirano A, Llena JF, et al. Modified Bielschowsky stain and immunohistochemical studies on striatal plaques in Alzheimer's disease. Acta Neuropathol[J], 1990,80:280-6.
    [20] Suenaga T, Hirano A, Llena JF, et al. Modified Bielschowsky and immunocytochemical studies on cerebellar plaques in Alzheimer's disease. J Neuropathol Exp Neurol[J], 1990,49:31-40.
    [21] Sprecher CA, Grant FJ, Grimm G, et al. Molecular cloning of the cDNA for a human amyloid precursor protein homolog: evidence for a multigene family. Biochemistry [J], 1993,32:4481 -6.
    [22] Beher D, Hesse L, Masters CL, et al. Regulation of amyloid protein precursor (APP) binding to collagen and mapping of the binding sites on APP and collagen type I. J Biol Chem[J], 1996,271:1613-20.
    [23] Tang X, Milyavsky M, Goldfinger N, et al. Amyloid-beta precursor-like protein APLP1 is a novel p53 transcriptional target gene that augments neuroblastoma cell death upon genotoxic stress. Oncogene[J], 2007,26:7302-12.
    [24] Meier-Ruge W, Bertoni-Freddari C, Iwangoff P. Changes in brain glucose metabolism as a key to the pathogenesis of Alzheimer's disease. Gerontology[J], 1994,40:246-52.
    [25] Akaaboune M, Verdiere-Sahuque M, Lachkar S, et al. Serine proteinase inhibitors in human skeletal muscle: expression of beta-amyloid protein precursor and alpha 1-antichymotrypsin in vivo and during myogenesis in vitro. J Cell Physiol[J], 1995,165:503-11.
    [26] Masliah E, Crews L, Hansen L. Synaptic remodeling during aging and in Alzheimer's disease. J Alzheimers Dis[J], 2006,9:91-9.
    [27] Ashley J, Packard M, Ataman B, et al. Fasciclin II signals new synapse formation through amyloid precursor protein and the scaffolding protein dX11/Mint. J Neurosci[J], 2005,25:5943-55.
    [28] Wolf SA, Kronenberg G, Lehmann K, et al. Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer's disease. Biol Psychiatry [J], 2006,60:1314-23.
    [29] Tong XK, Nicolakakis N, Kocharyan A, et al. Vascular remodeling versus amyloid beta-induced oxidative stress in the cerebrovascular dysfunctions associated with Alzheimer's disease. J Neurosci[J], 2005,25:11165-74.
    [1]Rossner S,Sastre M,Bourne K,et al.Transcriptional and translational regulation of BACE1 expression--implications for Alzheimer's disease.Prog Neurobiol[J],2006,79:95-111.
    [2]Wen Y,Yu WH,Maloney B,et al.Transcriptional regulation of beta-secretase by p25/cdk5 leads to enhanced amyloidogenic processing.Neuron[J],2008,57:680-90.
    [3]Sun X,He G,Song W.BACE2,as a novel APP theta-secretase,is not responsible for the pathogenesis of Alzheimer's disease in Down syndrome.FASEB J[J],2006,20:1369-76.
    [4]Vassar R.beta-Secretase,APP and Abeta in Alzheimer's disease.Subcell Biochem[J],2005,38:79-103.
    [5]Sun X,Wang Y,Qing H,et al.Distinct transcriptional regulation and function of the human BACE2 and BACE1 genes.FASEB J[J],2005,19:739-49.
    [6]Vanhanen M,Koivisto K,Moilanen L,et al.Association of metabolic syndrome with Alzheimer disease:a population-based study.Neurology[J],2006,67:843-7.
    [7]Martins IJ,Hone E,Foster JK,et al.Apolipoprotein E,cholesterol metabolism,diabetes,and the convergence of risk factors for Alzheimer's disease and cardiovascular disease.Mol Psychiatry[J],2006,11:721-36.
    [8] Biessels GJ, Kappelle LJ. Increased risk of Alzheimer's disease in Type II diabetes: insulin resistance of the brain or insulin-induced amyloid pathology?. Biochem Soc Trans[J], 2005,33:1041-4.
    [9] Lester-Coll N, Rivera EJ, Soscia SJ, et al. Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer's disease. J Alzheimers Dis[J], 2006,9:13-33.
    [10] Sun MK, Alkon DL. Links between Alzheimer's disease and diabetes. Drugs Today (Barc) [J], 2006,42:481-9.
    [11] Steen E, Terry BM, Rivera EJ, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease-is this type 3 diabetes?. J Alzheimers Dis[J], 2005,7:63-80.
    [12] Alzheimer research forum live discussion: is Alzheimer's a type 3 diabetes?. J Alzheimers Dis[J], 2006,9:349-53.
    [13] Tahirovic I, Sofic E, Sapcanin A, et al. Brain antioxidant capacity in rat models of betacytotoxic-induced experimental sporadic Alzheimer's disease and diabetes mellitus. J Neural Transm Suppl[J], 2007:235-40.
    [14] Salkovic-Petrisic M, Tribl F, Schmidt M, et al. Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem[J], 2006,96:1005-15.
    [15] Arvanitakis Z, Wilson RS, Li Y, et al. Diabetes and function in different cognitive systems in older individuals without dementia. Diabetes Care[J], 2006,29:560-5.
    [16] Wahlin A, Nilsson E, Fastbom J. Cognitive performance in very old diabetic persons: the impact of semantic structure, preclinical dementia, and impending death. Neuropsychology[J], 2002,16:208-16.
    [17] Ling Y, Morgan K, Kalsheker N. Amyloid precursor protein (APP) and the biology of proteolytic processing: relevance to Alzheimer's disease. Int J Biochem Cell Biol[J], 2003,35:1505-35.
    [18] Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science[J], 2002,297:353-6.
    [19] Esler WP, Wolfe MS. A portrait of Alzheimer secretases?new features and familiar faces. Science[J], 2001,293:1449-54.
    [20] Borghi R, Patriarca S, Traverso N, et al. The increased activity of BACE1 correlates with oxidative stress in Alzheimer's disease. Neurobiol Aging[J], 2006.
    [21] Sastre M, Dewachter I, Rossner S, et al. Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma. Proc Natl Acad Sci U S A[J], 2006,103:443-8.
    [22] Chiocco MJ, Lamb BT. Spatial and temporal control of age-related APP processing in genomic-based beta-secretase transgenic mice. Neurobiol Aging[J], 2007,28:75-84.
    [23] Ohno M, Chang L, Tseng W, et al. Temporal memory deficits in Alzheimer's mouse models: rescue by genetic deletion of BACE1. Eur J Neurosci[J], 2006,23:251-60.
    [24] Larbig G, Schmidt B. Synthesis of tetramic and tetronic acids as beta-secretase inhibitors. J Comb Chem[J], 2006,8:480-90.
    [25] Zacchetti D, Chieregatti E, Bettegazzi B, et al. BACE1 expression and activity: relevance in Alzheimer's disease. Neurodegener Dis[J], 2007,4:117-26.
    [26] Zhao J, Fu Y, Yasvoina M, et al. Beta-site amyloid precursor protein cleaving enzyme 1 levels become elevated in neurons around amyloid plaques: implications for Alzheimer's disease pathogenesis. J Neurosci[J], 2007,27:3639-49.
    [27] Farris W, Mansourian S, Chang Y, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A[J], 2003,100:4162-7.
    [28] Hoyer S. Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol[J], 2004,490:115-25.
    [29] Nicolls MR. The clinical and biological relationship between Type II diabetes mellitus and Alzheimer's disease. Curr Alzheimer Res[J], 2004,1:47-54.
    [30] Hu X, He W, Diaconu C, et al. Genetic deletion of BACE1 in mice affects remyelination of sciatic nerves. FASEB J[J], 2008,22:2970-80.
    [31] Mattsson N, Axelsson M, Haghighi S, et al. Reduced cerebrospinal fluid BACE1 activity in multiple sclerosis. Mult Scler[J], 2009.
    [32] Hu X, Hicks CW, He W, et al. Bacel modulates myelination in the central and peripheral nervous system. Nat Neurosci[J], 2006,9:1520-5.
    [33] Willem M, Garratt AN, Novak B, et al. Control of peripheral nerve myelination by the beta-secretase BACE1. Science[J], 2006,314:664-6.
    [34] Savonenko AV, Melnikova T, Laird FM, et al. Alteration of BACE1-dependent NRG1/ErbB4 signaling and schizophrenia-like phenotypes in BACE1-null mice. Proc Natl Acad Sci U S A[J], 2008,105:5585-90.
    [1]Bailey P.Biological markers in Alzheimer's disease.Can J Neurol Sci[J],2007,34Suppl 1:S72-6.
    [2]Suram A,Venugopal C,Prakasam A,et al.Genotoxicity in Alzheimer's disease:role of amyloid.Curr Alzheimer Res[J],2006,3:365-75.
    [3]Calabrese V,Guagliano E,Sapienza M,et al.Redox regulation of cellular stress response in aging and neurodegenerative disorders:role of vitagenes.Neurochem Res[J],2007,32:757-73.
    [4]Shi Q,Gibson GE,Das UN.Oxidative stress and transcriptional regulation in Alzheimer disease;Folic acid and polyunsaturated fatty acids improve cognitive function and prevent depression,dementia,and Alzheimer's disease--but how and why?.Alzheimer Dis Assoc Disord;Prostaglandins Leukot Essent Fatty Acids[J],2007,21;78:276-91;11-9.
    [5]von Bernhardi R.Glial cell dysregulation:a new perspective on Alzheimer disease. Neurotox Res[J], 2007,12:215-32.
    [6] Mocchegiani E, Costarelli L, Giacconi R, et al. Zinc-binding proteins (metallothionein and alpha-2 macroglobulin) and immunosenescence. Exp Gerontol[J], 2006,41:1094-107.
    [7] Garcia-Alloza M, Borrelli LA, Rozkalne A, et al. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem[J], 2007,102:1095-104.
    [8] Grunblatt E, Koutsilieri E, Hoyer S, et al. Gene expression alterations in brain areas of intracerebroventricular streptozotocin treated rat. J Alzheimers Dis[J], 2006,9:261-71.
    [9] Baumeister R, Hertweck M. Genes, longevity, and technology: meeting report from the 2nd conference on functional genomics of aging in Crete. Sci Aging Knowledge Environ[J], 2004,2004:pe37.
    [10] Campbell A. The role of aluminum and copper on neuroinflammation and Alzheimer's disease. J Alzheimers Dis[J], 2006,10:165-72.
    [11] Mancuso C, Scapagini G, Curro D, et al. Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci[J], 2007,12:1107-23.
    [12] Dominguez RO, Marschoff ER, Guareschi EM, et al. Insulin, glucose and glycated hemoglobin in Alzheimer's and vascular dementia with and without superimposed Type II diabetes mellitus condition. J Neural Transm[J], 2008,115:77-84.
    [13] Profenno LA, Faraone SV. Diabetes and overweight associate with non-APOE4 genotype in an Alzheimer's disease population. Am J Med Genet B Neuropsychiatr Genet[J], 2008,147B:822-9.
    [14] Neumann KF, Rojo L, Navarrete LP, et al. Insulin resistance and Alzheimer's disease: molecular links & clinical implications. Curr Alzheimer Res[J], 2008,5:438-47.
    [15] Miklossy J, Qing H, Radenovic A, et al. Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes. Neurobiol Aging[J], 2008, 11:177-86.
    [16] Pilcher H. Alzheimer's disease could be "type 3 diabetes". Lancet Neurol[J], 2006,5:388-9.
    [17] Lester-Coll N, Rivera EJ, Soscia SJ, et al. Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer's disease. J Alzheimers Dis[J], 2006,9:13-33.
    [18] Steen E, Terry BM, Rivera EJ, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease-is this type 3 diabetes?. J Alzheimers Dis[J], 2005,7:63-80.
    [19] Ho L, Qin W, Pompl PN, et al. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease. FASEB J[J], 2004,18:902-4.
    [20] Salkovic-Petrisic M, Hoyer S. Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: an experimental approach. J Neural Transm Suppl[J], 2007:217-33.
    [21] Li ZG, Zhang W, Sima AA. Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes[J], 2007,56:1817-24.
    [22] Hoyer S. The brain insulin signal transduction system and sporadic (type II) Alzheimer disease: an update. J Neural Transm[J], 2002,109:341-60.
    [23] Cole GM, Frautschy SA. The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer's Disease. Exp Gerontol[J], 2007,42:10-21.
    [24] Escribano L, Simon AM, Perez-Mediavilla A, et al. Rosiglitazone reverses memory decline and hippocampal glucocorticoid receptor down-regulation in an Alzheimer's disease mouse model. Biochem Biophys Res Commun[J], 2009,379:406-10.
    [25] Landreth G, Jiang Q, Mandrekar S, et al. PPARgamma agonists as therapeutics for the treatment of Alzheimer's disease. Neurotherapeutics[J], 2008,5:481-9.
    [26] Takashima A. [Brain aging and insulin signals]. Nippon Yakurigaku Zasshi[J], 2005,125:137-40.
    [27] De Felice FG, Vieira MN, Bomfim TR, et al. Protection of synapses against Alzheimer's-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci U S A[J], 2009,106:1971-6.
    [28] Jolivalt CG, Lee CA, Beiswenger KK, et al. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer's disease and correction by insulin. J Neurosci Res[J], 2008,86:3265-74.
    [29] Hoyer S. The aging brain. Changes in the neuronal insulin/insulin receptor signal transduction cascade trigger late-onset sporadic Alzheimer disease (SAD). A mini-review. J Neural Transm [J], 2002,109:991-1002.
    [30] Biessels GJ, Bravenboer B, Gispen WH. Glucose, insulin and the brain: modulation of cognition and synaptic plasticity in health and disease: a preface. Eur J Pharmacol[J], 2004,490:1-4.
    [31] Zhiyou C, Yong Y, Shanquan S, et al. Upregulation of BACE1 and beta-Amyloid Protein Mediated by Chronic Cerebral Hypoperfusion Contributes to Cognitive Impairment and Pathogenesis of Alzheimer's Disease. Neurochem Res [J], 2009.
    [32] Cole SL, Vassar R. The role of amyloid precursor protein processing by BACE1, the beta-secretase, in Alzheimer disease pathophysiology. J Biol Chem[J], 2008,283:29621-5.
    [33] Lesch KP, Ihl R, Frolich L, et al. Endocrine responses to growth hormone releasing hormone and corticotropin releasing hormone in early-onset Alzheimer's disease. Psychiatry Res[J], 1990,33:107-12.
    [34] Murialdo G, Barreca A, Nobili F, et al. Dexamethasone effects on cortisol secretion in Alzheimer's disease: some clinical and hormonal features in suppressor and nonsuppressor patients. J Endocrinol Invest[J], 2000,23:178-86.
    [35] Tahirovic I, Sofic E, Sapcanin A, et al. Brain antioxidant capacity in rat models of betacytotoxic-induced experimental sporadic Alzheimer's disease and diabetes mellitus. J Neural Transm Suppl[J], 2007:235-40.
    [36] Salkovic-Petrisic M, Tribl F, Schmidt M, et al. Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem[J], 2006,96:1005-15.
    [37] Castri P, Iacovelli L, De Blasi A, et al. Reduced insulin-induced phosphatidylinositol-3-kinase activation in peripheral blood mononuclear leucocytes from patients with Alzheimer's disease. Eur J Neurosci[J], 2007,26:2469-72.
    [38] Revill P, Moral MA, Prous JR. Impaired insulin signaling and the pathogenesis of Alzheimer's disease. Drugs Today (Barc) [J], 2006,42:785-90.
    [39] Selkoe DJ. Alzheimer disease: mechanistic understanding predicts novel therapies. Ann Intern Med[J], 2004,140:627-38.
    [40] Nelson TJ, Alkon DL. Insulin and cholesterol pathways in neuronal function, memory and neurodegeneration. Biochem Soc Trans[J], 2005,33:1033-6.
    [41] Jiang LH, Zhang YN, Wu XW, et al. Effect of insulin on the cognizing function and expression of hippocampal Abeta1-40 of rat with Alzheimer disease. Chin Med J (Engl) [J], 2008,121:827-31.
    [42] Biessels GJ, Kamal A, Urban IJ, et al. Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment. Brain Res, 1998,800:125-35.
    [43] Martin D, Salinas M, Lopez-Valdaliso R, et al. Effect of the Alzheimer amyloid fragment Abeta(25-35) on Akt/PKB kinase and survival of PC12 cells. J Neurochem[J], 2001,78:1000-8.
    [44] Baki L, Shioi J, Wen P, et al. PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation: effects of FAD mutations. EMBO J[J], 2004,23:2586-96.
    [45] de la Monte SM, Wands JR. Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer's disease. J Aizheimers Dis[J], 2005,7:45-61.
    [46] Costantini C, Ko MH, Jonas MC, et al. A reversible form of lysine acetylation in the ER and Golgi lumen controls the molecular stabilization of BACE1. Biochem J[J], 2007,407:383-95.
    [47] Yamakawa T, Tanaka S, Kamei J, et al. Phosphatidylinositol 3-kinase in angiotensin II-induced hypertrophy of vascular smooth muscle cells. Eur J Pharmacol[J], 2003,478:39-46.
    [48] Chrzanowska-Wodnicka M, Kraus AE, Gale D, et al. Defective angiogenesis, endothelial migration, proliferation, and MAPK signaling in Rap1b-deficient mice. Blood[J], 2008,111:2647-56.
    [49] Chen S, Qiong Y, Gardner DG. A role for p38 mitogen-activated protein kinase and c-myc in endothelin-dependent rat aortic smooth muscle cell proliferation. Hypertension[J], 2006,47:252-8.
    [50] Chen HC, Feener EP. MEK1,2 response element mediates angiotensin II-stimulated plasminogen activator inhibitor-1 promoter activation. Blood[J], 2004,103:2636-44.
    [51] Xi XP, Graf K, Goetze S, et al. Central role of the MAPK pathway in ang Il-mediated DNA synthesis and migration in rat vascular smooth muscle cells. Arterioscler Thromb Vasc Biol[J], 1999,19:73-82.
    [52] Wosik K, Biernacki K, Khouzam MP, et al. Death receptor expression and function at the human blood brain barrier. J Neurol Sci[J], 2007,259:53-60.
    [53] Samuels IS, Karlo JC, Faruzzi AN, et al. Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci[J], 2008,28:6983-95.
    [54] Schafe GE, Swank MW, Rodrigues SM, et al. Phosphorylation of ERK/MAP kinase is required for long-term potentiation in anatomically restricted regions of the lateral amygdala in vivo. Learn Mem[J], 2008,15:55-62.
    [55] Kim SW, Ha NY, Kim KI, et al. Memory-improving effect of formulation-MSS by activation of hippocampal MAPK/ERK signaling pathway in rats. BMB Rep[J], 2008,41:242-7.
    [56] Chwang WB, Arthur JS, Schumacher A, et al. The nuclear kinase mitogen- and stress-activated protein kinase 1 regulates hippocampal chromatin remodeling in memory formation. J Neurosci[J], 2007,27:12732-42.
    [57] Chwang WB, O'Riordan KJ, Levenson JM, et al. ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learn Mem[J], 2006,13:322-8.
    [58] DeMattos RB, Bales KR, Cummins DJ, et al. Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer's disease. Science[J], 2002,295:2264-7.
    [59] Cirrito JR, May PC, O'Dell MA, et al. In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-beta metabolism and half-life. J Neurosci[J], 2003,23:8844-53.
    [60] Kawarabayashi T, Younkin LH, Saido TC, et al. Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer's disease. JNeurosci[J], 2001,21:372-81.
    [61] Sigurdsson EM, Scholtzova H, Mehta PD, et al. Immunization with a nontoxic/nonfibrillar amyloid-beta homologous peptide reduces Alzheimer's disease-associated pathology in transgenic mice. Am J Pathol[J], 2001,159:439-47.
    [62] Matsuoka Y, Saito M, LaFrancois J, et al. Novel therapeutic approach for the treatment of Alzheimer's disease by peripheral administration of agents with an affinity to beta-amyloid. J Neurosci[J], 2003,23:29-33.
    [63] Deane R, Du Yan S, Submamaryan RK, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med[J], 2003,9:907-13.
    [64] Kuo YM, Emmerling MR, Lampert HC, et al. High levels of circulating Abeta42 are sequestered by plasma proteins in Alzheimer's disease. Biochem Biophys Res Commun [J], 1999,257:787-91.
    [65] Matsubara E, Ghiso J, Frangione B, et al. Lipoprotein-free amyloidogenic peptides in plasma are elevated in patients with sporadic Alzheimer's disease and Down's syndrome. Ann Neurol [J], 1999,45:537-41.
    [66] Holtzman DM. Potential role of endogenous and exogenous amyloid-beta binding molecules in the pathogenesis, diagnosis, and treatment of Alzheimer disease. Alzheimer Dis Assoc Disord [J], 2003,17:151-3.
    [67]Shibata M, Yamada S, Kumar SR, et al. Clearance of Alzheimer's amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest [J], 2000,106:1489-99.
    [68] Zlokovic BV, Yamada S, Holtzman D, et al. Clearance of amyloid beta-peptide from brain: transport or metabolism?. Nat Med [J], 2000,6:718-9.
    [69] Zlokovic BV, Martel CL, Matsubara E, et al. Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood-brain and blood-cerebrospinal fluid barriers. Proc Natl Acad Sci U S A [J], 1996,93:4229-34.
    [70] Martel CL, Mackic JB, Matsubara E, et al. Isoform-specific effects of apolipoproteins E2, E3, and E4 on cerebral capillary sequestration and blood-brain barrier transport of circulating Alzheimer's amyloid beta. J Neurochem [J], 1997,69:1995-2004.
    [71] Iwata N, Tsubuki S, Takaki Y, et al. Metabolic regulation of brain Abeta by neprilysin. Science [J], 2001,292:1550-2.
    [72] Selkoe DJ. Clearing the brain's amyloid cobwebs. Neuron [J], 2001,32:177-80.
    [73] Silverberg GD, Mayo M, Saul T, et al. Alzheimer's disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol [J], 2003,2:506-11.
    [74] Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science [J], 2002,297:353-6.
    [75] Ghiso J, Frangione B. Amyloidosis and Alzheimer's disease. Adv Drug Deliv Rev [J], 2002,54:1539-51.
    [76] Donahue JE, Flaherty SL, Johanson CE, et al. RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta Neuropathol (Berl) [J], 2006,112:405-15.
    [77] DeMattos RB, Cirrito JR, Parsadanian M, et al. ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo.Neuron[J],2004,41:193-202.
    [78]Begley DJ,Brightman MW.Structural and functional aspects of the blood-brain barrier.Prog Drug Res[J],2003,61:39-78.
    [79]Herz J,Marschang P.Coaxing the LDL receptor family into the fold.Cell[J],2003,112:289-92.
    [80]Corder EH,Huang R,Cathcart HM,et al.Membership in genetic groups predicts Alzheimer disease.Rejuvenation Res[J],2006,9:89-93.
    [81]Poduslo JF,Curran GL,Sanyal B,et al.Receptor-mediated transport of human amyloid beta-protein 1-40 and 1-42 at the blood-brain barrier.Neurobiol Dis[J],1999,6:190-9.
    [1]Goldman JS,Hou CE.Early-onset Alzheimer disease:when is genetic testing appropriate?.Alzheimer Dis Assoc Disord[J],2004,18:65-7.
    [2]Roses AD.Genetic testing for Alzheimer disease.Practical and ethical issues.Arch Neurol,1997,54:1226-9.
    [3]Saunders AM,Hulette O,Welsh-Bohmer KA,et al.Specificity,sensitivity,and predictive value of apolipoprotein-E genotyping for sporadic Alzheimer's disease.Lancet[J],1996,348:90-3.
    [4]Dewachter I,van Dorpe J,Spittaels K,et al.Modeling Alzheimer's disease in transgenic mice:effect of age and of presenilinl on amyloid biochemistry and pathology in APP/London mice.Exp Gerontol[J],2000,35:831-41.
    [5]Games D,Adams D,Alessandrini R,et al.Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein.Nature[J],1995,373:523-7.
    [6]Deng HX,Siddique T.Transgenic mouse models and human neurodegenerative disorders.Arch Neurol[J],2000,57:1695-702.
    [7]Song SK,Kim JH,Lin SJ,et al.Diffusion tensor imaging detects age-dependent white matter changes in a transgenic mouse model with amyloid deposition.Neurobiol Dis[J],2004,15:640-7.
    [8]Moran PM,Higgins LS,Cordell B,et al.Age-related learning deficits in transgenic mice expressing the 751-amino acid isoform of human beta-amyloid precursor protein.Proc Natl Acad Sci U S A[J],1995,92:5341-5.
    [9]Hsiao K,Chapman P,Nilsen S,et al.Correlative memory deficits,Abeta elevation,and amyloid plaques in transgenic mice.Science[J],1996,274:99-102.
    [10]Jeong YH,Park CH,Yoo J,et al.Chronic stress accelerates learning and memory impairments and increases amyloid deposition in APPV7171-CT100 transgenic mice, an Alzheimer's disease model. FASEB J[J], 2006,20:729-31.
    [11] Gotz J, Probst A, Spillantini MG, et al. Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO J[J], 1995,14:1304-13.
    [12] Frackowiak J, Miller DL, Potempska A, et al. Secretion and accumulation of Abeta by brain vascular smooth muscle cells from AbetaPP-Swedish transgenic mice. J Neuropathol Exp Neurol[J], 2003,62:685-96.
    [13] German DC, Yazdani U, Speciale SG, et al. Cholinergic neuropathology in a mouse model of Alzheimer's disease. J Comp Neurol[J], 2003,462:371-81.
    [14] Masliah E, Sisk A, Mallory M, et al. Neurofibrillary pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. J Neuropathol Exp Neurol[J], 2001,60:357-68.
    [15] Cataldo AM, Peterhoff CM, Schmidt SD, et al. Presenilin mutations in familial Alzheimer disease and transgenic mouse models accelerate neuronal lysosomal pathology. J Neuropathol Exp Neurol[J], 2004,63:821-30.
    [16] Flood DG, Reaume AG, Dorfman KS, et al. FAD mutant PS-1 gene-targeted mice: increased A beta 42 and A beta deposition without APP overproduction. Neurobiol Aging[J], 2002,23:335-48.
    [17] Schindowski K, Bretteville A, Leroy K, et al. Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am J Pathol[J], 2006,169:599-616.
    [18] Samura E, Shoji M, Kawarabayashi T, et al. Enhanced accumulation of tau in doubly transgenic mice expressing mutant betaAPP and presenilin-1. Brain Res[J], 2006,1094:192-9.
    [19] Holcomb L, Gordon MN, McGowan E, et al. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med[J], 1998,4:97-100.
    [20] Gordon MN, Holcomb LA, Jantzen PT, et al. Time course of the development of Alzheimer-like pathology in the doubly transgenic PS1+APP mouse. Exp Neurol[J], 2002,173:183-95.
    [21] Sadowski M, Pankiewicz J, Scholtzova H, et al. Amyloid-beta deposition is associated with decreased hippocampal glucose metabolism and spatial memory impairment in APP/PS1 mice. J Neuropathol Exp Neurol[J], 2004,63:418-28.
    [22] Dickey CA, Loring JF, Montgomery J, et al. Selectively reduced expression of synaptic plasticity-related genes in amyloid precursor protein + presenilin-1 transgenic mice. J Neurosci[J], 2003,23:5219-26.
    [23] Wirths O, Weis J, Szczygielski J, et al. Axonopathy in an APP/PS1 transgenic mouse model of Alzheimer's disease. Acta Neuropathol (Berl) [J], 2006,111:312-9.
    [24] Costa DA, Nilsson LN, Bales KR, et al. Apolipoprotein is required for the formation of filamentous amyloid, but not for amorphous Abeta deposition, in an AbetaPP/PS double transgenic mouse model of Alzheimer's disease. J Alzheimers Dis[J], 2004,6:509-14.
    [25] Ribe EM, Perez M, Puig B, et al. Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice. Neurobiol Dis[J], 2005,20:814-22.
    [26] Lewis J, Dickson DW, Lin WL, et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science[J], 2001,293:1487-91.
    [27] Savonenko AV, Xu GM, Price DL, et al. Normal cognitive behavior in two distinct congenic lines of transgenic mice hyperexpressing mutant APP SWE. Neurobiol Dis[J], 2003,12:194-211
    [1]Campbell A.The role of aluminum and copper on neuroinflammation and Alzheimer's disease.J Alzheimers Dis[J],2006,10:165-72.
    [2]Savory J,Herman MM,Ghribi O.Mechanisms of aluminum-induced neurodegeneration in animals:Implications for Alzheimer's disease.J Alzheimers Dis[J],2006,10:135-44.
    [3]Perl DP.Exposure to aluminium and the subsequent development of a disorder with features of Alzheimer's disease.J Neurol Neurosurg Psychiatry[J],2006,77:811.
    [4]Bellucci A,Luccarini I,Scali C,et al.Cholinergic dysfunction,neuronal damage and axonal loss in TgCRND8 mice.Neurobiol Dis[J],2006,23:260-72.
    [5]Hefti F,Dravid A,Hartikka J.Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions.Brain Res[J],1984,293:305-11.
    [6]Ben-Ari Y,Tremblay E,Ottersen OP,et al.The role of epileptic activity in hippocampal and "remote" cerebral lesions induced by kainic acid.Brain Res[J],1980,191:79-97.
    [7]Kozlowski MR,Arbogast RE.Specific toxic effects of ethylcholine nitrogen mustard on cholinergic neurons of the nucleus basalis of Meynert.Brain Res[J],1986,372:45-54.
    [8]Rosenmann H,Grigoriadis N,Karussis D,et al.Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein.Arch Neurol[J],2006,63:1459-67.
    [9] Song X, Bao M, Li D, et al. Advanced glycation in D-galactose induced mouse aging model. Mech Ageing Dev[J], 1999,108:239-51.
    [10] Xu XH, Zhao TQ. Effects of puerarin on D-galactose-induced memory deficits in mice. Acta Pharmacol Sin[J], 2002,23:587-90.
    [11] Lu JH, Guo J, Yang WH. [Effects of green tea polyphenol on the behaviour of Alzheimer' s disease like mice induced by D-galactose and Abeta25-35]. Zhong Yao Cai[J], 2006,29:352-4.
    [12] Butterfield DA, Poon HF. The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease. Exp Gerontol[J], 2005,40:774-83.
    [13] Pallas M, Camins A, Smith MA, et al. From aging to Alzheimer's disease: unveiling "the switch" with the senescence-accelerated mouse model (SAMP8). J Alzheimers Dis[J], 2008,15:615-24.
    [14] Nie K, Yu JC, Fu Y, et al. Age-related decrease in constructive activation of Akt/PKB in SAMP10 hippocampus. Biochem Biophys Res Commun[J], 2009,378:103-7.
    [15] Butterfield DA, Howard BJ, LaFontaine MA. Brain oxidative stress in animal models of accelerated aging and the age-related neurodegenerative disorders, Alzheimer's disease and Huntington's disease. Curr Med Chem[J], 2001,8:815-28.
    [16] Woodruff-Pak DS. Animal models of Alzheimer's disease: therapeutic implications. J Alzheimers Dis[J], 2008,15:507-21.
    [17] Gimenez-Llort L, Blazquez G, Canete T, et al. Modeling behavioral and neuronal symptoms of Alzheimer's disease in mice: a role for intraneuronal amyloid. Neurosci Biobehav Rev[J], 2007,31:125-47.
    [18] Lord A, Kalimo H, Eckman C, et al. The Arctic Alzheimer mutation facilitates early intraneuronal Abeta aggregation and senile plaque formation in transgenic mice. Neurobiol Aging[J], 2006,27:67-77.
    [19] Banks WA, Robinson SM, Verma S, et al. Efflux of human and mouse amyloid beta proteins 1-40 and 1-42 from brain: impairment in a mouse model of Alzheimer's disease. Neuroscience[J], 2003,121:487-92.
    [20] Li ZG, Zhang W, Sima AA. Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes, 2007,56:1817-24.
    [21] Ho L, Qin W, Pompl PN, et al. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease. FASEB J[J], 2004,18:902-4.
    [22] Steen E, Terry BM, Rivera EJ, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease—is this type 3 diabetes?. J Alzheimers Dis[J], 2005,7:63-80.
    [23] Alzheimer research forum live discussion: is Alzheimer's a type 3 diabetes?. J Alzheimers Dis[J], 2006,9:349-53.
    [24] Lester-Coll N, Rivera EJ, Soscia SJ, et al. Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer's disease. J Alzheimers Dis[J], 2006,9:13-33.
    [25] Velliquette RA, O'Connor T, Vassar R. Energy inhibition elevates beta-secretase levels and activity and is potentially amyloidogenic in APP transgenic mice: possible early events in Alzheimer's disease pathogenesis. J Neurosci[J], 2005,25:10874-83.
    [26] Hoyer S, Riederer P. [Pathomechanisms and hypothesis-guided therapeutic strategies for late-onset Alzheimer's disease]. Fortschr Neurol Psychiatr[J], 2003,71 Suppl 1:S 16-26.
    [1] Rossner S, Sastre M, Bourne K, et al. Transcriptional and translational regulation of BACE1 expression-implications for Alzheimer's disease. Prog Neurobiol[J], 2006,79:95-111.
    [2] Sun X, He G, Song W. BACE2, as a novel APP theta-secretase, is not responsible for the pathogenesis of Alzheimer's disease in Down syndrome. FASEB J[J], 2006,20:1369-76.
    [3] Vassar R. beta-Secretase, APP and Abeta in Alzheimer's disease. Subcell Biochem[J], 2005,38:79-103.
    [4] Sun X, Wang Y, Qing H, et al. Distinct transcriptional regulation and function of the human BACE2 and BACE1 genes. FASEB J, 2005,19:739-49.
    [5] Weisman D, Hakimian E, Ho GJ. Interleukin, inflammation, and mechanisms of Alzheimer's disease. Vitam Horm[J], 2006,74:505-30.
    [6] Sastre M, Klockgether T, Heneka MT. Contribution of inflammatory processes to Alzheimer's disease: molecular mechanisms. Int J Dev Neurosci[J], 2006,24:167-76.
    [7] Heneka MT, Sastre M, Dumitrescu-Ozimek L, et al. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J Neuroinflammation[J], 2005,2:22.
    [8] Yamamoto M, Kiyota T, Horiba M, et al. Interferon-gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta-secretase expression in Swedish mutant APP transgenic mice. Am J Pathol[J], 2007,170:680-92.
    [9] Sastre M, Dewachter I, Rossner S, et al. Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma. Proc Natl Acad Sci U S A[J], 2006,103:443-8.
    [10] Heneka MT, Sastre M, Dumitrescu-Ozimek L, et al. Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain[J], 2005,128:1442-53.
    
    [11] Edwards MM, Robinson SR. TNF alpha affects the expression of GFAP and S100B: implications for Alzheimer's disease. J Neural Transm[J], 2006,113:1709-15.
    [12] Maragakis NJ, Rothstein JD. Mechanisms of Disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol[J], 2006,2:679-89.
    [13] Yin KJ, Cirrito JR, Yan P, et al. Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci[J], 2006,26:10939-48.
    [14] Cho HJ, Kim SK, Jin SM, et al. IFN-gamma-induced BACE1 expression is mediated by activation of JAK2 and ERK1/2 signaling pathways and direct binding of STAT1 to BACE1 promoter in astrocytes. Glia[J], 2007,55:253-62.
    [15] Hong HS, Hwang EM, Sim HJ, et al. Interferon gamma stimulates beta-secretase expression and sAPPbeta production in astrocytes. Biochem Biophys Res Commun[J], 2003,307:922-7.
    [16] Bourne KZ, Ferrari DC, Lange-Dohna C, et al. Differential regulation of BACE1 promoter activity by nuclear factor-kappaB in neurons and glia upon exposure to beta-amyloid peptides. J Neurosci Res[J], 2007,85:1194-1204.
    [17] Hartlage-Rubsamen M, Zeitschel U, Apelt J, et al. Astrocytic expression of the Alzheimer's disease beta-secretase (BACE1) is stimulus-dependent. Glia[J], 2003,41:169-79.
    [18] Zhao J, Paganini L, Mucke L, et al. Beta-secretase processing of the beta-amyloid precursor protein in transgenic mice is efficient in neurons but inefficient in astrocytes. J Biol Chem[J], 1996,271:31407-11.
    [19] Roth AD, Ramirez G, Alarcon R, et al. Oligodendrocytes damage in Alzheimer's disease: beta amyloid toxicity and inflammation. Biol Res[J], 2005,38:381-7.
    [20] Hu X, Hicks CW, He W, et al. Bacel modulates myelination in the central and peripheral nervous system. Nat Neurosci [J], 2006,9:1520-5.
    [21] Willem M, Garratt AN, Novak B, et al. Control of peripheral nerve myelination by the beta-secretase BACE1. Science[J], 2006,314:664-6.
    [22] He W, Lu Y, Qahwash I, et al. Reticulon family members modulate BACE1 activity and amyloid-beta peptide generation.Nat Med[J],2004,10:959-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700