用户名: 密码: 验证码:
四频激光陀螺平台罗经关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
平台罗经是一种重要的舰载导航设备,经典的平台罗经系统均采用机械陀螺实现。论文立足于激光陀螺的本质特点和性能优势,研究探讨了将其应用于平台罗经导航系统中的可能方式与途径,建立了一种基于四频激光陀螺的平台罗经导航控制模型,设计并研制了一套简约的两轴四频激光陀螺平台罗经实验验证系统,对平台罗经的方位回路和水平回路进行了深入的仿真分析和实验验证。论文的主要研究工作和创新如下:
     1、探索了激光陀螺用于平台导航系统的适应性问题。通过理论分析、实验测试和采用实测数据的仿真,验证了激光陀螺用于平台导航系统的可行性,总结了激光陀螺漂移对平台系统精度的影响规律。
     2、研究并建立了四频激光陀螺平台罗经伺服控制及导航理论模型。四频激光陀螺平台的修正与稳定都是通过伺服控制来实现,其稳定基准是数字基准。
     3、设计并研制了一套简约的两轴四频激光陀螺平台罗经实验验证系统。根据平台罗经两个水平回路的等效性,通过合理配置传感器,独立实现了平台罗经的方位回路和水平回路工作方式,检验了罗经找北和地垂线稳定的性能;从而实现对三轴四频陀螺平台罗经理论和关键技术的验证。
     4、对激光陀螺平台罗经的关键技术和控制参数进行了深入的研究。解决了光栅角编码器应用于平台系统的若干问题;详细测试了所研制两轴平台系统的电气参数和摩擦特性;辨识了平台控制对象的传递函数,设计了速度-位置双环结构的稳定平台控制系统,具有比机电陀螺平台伺服系统高得多的力矩刚度。
     5、对激光陀螺平台罗经的标定方法进行了研究。基于分立标定的思想,建立了标定坐标系和传感器测量模型。利用光栅角编码器伺服控制平台自身的旋转轴实现自主标定的方法,标定了陀螺和加速度计的比例因子、零偏和安装误差,同时还标定出了两轴平台旋转轴之间的垂直度。
     6、进行了系统实验与仿真研究。完成了伺服控制系统的动静态实验、平台罗经水平回路和方位回路的静态实验,并利用实测陀螺数据仿真分析了陀螺漂移对平台系统精度的影响,获得了实验与理论相一致的结果,从而验证了四频激光陀螺平台罗经伺服控制导航理论的正确性。
The platform gyrocompass system is an important kind of shipborne navigation systems, and the electromechanical gyros are widely used in classical platform gyrocompass systems. Considering the substaintial characteristics and excellent performance of the RLG (Ring Laser Gyro), the possible ways and methods, applying RLGs in a platform gyrocompass system, are researched and discussed in this dissertation, the navigation and control models of the platform gyrocompass system based on four-mode differential laser gyro are established, a simplified dual axis experimental platform gyrocompass system is designed and developed, simulation analyses and related experiments are carried out to research the azimuth loop and horizontal loop. The main work and innovations of this dissertation are as follows:
     1. The applicability using RLGs in a platform gyrocompass system is discussed and studied. Based on theoretical analyses, experimental tests, and simulation with experimental data, the feasibility using RLGs in a platform gyrocompass system is verified, and the influence of RLGs’drift on the platform gyrocompass’s accuracy is summarized.
     2. The servocontrol and navigation theoretical models of the four-mode differential laser gyro platform gyrocompass system are studied and developed. The correction and stabilization of four-frequency differential RLG platform are realized by the servocontrol system, whose stabilization reference is digital.
     3. A simplified dual axis four-mode differential laser gyro experimental platform gyrocompass system is designed and developed. By properly setting the sensors, the platform gyrocompass system can work at the azimuth loop state and horizontal loop state independently, which verified the gyrocompass’s north finder and plumb line stabilization capability.
     4. The key technologies and control parameters of the RLG platform gyrocompass system are specially studied. Some problems caused by the grating angular encoder are hurdled; the electric parameters and frictional characteristic are tested; the transfer functions of the control system are identified; and a rate-position double loops platform stabilization control system is designed as well.
     5. The calibration methods of the RLG platform gyrocompass are investigated. Based on the separate calibration thought, the calibration reference and sensor error models are presented. The self-calibration is realized by rotating the platform system with its own axes, by which RLGs and accelerometers’scale-factor errors, bias errors and installation error can be calibrated, and the verticality degree between the two rotating axes are identified as well.
     6. System experiments and simulation analyses are carried out. The servocontrol system’s static and dynamic experiments, the static experiments of azimuth loop and horizontal loop are completed, the influence of RLGs’drift on the platform system’s performance accuracy is simulated using the experimental data. The experiment results coincide with the theoretical analyses, which verified the servocontrol, control and navigation theoretics’correctness in four-frequency RLG platform gyrocompass.
引文
[1]秦永元编著.惯性导航.北京:科学出版社, 2006.
    [2] Lawrence Anthony. Modern Inertial Technology: navigation, guidance, and control. 2nd ed. Springer-Verlag New York, Inc, 1998.
    [3]陆元九主编.惯性器件(上下).北京:中国宇航出版社, 1993.
    [4]任思聪.实用惯导系统原理.北京:宇航出版社, 1998.
    [5]丁衡高.海陆空天显神威惯性技术纵横谈.广州:暨南大学出版社, 2000.
    [6]胡小平主编.自主导航理论与应用.长沙:国防科技大学出版社, 2002.
    [7] Barbour N. Inertial Components - Past, Present and Future. Montreal, Canada: 2001 AIAA Guidance, Navigation and Control Conference, 2001: 1-11.
    [8] Richard L G. Inertial Navigation Technology from 1970-1995. Journal of the Institute Navigation, Vol.42, No.1, 1995: 165-185.
    [9] Beiter S, Poquette R, Filipo B. S, Goetz W. Precision hybrid navigation system for varied marine applications. Position Location and Navigation Symposium, IEEE, 0-7803-4330-1, 1998: 316-323.
    [10] Randall K. Curey, Michael E. Ash, Leroy O. Thielman, Cleon H. Barker. Proposed IEEE Inertial Systems Terminology Standard and Other Inertial Sensor Standards. IEEE Position Location and Navigation Symposium, 2004: 83-90.
    [11]许国祯主编.惯性技术手册.北京:宇航出版社, 1995.
    [12]曾建辉.新型高精度平台罗经系统技术研究.哈尔滨工程大学博士论文, 2001: 1-5.
    [13]高伯龙,李树棠.激光陀螺.长沙:国防科学技术大学, 1984.
    [14]王宇.机抖激光陀螺捷联惯导系统的初步探索.国防科学技术大学博士论文, 2005: 1-6.
    [15]凌明祥.船用激光捷联惯性导航系统的关键技术研究.哈尔滨工程大学博士论文, 1999: 1-6.
    [16]黄德鸣,张树侠,孙枫编著.平台罗经.北京:国防工业出版社, 1990.
    [17] Levinson Dr. E, ter Horst J, Willcocks M. The Next Generation Marine Inertial Navigator is Here Now. IEEE Position Location and Navigation Symposium, 1994: 121-127.
    [18]袁保伦.四频激光陀螺旋转式导航系统研究.国防科学技术大学博士论文, 2007.
    [19] [俄]BB谢列金, PM库库利耶夫著,刘迎晖译.激光陀螺及其应用.北京:航空工业出版社, 1992.
    [20]陈利超,张长虹,李光春,江泽.单轴激光陀螺稳定系统建模与仿真研究.导航与控制, Vol.4, No.1, 2002: 25-29.
    [21] Sperry Marine - Legacy, Systems & Technologies. Northrop Grumman Electronic Systems -Sperry Marine. Printed in U.S.A, 2005.
    [22] MK39 MOD 3A Ring Laser Ship's Inertial Navigation System. Northrop Grumman Electronic Systems -Sperry Marine. Printed in U.S.A, 2005.
    [23] Lahham J I, Wigent D J, Coleman A L. Tuned Support Structure for Structure-Borne Noise Reduction of Inertial Navigator with Dithered Ring Laser Gyros (RLG). In: Position Location and Navigation Symposium, IEEE, 0-7803-5872-4, 2000: 419-428.
    [24] Levinson Dr E, ter Horst J, Willcocks M. Levinson Dr E, ter Horst J, Willcocks M. The Next Generation Marine Inertial Navigator is Here Now. In: IEEE Position Location and Navigation Symposium, 1994: 121-127.
    [25] Lahhan J I, Brazell J R. Acoustic Noise Reduction in the MK49 Ship's Inertial Navigation System (SINS). Rec IEEE PLANS Position Location and Navigation Symposium. Monterey, CA, USA: IEEE, Piscataway, NJ, USA, 1992: 32-39.
    [26]龙兴武,汤建勋,王宇,于旭东,张鹏飞.船用激光陀螺惯导系统的研制.中国惯性技术学会第六届学术年会论文集, 2008: 15-23.
    [27]周衍柏.理论力学教程.北京:高等教育出版社, 1985: 241-248.
    [28] Pitman G R. Inertial Guidance. New York:John Wiley & Sons, Inc. , 1962.
    [29]陈哲.捷联惯性导航原理.北京:宇航出版社, 1986.
    [30] Wang R Y, Zheng Y, Yao A P. Generalized Sagnac effect. Physical Review.
    [31] Malykin G B. The Sagnac Effect: Correct and Incorrect Explanations. Physics - Uspekhi, 2000, Vol.43, No.12:1229-1252.
    [32]杨培根,龚智炳编著.光电惯性技术.北京:兵器工业出版社, 1999.
    [33]姜亚南.环形激光陀螺.北京:清华大学出版社, 1985.
    [34]黄宗升,王省书,秦石乔,胡春生,胡浩军.四频激光陀螺脉冲细分技术.激光杂志, Vol.28, No.3, 2007: 33-34.
    [35]杨海峰,李奇,姬伟.高精度伺服稳定跟踪平台数字控制器研制.东南大学学报(自然科学版), Vol.34, 2004: 96-100.
    [36]贾宏进,秦石乔,王省书,黄宗升.激光陀螺姿态测量系统便携监控终端设计.微机算机信息, Vol.23, No.9, 2007: 12-14.
    [37] Kissell T E. Industrial electronics: applications for programmable controllers, instrumentation and process control, and electrical machines and motor controls. Upper Saddle River, New Jersey: Prentice Hall, 2003.
    [38] Gieras J F, Mitchell Wing. Permanent magnet motor technology: design and applications. 2nd.New York: Marcel Dekker, 2002.
    [39] Krishnan R. Electric motor drives: modeling, analysis, and control. Upper SaddleRiver, New Jersey: Prentice Hall, 2001.
    [40] Very-High Current-High Power OPERATIONAL AMPLIFIER OPA512 Data Sheet.
    [41]刘志远,裴润,范卉.大型精密离心机光栅测角系统的设计与实现.中国惯性技术学报, Vol.9, No.4, 2001: 78~82.
    [42]贾宏进,胡浩军,秦石乔,张宝东,胡春生.光栅编码器在激光陀螺平台系统中的应用.光电工程, Vol.35, No.10, 2008: 121-125.
    [43]王诚,吴继华,范丽珍,薛宁,薛小刚编著. Altera FPGA/CPLD设计(基础篇).北京:人民邮电出版社, 2005.
    [44]吴继华,王诚编著. Altera FPGA/CPLD设计(高级篇).北京:人民邮电出版社, 2005.
    [45]陈仁文,袁红卫.精密光栅位移传感器的若干信号处理问题研究.传感技术学报, No.4, 2002: 360~363.
    [46] Ellin Alex. The Accuracy of angle encoders. United Kingdom: Renishaw plc, 2004.
    [47]史玉苓,徐成,韦春才.圆光栅副的系统误差分析.沈阳工业大学学报, Vol.19, No.1, 1997: 26-28.
    [48]黄宗升,秦石乔,王省书,战德军.光栅角编码器误差分析及用激光陀螺标校的研究.仪器仪表学报, Vol.28, No.10, 2007: 1866-1869.
    [49] Wang CH H, Zhang G X, Guo SH Q, et al. Auto correction of interpolation errors in optical encoders. SPIE, 1996, 2718: 439-447.
    [50] Filator Y V, Agapov M Y, Bournachev M N, et al. Laser goniometer system for dynamic calibration of optical encoders. SPIE, 2003, 5144: 381-390.
    [51]黄宗升.旋转式激光陀螺寻北仪的研究.国防科学技术大学博士论文, 2007.
    [52]陈忠,许上明.微特电机测试技术.上海:上海科学技术出版社, 1985: 67-75.
    [53]郭阳宽,李庆祥,李玉和,陈张玮.直流力矩电机参数的实验测定.测控技术, Vol.23, No.12, 2004: 24-25.
    [54]刘瑞芳.基于电磁场数值计算的永磁电机性能分析方法研究.东南大学博士论文, 2002: 47-51.
    [55]陈娟,张淑梅,黄艳秋,张袅娜.电机波动力矩的重复学习控制补偿.光学精密工程, Vol.11, No.4, 2003: 390-393.
    [56]张文海,李家会,徐丽.永磁直流力矩电机力矩波动实验分析.微电机, Vol.37, No.6, 2004: 64-66.
    [57] GJB971A-99,永磁式直流力矩电动机通用规范.
    [58]陈忠,许上明.微特电机测试技术.上海:上海科学技术出版社, 1985: 86-97.
    [59]梅晓榕,柏桂珍,张卯瑞.自动控制元件及线路.北京:科学出版社, 2007:29-33.
    [60] B. Armstrong-Helouvry, P. Dupont, and C. Canudas de Wit. A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica, Vol.30, No.7, 1994: 1083-1138.
    [61]陈娟.伺服系统低速特性与抖动补偿研究.中国科学院长春光学精密机械与物理研究所博士论文, 2001.
    [62] C. Canudas de Wit, P. Lischinsky. Adaptive friction compensation with partially known dynamic friction model. International Journal of Adaptive Control and Signal Processing. No.11, 1997: 65-80.
    [63] P. D. Talaryn, N. Sepehri, D. Strong. Experimental compensation of some compensation techniques for the control of manipulators with stick-slip friction. Control Eng. Practice. Vol. 4, No.9, 1996: 1209-1219.
    [64] C. Canudas de Wit, H. Olsson, K. J. Astrom, et al. A new model for control system with friction. IEEE Transaction on Automatic Control. Vol.40, No.3, 1995: 419-425.
    [65] Gianni Ferretti, Gianantonio Magnani, Paolo Rocco. An Integral Friction Model. Proceeding of the 2004 IEEE International Conference on Robotics & Automation. New Orleans, LA, 2004: 1809-1813.
    [66]翁金生.光电跟踪仪方位轴系精度分析.舰船电子工程, No.5, 2000: 61-64.
    [67]任顺清,陈希军,袭建军.三轴转台垂直度误差的测试与分离技术.计量技术, No.5, 2002.
    [68] GJB 1801-93,惯性技术测试设备主要性能试验方法.
    [69]姜复兴,庞志成.惯导测试设备原理与设计.哈尔滨:哈尔滨工业大学出版社, 1998: 169-189.
    [70]贾宏进,秦石乔,胡浩军,张宝东.轴系倾角回转误差与垂直度测量方法.计量技术, No.11, 2008: 25-28.
    [71]王卫东,翟超,陈柯.机床主轴回转精度的CCD测量系统.计量学报, Vol.27, No.1, 2006: 18-21.
    [72] Rolf Isermann. Digital control systems, Vo1.1: Foundamentals, deterministic control(2nd edition). New York: Springer-Verlag, 1992.
    [73] (苏)BA别塞克尔斯基.数字自动控制系统.北京:科学出版社, 1984.
    [74]秦继荣,沈安俊.现代直流伺服控制技术及其系统设计.北京:机械工业出版社, 1993.
    [75]胡寿松.自动控制原理.北京:国防工业出版社, 1984.
    [76] Tzafestas S, Papanikolopoulos N P. Incremental fuzzy expert PID control. IEEE Transactions on Industrial Electronics, Vol.37, No.5, 1990: 365-371.
    [77] Narendra K S, et al.. Identification and control of dynamical systems using neuralnetworks. IEEE Trans. Neural Networks, Vol.1, No.1, 1990.
    [78] Page G F, Gomm J B, Williams D. Application of neural networks to modeling and control. Chapman and Hall, 1993.
    [79] Hilkert J M, Hullender D A. Adaptive cont rol system techniques applied to inertial stabilization systems. SPIE Conf, 1990, 1304:190-206.
    [80] AI-SUNNI F M, AI-AMER S H. Robot control of sampled data system. IEE Proc Control Theory Appl, 1998, Vol.145, No.2:236-240.
    [81]韩京清.自抗扰控制器及其应用.控制与决策, No.1, 1998: 18-23.
    [82]宋金来,杨雨,许可康,韩京清.惯性平台稳定回路的自抗扰控制.系统仿真学报, Vol.14, No.3, 2002: 391-393.
    [83] Richard C. Dorf, RobertHBishop著,谢红卫等译.现代控制系统.北京:高等教育出版社, 2001.
    [84] Z. Gajic, M. Lelic. Modern Control System Engineering. Prentice Hall, englewood Cliffs, N.J.,1996.
    [85] C. T. Chen. Analog and Digital Control Systems Design. Oxford Univ. Press, New York, 1996.
    [86] C. L. Phillips. Analytical Bode Design of Controllers. IEEE Transactions on Deucation, February 1985: 43-44.
    [87]贾宏进,秦石乔,胡浩军,张宝东,战德军.基于激光陀螺的稳定平台控制.中国惯性技术学报, Vol16., No.5, 2008: 538-542.
    [88]胡浩军,毛耀,马佳光,包启亮,任戈.稳定平台对基座角速率扰动的抑制能力.电机与控制学报, Vol.11, No.1, 2007: 25-28.
    [89]胡浩军.运动平台捕获、跟踪与瞄准系统视轴稳定技术研究.国防科学技术大学博士论文, 2005.
    [90]肖正林,钱培贤,徐军辉.三轴平台快速自标定与自对准方法探讨.宇航学报, Vol.27, No.2, 2006: 222-226.
    [91]杨立溪.惯性平台误差快速自标定技术.中国惯性技术学报, Vol.8, No.4, 2000: 1-4.
    [92] Multiposition Alignment of Strapdown Inertial Navigation System. IEEE Transactions on Aerospace and Electronic Systems. Vol.29, No.4, 1993: 1323-1328.
    [93] DOHYOUNG CHUNG, JANG GYU LEE, CHAN GOOK PARK, HEUNG WON PARK. Strapdown INS Error Model for Multiposition Alignment. IEEE Transactions on Aerospace and Electronic Systems. Vol.32, No.4, 1996: 1362-1366.
    [94] GJB 2427-95,激光陀螺仪测试方法.
    [95] GJB 1037-90,单轴摆式伺服线加速度计试验方法.
    [96] Grewal M S. Application of Kalman filtering to the calibration and alignment of inertial navigation systems. Proceedings of the 20th Conference on Decision and Control, 1990.
    [97] Nebot E, Durrant-Whyte H. Inertial Calibration and Alignment of Low Cost Inertial Navigation Units for Land Vehicle Applications. Journal of Robotics Systems, Vol 16, No 2, 1999: 81-92.
    [98] Mazzanti M, Camberlein L. Calibration technique for laser gyro strapdown inertial navigation system. Symposium Gyro Technology, 1985.
    [99] Mark J, Tazartes D, Hilby T. Fast Orthogonal Calibration of a Ring Laser Strapdown System. Litton Industries, Litton Guidance and Control Systems, California, USA, 1986.
    [100]袁保伦,饶谷音.一种新的激光陀螺惯性测量组合标定方法.中国惯性技术学报, Vol.15, No.1, 2007: 31-34.
    [101]张卫东.激光陀螺捷联惯导系统自标定技术研究.国防科学技术大学硕士论文, 2000.
    [102]张开东.激光陀螺捷联惯导系统连续自动标定技术.国防科学技术大学舒适论文, 2002.
    [103] Chatfield A B. Fundamentals of High Accuracy Inertial Navigation. USA, Published by the American institute of Aeronautics and Astronautics, 1997: 23-30.
    [104]曹宁生.方向余弦、方向数与捷联组合.惯导与仪表, No.2, 1997(2): 48-55.
    [105]张宝东,贾宏进,王省书.二自由度转台在平面位置指向应用中控制算法的研究.光学与光电技术, Vol.2, No.2, 2004: 6-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700