用户名: 密码: 验证码:
汽车车架碰撞安全性分析及其优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安全、节能、环保是二十一世纪汽车工程领域具有重大意义的研究热点,而汽车的被动安全性是汽车安全性研究的重要环节。对于非承载式车身结构的车辆来说,车架是汽车碰撞中最主要的吸能元件,50%以上的撞击能量均为车架所吸收,因此研究车架的碰撞特性有着重要意义。
     本文针对某越野车车架碰撞安全性不足的问题,进行了深入研究和分析。通过几何清理、中面抽取、网格划分、单元质量控制等技术,建立了高质量的车架有限元网格模型;以Johnson-Cook本构方程为基础,通过拉伸试验等手段,得到了车架有限元分析的材料模型;通过设置相应的边界条件,对车架进行了有限元刚度分析和模态分析,验证了该车架刚度的可靠性并得到了车架结构的各阶固有频率和振型特性。从汽车对固定墙壁的正面碰撞特性、汽车与汽车正面碰撞的有效模型、汽车与汽车前部偏置碰撞以及汽车前部对固定壁偏置碰撞等方面研究了汽车碰撞的力学分析方法,研究结果表明几何结构参数对汽车碰撞特性的影响有着重要意义。
     重点研究了车架上的几种典型薄壁梁结构:S型薄壁梁、薄壁梁诱导槽结构以及变截面梁结构等。通过提取实际车架上使用的S梁特征参数,建立了S梁的碰撞模型,并对多变量的S梁进行了因素显著性分析。将响应面法与遗传算法结合起来对S梁进行抗撞性优化分析,得到了S梁的最优设计参数。在分析各种诱导结构特性的基础上,设计了一种变形诱导槽结构。并以此为基础,通过比较各种不同截面薄壁梁的碰撞特性,提出了一种有效的变截面诱导梁结构。将有限元分析与试验设计、神经网络、遗传算法等结合起来对该变截面梁结构进行了抗撞性优化设计。
     以优化后的典型薄壁梁结构为基础,对越野车车架进行了碰撞安全性优化设计。优化后的车架结构在碰撞过程中的载荷传递路径更加合理,整车的被动安全性得到显著提高。
Safety, energy conservation and environmental protection are the three principal problems for the development of automobile industry in the 21~(st) century. Frame is the most important energy absorption component for those vehicles with non-bearing type of body structure during frontal or rear collisions. More than 50% of the impact energy is absorbed by the frame. So the research of the frame's collision characteristics is of great significance.
     This paper carries on a thorough research of a sport utility vehicle's crashworthiness. Through cleaning up geometry, extracting midsurface, dividing into grids, controlling quality of the elements, the finite element model of automobile frame is established by using thin shell elements. Through tensile testing, the stress-strain curves of frame's parts are obtained based on the Johnson-Cook constitutive equation. Bending stiffness, torsional stiffness and free modal of the frame is analyzed, based on the finite element model. The results show that the values of the stiffness and mode's frequency are sufficient for design. From collision of automobile to fix wall, frontal collision of automobile to automobile, offset frontal collision of automobile to automobile, offset frontal collision of automobile to fix wall, this paper studies the mechanics analysis method of the automobile collisions. The results show that the structure parameters are of great importance for automobile collisions.
     Then this paper focuses research on the following typical thin-walled rail Structures: S-shaped rail, induced trough structure and the rail structure with variable cross-section. An S-Rail impact model is extracted from a true rail used in vehicle frame. Several parameters are proposed as the model variables. Response surface model is interfaced with genetic algorithms to find the optimal parameter values. The relationships between energy absorption and the proposed variables are revealed. S-shaped rail absorbs much energy after its optimal design. An effective structure of deformation induced groove is proposed by analyzing a variety of deformation-induced structural features. Optimal design is carried on the iduced groove to improve its dynamic crashworthiness characteristics of energy absorption. Based on the induced groove, a thin-walled rail with variable section is proposed by comparing a variety of thin-walled rails with different section features. Then the rail is used in the front of a vehicle's frame. Optimal design method is presented and utilized to obtain optimum crashworthiness design of the thin-walled rail with variable section. The methodology adopted in this research makes use of Design of Experiments (DOE), Finite Element Analysis (FEA), Artificial Neural Networks (ANN) and Genetic Algorithms (GA). The relationships between energy absorption and the proposed variables are revealed and the optimal results are verified through the finite element analysis of thin-walled rail's collision.
     Base on optimal design of the typical thin-walled rails, the crashworthiness of a sport utility vehicle's frame is improved. The path of the force transmission becomes more reasonable after the frame's optimization during the impacts. And the passive safety of the vehicle is greatly improved
引文
[1]刘守国.交通事故分析与预防.人民交通出版社,1996
    [2]雷正保.大力开展汽车前部纵向冲击主动控制研究.中南汽车运输,1998(4):1-4
    [3]中国统计年鉴—2003,中国统计出版社,2003
    [4]董学勤.汽车车架碰撞安全性分析.南昌大学硕士学位论文,2008
    [5]黄世霖.中国汽车被动安全技术的发展.第七届汽车安全技术会议论文集,2002
    [6]林逸,郭九大,王望予.汽车被动安全性研究综述.汽车工程,1998
    [7]黄世霖,张金换,王晓冬等.汽车碰撞与安全.清华大学出版社,2000
    [8]钟志华,张维刚,曹立波,何文.汽车碰撞安全技术,机械工业出版社,2003
    [9]D.Cornette and A.Galtier,Influence of The Forming Process on Crash andFatigue Performance of High Strength Steels for Automotive Components,SAE technical paper series 2002-01-0642
    [10]Hui Wang,Zheng-Dong Ma,Noboru Kikuchi and Christophe Pierre,Basavaraju Raju,Multi-Domain Multi-Step Topology Optimization for Vehicle Structure Crashworthiness Design,SAE technical paper series 2004-01-1173
    [11]Eizaburo Nakanishi,Hideyuki Tateno,Yuji Hishida and Kimihiro Shibata,New Materials Technology for Achieving Both Crashworthiness and Weight Reduction Using Energy-Absorbing Steel with Higher Strain-Rate Sensitivity,SAE technical paper series 980953
    [12]Offset frontal crash reseach in Japan,SAE paper No.950652
    [13]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1995
    [14]李尚健.金属塑性成形过程模拟.北京:机械工业出版社,1999
    [15]J.F.Besseling.The Complete Analogy between the Matrix Equations and the Continuous Field Equations of Structural Analysis.In:International Symposium on Analogue and Digital Techniques Applied o Aeronautics.Liege,Belgium,1963
    [16]R.J.Melosh.Basis for the Derivation of Matrix for the Direct Stiffness Method.AIAAJ.,1963
    [17]R.E.Jones.A Generalization of the Direct Stiffness Method of Structural Analysis.AIAAJ.,1964
    [18]P.V.Marcal.A note on the elastic-plastic thick cylinder with internal pressure in the open and closed-end condition.International Journal of Mechanical Sciences.1967,7(12):841-845
    [19]P.V.Marcal,I.P.King.Elastic-plastic Analysis of Two-dimension Stress System by the Finite Element Method.International Journal of Mechanical Sciences.1967,9(3):143-155
    [20]Y.V.Yamada,N.Yoshimura,T.Sakurai.Plastic Stress-strain Matrix and its Application for Solution of the Elastic-plastic Problems by the Finite Element Method.International Journal of Mechanical Sciences.1968,10(5):343-354
    [21]H.D.Hibbitt,P.V.Marcal,J.R.Rice.A Finite Element Formulation for Problems of Large Strain and Large Displacement.International Journal of Solids and Structures.1970,6(8):1069-1086
    [22]C.H.Lee,S.Kobayashi.New solution to rigid plastic deformation problems using a matrix method.Journal of Engineering for Industry,ASME,1973,95:865-873
    [23]J.T.Oden,D.R.Bhandari,G.Yagawa,et al.A new approach to the finite element formulation and solution of a class of problems in coupled thermo-elastoviscoplasticity of solids.Nuclear Engineering and Design,1973,24(3):420-430
    [24]Tim Keer,et al.Development of an advanced finite element model database of the hybrid Ⅲ.crash test dummy family.SAE 971024.1997
    [25]Jac Wismans.Advances in crash dummies.IPC2001E224.2001
    [26]Jac Wismans,et al.Future of human models for crash analysis.IPC2001E225.2001
    [27]Chang-Nam Ahn,et al.Development of finite element Euro-SID model.FISITA1998
    [28]Guo Jiuda,Lin Yi.Chang-Nam Ahn,et al.Occupant and belt system formulation in vehicle passive safety analysis.FISITA1998
    [29]Jiri Kral,Jan Kovanda.Analysis and optimization of the safety belts system with help of computer simulation.FISITA1998
    [30]Toshiaki Sakurai.Application of Finite Element Analysis of Structural Crashworthiness for Body Dsign Stage.SAE891225.1989
    [31]Pickett.A.K.Optimization of the Crashworthiness of a Passenger Car Using Iterative Simulations.SAE 931977.1993
    [32]N.K.Saha,et al.Simulation of Frontal Barrier Offset Impacts and Comparison of Intrusions and Decelerations.SAE 950647.1995
    [33]Ajit D.Kelkar,et al.Simulation of a Car Frontal Offset Impact Into a Fixed Deformable Barrier.SAE 962485.1996
    [34]王晓,刘星荣,葛如海.波纹管在汽车碰撞吸能中的正交优化设计.江苏理工大学学报,2001,22(3):29-32
    [35]钟志华.汽车耐撞性分析的有限元法.汽车工程.1994:(1)
    [36]朱西产.应用计算机模拟技术研究汽车碰撞安全性.世界汽车,1997:(3)
    [37]黄世霖,张金换,王晓冬,汽车碰撞与安全.北京:清华大学出版社.2000
    [38]王春雨,李一兵.应用有限元法研究车架结构的耐撞性.汽车工程.1997:(6)
    [39]裘新.应用模拟计算技术分析汽车正撞时结构的耐撞性.中国汽车工程学会第四汽车安全技术学术年会.1998.北京
    [40]张维刚.汽车安全性设计与改进技术.湖南大学博士学位论文,2002
    [41]庄蔚敏.工艺过程材料特性变化对车身结构件抗撞性影响研究,吉林大学博士学位论文,2007
    [42]徐文岷.汽车碰撞过程的有限元数值模拟,哈尔滨工程大学硕士学位论文,2007
    [43]K.iVIiural.High Strain Rate Deformation of High Strength Sheet Steels for Automotive Parts.SAE 980952
    [44]Timothy J.Keer.The Effect of Forming on Automotive Crash Results.2001-01-3050
    [45]D.Cornette.Influence of the Forming Process on Crash and Fatigue Performance of High-Strength Steels for Automotive Components.2002-01-0642
    [46]Srdan Simunovic.Steel Processing Effects on Impact Deformation of Ultralight Steel Auto Body.2001-01-1056
    [47]Jody Shaw.Steel Strength and Processing Effects on Impact Deformation for a Crash Energy Management Component.2001-01-1053
    [48]K.Sato,D.Zeng.Crashworthiness of Automotive Stamped Parts Using High Strength Steel Sheets.SAE Paper 2002-01-0641
    [49]Trevor Dutton,S.Iregbu.The Effect of Forming on the Crashworthiness of Vehicles With Hydroformed Frame Siderails. SAE Paper 1999-01-3208
    [50] Anthony C. Y. Lin.Hydroformed Tube Modeling in Crash FEA Model. 2003-01-0258
    [51] J. W. Wiese, C. D. Kan. A Comparison of the Safety Performance of Aluminum and Steel in Conventional Automotive Construction. 982389
    [52] Ari G. Caliskan. Crashworthiness of Composite Materials&Structures for Vehicle Applications. 2000-01-3536
    [53] Frank Billotto. Polyurethane Foam Systems for NVH and Improved Crashworthiness. SAE Paper 2001-01-1467
    [54] Chi-Chin Wu. Effect of Polyurethane Foam on the Energy Management of Structural Components. 2000-01-0052
    [55] Dominic McMahon. Engineering Thermoplastic Energy Absorber Solutions for Pedestrian Impact. 2002-01-1225
    [56] Darin A. Evans. Engineering Thermoplastic Energy Absorbers for Bumpers. 1999-01-1011
    [57] John G. Argeropoulos. Maturing Fiber-Reinforced Thermoplastic Technology for Automobile Body Structural Applications. 1999-01-3244
    [58] Andrew Hallas, Joe Carruthers. Honeycomb Materials:a Solution for Safer,Lighter Automobiles. 2002-01-2113
    
    [59] Dan Tang. Aluminum Vehicle Side Impact Design, Test and Cae. 2002-01-0249
    [60] Horst Lanzerath. Crash Simulation on Body Structural Components Made Out of Extruded Magnesium. 2003-01-0259
    [61] Ari Garo Caliskan. Design&Analysis of Composite Impact Structures for Formula One Using Explicit FEA Techniques. 2002-01-3326
    [62] Pascal Feillard. Crash Modelling of Automotive Structural Parts Made of Composite Materials. 1999-01-0298
    [63] Fuminobu Inotani. Fem Collision Analysis of Automotive Body Members Reinforced With High Structural Foam. 2000-01-2731
    
    [64] Horst Lanzerath. Crash Simulation of Structural Foam. 2003-01-0328
    [65] Padraig Naughton. Extension of Material Models and Finite Element Techniques to Improve the Simulation of High Speed Impact of Thermoplastic Materials. 1999-01-0300
    [66] S. Ryan, M. Wicklein, A. Mouritz. Theoretical prediction of dynamic composite material properties for hypervelocity impact simulations. International Journal of Impact Engineering. 2009, 36(7): 899-912
    [67] Yamazaki K, Han J. Maximization of the crushing energy absorption of tubes. Structural Optimization, 1998, 16: 37-46
    [68] Kim H S. New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency. Thin-Walled Structures, 2002, 40: 311-327
    [69] Lanzi L, Bisagni C, Ricci S. Crashworthiness optimization of helicopter subfloor based on decomposition and global approximation. Structural and Multidisciplinary Optimization, 2004, 27:401-410
    [70] Etman L E P, Adriaens J M T A, Van Slagmaat M T P, et al. Crashworthiness design optimization using multipoint sequential linear programming. Structural Optimization, 1996, 12: 222-228
    [71]Schramm U.Multi-disciplinary optimization for NVH and crash-worthiness.In:Proceedings of The first MIT conference on computational fluid and solid mechanics.Boston:Elsevier Science,2001,721-724
    [72]Yang R J,Gu L,Tho C H,et al.Multi-disciplinary design optimization of a full vehicle with high performance computing.In:Proceedings of AIAA Paper.America:2001,2001-1273
    [73]Myers R H,Montgomery D C.Response surface methodology.New York:John Wiley,1995
    [74]Edwards I M,Jutan A.Optimization and control using response surface methods.Computation of Chemical Engineering,1997,21:441-453
    [75]Rule W K.Response surface for structural optimization.Journal of Mechanical Engineering,1997,119(3):196-202
    [76]Kurtaran H,Eskandarian A,Marzougui D,et al.Crashworthiness design optimization using successive response surface approximations.Computational Mechanics,2002,29:409-421
    [77]Lee S H,Kim H Y,Oh S I.Cylindrical tube optimization using response surface method based on stochastic process.Journal of Materials Processing Technology,2002,130-131:490-496
    [78]Redhe M,Giger M,Nilsson L.An investigation of structural optimization in crashworthiness design using a stochastic approach.Structural and Multidisciplinary Optimization,2004,27:446-459
    [79]Digs J P,Pereira M S.Optimization methods of crashworthiness design using multibody models.Computers&Structures,2004,82:1371-1380
    [80]Anghileri M,Chirwa E C,Lanzi L,et al.An inverse approach to identify the constitutive model parameters for crashworthiness modeling of composite structures.Composite Structures,2005,68:65-74
    [81]Zarei H R,Kroger M.Multiobjective crashworthiness optimization of circular aluminum tubes.Thin-Walled Structures,2006,44:301-308
    [82]Marler R T,Kim C H,Arora J S.System identification of simplified crashmodels using multi-objective optimization.Computer Methods in Applied Mechanics and Engineering,2006,195:4383-4395
    [83]Pedersen C B W.Topology optimization design of crushed 2D-frames for desired energy absorption history.Structural and Multidisciplinary Optimization,2003,25:368-382
    [84]曹立波.汽车前碰撞安全性的试验与仿真技术研究,湖南大学博士论文,2001.10
    [85]杨华.汽车碰撞试验缓冲吸能装置的计算机仿真与试验研究,湖南大学硕士论文,2002.10
    [86]白中浩.基于虚拟仪器技术的汽车碰撞试验测控系统研究,湖南大学硕士学位论文,2002.10
    [87]檀晓红.汽车保险杠横梁碰撞仿真分析及其结构优化,上海大学硕士论文,2003.02
    [88]顾力强.轿车保险杠和金属缓冲吸能结构的耐撞性研究,上海交通大学博士论文,2000.10
    [89]李玉璇.基于耐撞性数值仿真的汽车车身轻量化研究,上海交通大学博士论文,2004.01
    [90]贾宏波.车身碰撞仿真技术在红旗轿车车身开发中的应用.汽车工程.1998:(5)
    [91]张建伟,基于数值模拟技术提高微型客车正面抗撞性的研究,吉林大学博士学位论文,2003
    [92]林逸,姚为民,孙丹丹.承受冲击时汽车座椅结构安全性研究,北京理工大学学报,2005
    [93]薛量,姜正旭,林忠钦.轿车白车身碰撞性能的数值仿真.上海汽车,1999(11),10-13
    [94]李平飞、巢凯年.轿车保险杠系统低速正面碰撞性能的仿真研究.西华大学学报:自然科学版.2005(3)
    [95]孔凡忠.汽车碰撞数值模拟方法的研究发展,中国汽车工程学会第七届汽车安全技术会议,2002.5.21
    [96]雷正保.汽车纵向碰撞控制结构设计的理论与方法研究,湖南大学博士学位论文,1999
    [97]苏保国.轿车车身结构碰撞数据模拟计算研究,大连理工大学硕士论文,2001
    [98]桂良进,范子杰,王青春.泡沫填充圆管的动态轴向压缩吸能特性.清华大学学报,2004,44(5):709-712
    [99]毛春升,钟绍华.泡沫铝技术及其在车辆中的应用.汽车工艺与材料,2006,5:6-9
    [100]侯淑鹃.薄壁构件的抗撞性优化设计,湖南大学博士学位论文,2007.4
    [101]王大志.基于乘员保护的汽车正面碰撞结构设计与变形控制研究,清华大学博士学位论文,2006
    [102]陈宗渝.微型汽车车身结构力学性能仿真技术-试验研究,重庆大学大学博士论文,2000
    [103]葛如海,刘星荣.轻型汽车前部偏置碰撞特性研究.中国公路学报.2000,13(3):110-112
    [104]葛如海,刘志强,陈晓东.汽车安全工程,化学工业出版社,2005
    [105]龚剑.利用数值模拟改进某微型客车的碰撞安全性.清华大学硕士学位论文,2001
    [106]王大志.轻型客车正面碰撞车架吸能结构优化设计.公路交通科技2004,21(2):119-122
    [107]黄金陵.汽车车身设计,机械工业出版社,2007
    [108]Karagiozova D,Jones N.Dynamic pulse buckling of a simple elastic-plastic model including axial inertia.International Journal of Solids and Structures,1992,29(10):1255-1272
    [109]H.F.Mahmood,A.Paluszny.Design of Thin Walled Columns for Crash Energy Management-Their Strength and Mode of Collapse.SAE Paper 811302.1981.
    [110]W.Abramowicz,N.Jones.Transition from initial global bending to progressive buckling of tubes loaded statically and dynamically.International Journal of Impact Engineering,1997,19(5),415-437
    [111]Jones,N.,Structural Impact,Cambridge University Press,Cambridge,U.K.,1989.
    [112]Thornton,P.H.,Mahmood,H.E and Magee,C.L.,Energy Absorption by Structural Collapse,In Structural Crashworthiness,ed.N.Jones and T.Wierzbicki,Butterworths,London,1983,pp.96-117
    [113]Anghileri M,Chirwa E C,Lanzi L,et al.An inverse approach to identify the constitutive model parameters for crashworthiness modeling of composite structures.Composite Structures,2005,68:65-74
    [114]Chen W G,Wierzbicki T.Relative merits of single-cell,multi-cell and foam-filled thin-walled structures in energy absorption.Thin-Walled Structures.2001.39:287-306
    [115]Chow C L,Jie M,Yao Y.Design optimization of metallic hexagonal cross section.International Journal of Crashworthiness,2004,9(1):25-33
    [116]Yamashita M,Gotoh M.Impact behavior of honeycomb structures with various cell specifications-numerical simulation and experiment.International Journal of Impact Engineering,2005,32:618-630
    [117]赵学平.基于轿车纵梁的碰撞模拟及吸能特性的研究,南京理工大学硕士学位论文,2004.6
    [118]荆友录.不同截面薄壁梁的轴向耐撞性对比研究.山东交通学院学报,2008,16(2):14-17
    [119]贾宏波,黄金陵.车身碰撞仿真技术在红旗轿车车身开发中的应用,汽车工程,1998,20(5)
    [120]钱立军,杨士钦,马恒永.具有诱导结构的汽车薄壁杆件的耐撞性研究,汽车技术,2001,6
    [121]王海亮.基于耐撞性数值仿真的汽车车身结构优化设计研究,上海交通大学博士论文,2002.6
    [122]朱西产,钟荣华.薄壁直梁件碰撞吸能计算机仿真方法的研究.汽车工程,2000
    [123]刘中华.薄壁梁动态撞击的变形吸能特性的仿真与分析.吉林大学硕士学位论文,2004
    [124]姚松,田红旗.车辆吸能部件的薄壁结构碰撞研究.中国铁道科学,2001,22(2)
    [125]周宇,雷正保,杨兆.基于预变形控制理论的汽车前纵梁仿真设计.长沙理工大学学报,2005,2(4):34-38
    [126]姜礼尚,庞之垣.有限元法及其理论基础.人民教育出版社,1980
    [127]孟凡中.弹塑性有限变形理论和有限元方法.清华大学出版社,北京,1985
    [128]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,2002
    [129]Pedersen C B W.Topology optimization design of crushed 2D-frames for desired energy absorption history.Structural and Multidisciplinary Optimization,2003,25:368-382
    [130]潭继锦.汽车有限元法.北京:人民交通出版社,2005:2-4
    [131]武和全,辛勇,董学勤.某越野车车架有限元建模与刚度分析.机械设计与制造,2008,(06)
    [132]Ali R.Use of finite element technique for the analysis of composite structures.Computers and Structures,1996,58(5):1010-10232
    [133]柴晓磊.轿车白车身撞压变形特性对乘员伤害指标影响的仿真分析,吉林大学硕士学位论文,2005.5
    [134]薛量,姜正旭,林忠钦,汽车碰撞仿真中的连接失效模拟机.械科学与技术,2000
    [135]龚剑等.PAM-CRASH碰撞模拟中主要控制参数影响的分析.振动与冲击,2002,21(3)
    [136]Jones N.Structure Impact.Cambridge:Cam2bridge University Press,1989.211-247
    [137]胡昌明,贺红亮,胡时胜.45号钢的动态力学性能研究爆炸与冲击,2003,(02)
    [138]Hequan Wu,Yong Xin.True Stress-strain Curves Used in Finite Element Vehicle Model.IEEE Vehicle Power and Propulsion Conference(VPPC),2008
    [139]田成达.DP780高强钢动态力学行为研究.上海交通大学硕士学位论文,2008
    [140]Johnson G R,Cook W H.A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures.In:Proceeding of the 7th international symposium on ballistics,the hague,Netherlands,1983,541-547
    [141]Johnson G R,Cook WH.Fracture characteristics of three metals subjected to various strains,strains rates,temperatures and pressures.Engineering Fracture Mechanics,1985,21(1):31-48
    [142]迈耶斯.材料的动力学行为.北京:国防工业出版社,2006
    [143]李善坡,隋允康,宇慧平.二维连续体结构形状优化及其在MSC Nastran上的二次开发.计算机辅助工程,2006.15(9):452-454
    [144]Chen K K,Fine D S.Stiffness Analysis of Sheet Metal Shells Under Concentrated Loads.SAm Transactions,1974,83:1469-1475
    [145]Benerjee J R.Torsional Rigidity of a Racing Car Frame.Structural Design and Crashworthiness of Automobiles,1987
    [146]Martindate N,Choe K,May T,et al.FEA Modeling Practices for Light Trucks.Ford Internal Report,1994
    [147]Cook,Davis Robert.Finite Element Modeling for Stress Analysis.New York Wiley,1995
    [148]Davis J C.Modal Modeling Techniques for Vehicle Shake Analysis.Society of Automotive Engineers,1972
    [149]Liu YC,Day ML.Development of simplified finite element model for general thin-walled structures.Int J Crashworthiness 2007;12(6)
    [150]Liu YC,Day ML.Development of simplified finite element model for straight thin-walled tubes with octagonal cross section.Int J Crashworthiness 2007,12(5)
    [151]Hou SJ,Li Q,Long SY,Yang XJ,Li W.Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria.Finite Elem Anal Des 2007
    [152]Fang H,Rais-Rohani M,Liu Z,et al.h comparative study of metamodeling methods for multiobjective crashworthiness optimization.Computers&Structures,2005,83:2121-2136
    [153]Johnson,W.and Reid,S.R.,Metallic energy dissipating systems.Applied Mechanics Reviews,1978,31,277 288.Update of this article in 1986,39,315-319.
    [154]Alexander J M.An approximate analysis of the collapse of thin cylindraical shells under axial load.Quarterly Journal of Mechanics and Applied Mathematics.1969,13:10-15
    [155]T.Wierzbicki,W.hbramowicz.On the Crushing Mechanics of Thin-Walled Structures.Journal of Applied Mechanics 1983;50:727-734.
    [156]W.Abramowicz,T.Wierzbicki.Axial crushing of multicorner sheet metal columns.Journal of Applied Mechanics,Transactions ASME 1989;56(1):113-120.
    [157]A.Rossi,Z.Fawaz,K.Behdinan.Numerical simulation of the axial collapse of thin-walled polygonal section tubes.Thin-Walled Structures,2005.43:1646-1661
    [158]Yamazaki K,Han J.Maximization of the crushing energy absorption of cylindrical shells.Advance in Engineering Software,2000,31:425-434
    [159]Avalle M,Chiandussi G.Optimisation of a vehicle energy absorbing steel component with experimental validation.International Journal of Impact Engineering,2007,34:843-858
    [160]Kurtaran H,Eskandarian A,Marzougui D,Bedewi N E.Crash-worthiness design optimization using successive response surface approximations.Computational Mechanics,2002,29:409-421
    [161]Tsrek A.Omar,Nabih E.Bedewi and Azim Eskandarian,Recurrent Artificial Neural Networks For Crashworthiness Analysis.,AMD-Vol.225/BED-Vol.38,Crashworthiness,Occupant Protection and Biomechanics in Transportation Systesm-1997,ASME 1997
    [162]Tsrek A,Omar Azim Eskandarian,,and Nabih E.Bedewi.,Crash Analysisof Two Vehicle in Frontal Impact Using Adaptive Artificial Neural Networks,AMD-Vol.230/BED-Vol.41,Crashworthiness,Occupant Protection and Biomechanics in Transportation Systesm-1998,ASME 1998
    [163]雷正保,钟志华.汽车前部纵向力学特性优化设计.上海汽车,1998,2:9-10
    [164]解跃青,方瑞华,雷雨成.基于碰撞数值模拟的汽车纵梁焊点布置方法.焊接学报,2003,24(1):73-77
    [165]张立新,隋允康,高学仕.基于响应面方法的结构碰撞优化.力学与实践,2005,27(3):35-39
    [166]熊俊涛,乔志德,韩忠华.基于响应面法的跨声速机翼气动优化设计.航空学学报,2006,27(3)
    [167]张立明.人工神经网络的模型及其应用.上海:复旦大学出版社,1993
    [168]飞思科技产品研发中心.神经网络理论与MATLAB7实现.北京:电子工业出版社,2005.18-23.
    [169]戴葵,神经网络实现技术.长沙:国防科技大学出版社,1998
    [170]沈清,胡德文,时春.神经网络应用技术.长沙:国防科技大学出版社,1993
    [171]刘勇、康立山、陈毓屏,非数值并行算法(第二册)—遗传算法,北京:科学出版社,2000
    [172]王小平,曹立明,遗传算法—理论、应用与软件实现,陕西:西安交通大学出版社,2002
    [173]雷黄杰,张善文,李续武等.Matlab遗传算法工具箱及应用,西安:西安电子科技大学出版社,2005.4
    [174]Ohkami Y,et al.Collapse of thin-walled curved beam with closed-hat section:Study on collapse characteristics.SAE Paper 900460,1990
    [175]Abe K,et al.Collapse of thin-walled curved beam with closed-hat section:Simulation by plane plastic hinge model.SAE Paper 900461,1990
    [176]Kim H-S,Wierzbicki T.Effect of the cross-sectional shape on crash behavior of a 3-D space frame.Impact and Crashworthiness Laboratory Report No.34,May 2000,MIT
    [177]Zheng L,Wierzbichi T.Quasi-static crushing of S-shaped aluminum front rail.International Journal of Crashworthiness,2004,9(2):155-173
    [178]C.Zhang,A.Saigal.Crash behavior of a 3D S-shape space frame structure.Materials Processing Technology,2007:256-259
    [179]庄楚强,吴亚森.应用数理统计基础.广州:华南理工大学出版社,2003
    [180]Abramowicz W,Jones N.Dynamic axial crushing of circular tubes.International Journal of Impact Engineering,1984,2(3):263-281
    [181]Johnson W,Soden P D,Al-Hassani S T S.Inextensional collapse of thin-walled tubes under axial compression.Journal of Strain Analysis,1977,12:317-330
    [182]张立玲,高峰.金属薄壁吸能结构抗撞性研究进展.机械工人热加工,2006,56(1):76-78
    [183]Mamalis AG,Johnson W.The quasi-static crumpling of thin walled circular cylinders and frusta under axial compression.Int J Mech Sci 1983;25:713-732.
    [184]N.Mohamed Sheriffa,N.K.Gupta.Optimization of thin conical frusta for impact energy absorption.Thin-Walled Structures,2008;46:653-666.
    [185]L.J.Sparke,J.A.Tomas.Crash Pulse Optimization for Minimum Injuring Risk to Car Occupants.SAE Paper,945162
    [186]赖欣武.基于神经网络组合预测的板料冲压回弹预测研究,浙江大学硕士学位论文,2006
    [187]魏一凡.微型客车300斜角碰撞及40%偏置碰撞抗撞性研究,吉林大学硕士学位论文,2005
    [188]卢险峰.最优化方法应用基础.同济大学出版社,2003
    [189]胡玉梅.汽车正面碰撞设计分析技术及应用研究,重庆大学博士学位论文,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700