用户名: 密码: 验证码:
电力系统概率优化调度理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力系统规模的扩大,以及发输电资源格局的变迁,系统运行中所面临的不确定性问题日渐增多,运行工况也日益复杂。尤其是市场竞争机制的引入,增加了系统的运行紧张程度,使得电力系统运行水平趋于安全的边界,再加上发电机组停运和输电元件断开等随机扰动因素,进一步增大了电力系统的运行风险水平。传统的电力系统运行调度理论框架一直是基于确定性的模型和分析方法,往往不考虑运行中随机事件的发生概率,也未对事件发生可能性与后果严重性之间做出协调,因而难免得出保守或冒进的决策方案。针对目前电力系统发展中所呈现出的运行工况愈加复杂,以及市场参与各方经济利益交互影响的特点,使得传统基于确定性方式的调度理论已难以适应当前的形势要求,面临着完善提升的迫切需要。因此,关联考虑电力系统运行中随机事件的发生概率与其对应后果代价,揭示调度方案所蕴含的风险理念与经济规律,给出资源优化配置的引导方向,即构建在经济规律引导下、概率规律为主导线索,将风险和调度有机统一,就成为电力系统运行优化调度理论亟待解决的问题。
     本文工作正是在这一背景下,以电力系统运行中的概率规律为线索,以经济规律为引导,以优化数学为手段,将风险与调度融合、衔接及协调为研究内容,进行概率优化调度理论研究和探索,其主要工作和有新意成果体现如下:
     (1)提出了电力系统概率优化调度的基本概念,构建了该问题的一般数学模型及理论框架体系。通过电力系统优化调度理论演变过程分析,表明概率优化调度理论是对电力系统优化调度、可靠性评估和运行风险评估等理论的融合、提升和发展。概率优化调度理论研究目的在于通过关联电力系统运行中随机事件的发生概率与其对应后果,从而给出协调考虑运行安全、经济和可靠的优化调度决策。以此概念为基础,本文以直流潮流为基础,重点针对机组故障和输电元件停运所对应的随机概率事件,建立系列概率优化调度模型和算法,在电力系统运行调度理论研究领域有所进展。
     (2)建立计及发电机组故障的概率优化调度模型和算法。该模型以期望的发电运行成本最小为目标,以机组故障发生概率为协调手段,以事故后发电机组的调整速率为牵制条件,统筹考虑了机组的运行成本、事故状态下的出力再调整成本以及需求侧的负荷中断赔付。这样,该模型以概率方式协调了机组事故前后状态之间的经济性牵制,实现了经济规律引导下对机组旋转备用的优化配置、调用以及责任的度量。由该模型提出的算法,通过对三种调度方式的对比研究与分析,表明这一最基本的概率优化调度模型是有效的。
     (3)建立计及输电元件停运的概率优化调度模型和算法。该模型通过引入电网安全价值系数,构成电力系统运行调度经济性和安全性折中统一的期望优化目标,在满足电网正常状态和一定的输电元件预想事故集合对应约束下,获取概率的最优调度解。其中,所谓运行调度的经济性,是考虑了系统的期望运行总成本,并考虑了输电元件停运事件状态下的发电机组再调整和负荷中断所对应的安全校正耗费;所谓运行调度的安全性,则是考虑了输电网络在事故前后状态所对应的期望负载严重程度。这样,该模型以概率方式实现了运行调度中经济性与安全性的均衡协调,量化了电力系统运行调度方式所对应的安全经济运行风险水平。由该模型提出对应的算法,通过对五种调度方式的对比研究与分析,表明这一扩展的概率优化调度模型是有效的。
     (4)建立协调系统运行综合效益的概率优化调度模型和算法。该模型以电力系统的期望运行效益最大为目标,综合考虑发电机组的正常运行成本和再调度调整成本、以及需求侧负荷的正常收益与中断补偿,采用马尔可夫链对未来调度时段由输电元件所引起的随机事件状态概率进行预测,在满足所有输电元件停运事故发生前后状态所对应约束集下获取调度解。其中,在输电元件停运事件发生后的紧急容许时间内,针对可能出现的电力系统安全破坏情形,在约束集合中考虑了发电机组所允许的输出功率再调整、需求侧负荷中断、以及输电元件的短时紧急允许过载量,并考虑相应安全校正措施的费用代价。这样,由该模型提出对应的算法,该模型实现了电网运行状态概率预测与有功优化调度决策的紧密结合,得到了电网期望最大运行效益的时序变化曲线,以及各个时段下风险与效益相均衡的调度方式和事故状态下的优化校正措施。通过对该模型所含不同调度方式的对比研究与分析,表明这一丰富电力系统概率优化调度模型是有效的。
     (5)对概率优化调度模型复杂性分析的基础上,提出对适应大规模电网快速求解的手段。针对概率优化调度模型规模庞大,整体求解计算效率不高的实际现状,通过吸取传统安全约束优化调度的分解处理思路,对概率优化调度模型特点进行了分析。这样,通过从输电元件对应的随机事件集合中循环遴选关键有效事件,实现了对问题规模的降阶处理,提高了计算效率,显现了该处理方式对解算大系统有一定适用前景。
With the expansion and deregulation of the power system, which is confronting more operating uncertainties, thus the operation condition is becoming more and more complicated. Especially the introduction of market competition mechanism, which leads the operation of power system to the margin of security, coupling with the contingency of generator outage and transmission component failure, thus the power system operating risk is increasing much more. Traditional power system dispatching framework is based on the deterministic model and method, which can not reflect the real system operating risk, so the dispatching results may be either conservative or radical as it does not take into account of the possibility of the contingency. Because of the complicated operating condition and the economic interaction of market participants, the traditional deterministic pattern is not suitable for current situation and needs to be upgraded urgently. Therefore, the coordination of severity and probability of the contingency in power system operating condition, unfolding the risk essence and economic meaning, and presenting the optimal allocating direction of the resources, i.e.constructing the direction by the economics and probability theory, combining the consideration between operating risk and dispatching strategy, so the power system probabilistic optimal dispatching in the real-time operating condition has become a urgent research problem.
     This thesis has investigated the optimal dispatching by considering probabilistic disciplinarian and economic law under the real-time operating background. Based on the mathematical optimization theory, the research of probabilistic optimal dispatching has been carried out. The main research work and innovation of this thesis are shown as follows:
     (1) The concept and frame of power system probabilistic optimal dispatching have been established in this thesis. By analyzing the evolution of power system optimal dispatching model, it can be demonstrated that the probabilistic dispatching theory develops and integrates the traditional optimal dispatching, reliability evaluation and operating risk research. The intention of power system probabilistic optimal dispatching is to associate probability and outcome of the contingency, and giving the optimal decision-making of coordinating the security, economy and reliability. Based on the DC power flow model, the probabilistic optimal dispatching model and solution method have been investigated by considering the generator outage and transmission component failure. Therefore, the power system operating dispatching researching level has been promoted.
     (2) The power system probabilistic optimal dispatching model and it's solution arithmetic of considering generator outage has been established. This model has the objective function of the expected operating cost minimum, by considering the generator probabilistic outage characteristic and ramping rate, so the operating cost, corrective cost and the load interruption compensation have been taken into account altogether. Therefore, the economic relation has been coordinated in this mode for pre-contingency and post-contingency states, and the optimal allocation of spinning reserve, also the responsibility among the generators can be quantified for each other. With the comparison and analysis of three different dispatching modes, the basic probabilistic optimal dispatching model has been demonstrated effectively by the solution arithmetic.
     (3) The power system probabilistic optimal dispatching model and solution arithmetic of considering the transmission component failure has been established. With the power network security value factor, the power system operating economy and security have been compromisingly combined into one uniform expected objective function, thus the probabilistic optimal results can be obtained with the constraint-set of power network normal state and definite contingency states. Thereinto, the so-called dispatching economy has considered the power system expected operating cost, which has also included the security-corrective costs of generator ramping and load interruption at the contingency state. The so-called dispatching security has been represented by the power network expected loading severity of both the pre-contingency and post-contingency states. Therefore, the dispatching economy and security have been coordinated, and the operating risk of dispatching mode has been quantified. With the comparison and analysis of five different dispatching modes, the further evolutive probabilistic optimal dispatching model has been demonstrated effectively by the corresponding solution arithmetic.
     (4) The power system probabilistic optimal dispatching model and solution arithmetic of considering the compositive operating benefit has been established. This model has the objective function of power system expected operating benefit maximum, which has considered the generator operating cost and the redispatching costs, also the load normal benefit and interruption compensation in demand-side has been considered. With the forecasting probabilities of transmission conponent contingency states in future period by markov chain, the optimal dispatching results can be obtained with the constraint of both pre-contingency and post-contingency state. And for the possible security breaking case during the post-contingency state, the generator unit ramping, emergent load interruption and transmission component short-term overloading within the allowable time have been included in the constraint-set, also the cost of the corrective measures have been taken into account. Therefore, the forecasting probability of the power network operational tendency and active power optimal dispatching decision-making have been combined in this model, which can attain the curve of expected operating maximal benefit in different dispatching period, also the coordinated dispatching mode under the probabilistic framework of harmonizing risk with benefit corresponding to that period and the corrective strategies for emergent states. By contrasting the different dispatching modes, this progressive power system probabilistic optimal dispatching model has been demonstrated to be effectively.
     (5) Based on the complexity analysis of the probabilistic optimal dispatching model, an efficient solution pattern has been brought forward. For the huge dimension of probabilistic optimal dispatching, it is inefficient to solve it as a whole problem. Enlightened by the decomposing thought of the traditional optimal dispatching method, the probabilistic optimal dispatching model characteristic has been analysed. Thus, the decrescent model has been obtained by the critical contingency selecting in cyclical pattern. Therefore, the dimensions of the original model has been decreased ,and the calculation efficiency has been improved by this solution pattern, thus it may be feasible for the large power system.
引文
[1]薛禹胜.综合防御由偶然故障演化为电力灾难—北美“8·14”大停电的警示.电力系统自动化,2003,27(18):1-5.
    [2]US-Canada Power System Outage Task Force.Final Report on the August 14,2003 Blackout in the United States and Canada:causes and recommendations.April 2004.
    [3]刘海涛.电力系统运行可靠性评估理论与方法研究[博士学位论文].北京:清华大学,2008.
    [4]陈为化.基于风险的电力系统静态安全分析与预防控制[博士学位论文].杭州:浙江大学,2007.
    [5]张强,韩学山,徐建政.安全经济调度与均匀调度间关系分析.电力系统及其自动化学报,2005,17(2):84-89.
    [6]韩学山,赵建国.刚性优化与柔性决策结合的电力系统运行调度理论探讨.中国电力,2004,37(1):15-18.
    [7]尚金成,周劫英,程满.兼顾安全与经济的电力系统优化调度协调理论.电力系统自动化,2007,31(6):28-33.
    [8]赵建国.电力市场环境下有功调度与决策若干机制问题的研究[博士学位论文].武汉:华中科技大学,2004.
    [9]于尔铿,韩放,谢开.电力市场.北京:中国电力出版社,1998.
    [10]J W A,F W B.Power Generation Operation and Control.New York:John Wiley&Sons Inc,1996.
    [11]Stott B,Hobson E.Linear Programming for Power System Network Security Applications.IEEE Trans on Power Apparatus and Systems,1979,98(3):837-848.
    [12]Lin C E,Chen S T.A Direct Newton-raphson Economic Disptach.IEEE Transaction on Power system,1992,7(3):1149-1154.
    [13]江长明,朱继忠,徐国禹.有功调度中经济性与安全型的协调问题.电力 系统自动化,1995,19(11):43-49.
    [14]李彩华,郭志忠.电力系统优化调度概述(Ⅰ)—经济调度与最优潮流.电力系统及其自动化学报,2002,14(2):60-63.
    [15]丁晓莺,王锡凡.最优潮流在电力市场环境下的新发展.电力系统自动化,2002,26(13):1-7.
    [16]袁贵川,王建全,韩祯祥.电力市场下的最优潮流.电网技术,2004,28(5):13-17.
    [17]韩学山.市场环境下电力系统运行调度理论研究的思考.电力系统及其自动化学报,2008,20(2):17-21.
    [18]周明,聂艳丽,李庚银.电力市场下长期购电方案及风险评估.中国电机工程学报,2006,26(6):116-122.
    [19]张保会,王立永,谭伦农.基于经济当量的市场环境下电网公司安全性的经济化实现.中国电机工程学报,2006,26(7):107-112.
    [20]Martinez M M.Optimization Models and Techniques for Implementation and Pricing of Electricity Markets.Waterloo:Ph.D Paper of the University of Waterloo,2000.
    [21]Hongrui Liu,Yanfang Shen,Zelda B.Social Welfare Maximization in Transmission Enhancement Considering Network Congestion,IEEE Trans.on Power Systems,2002,17(3):843-849.
    [22]汪峰,白晓民.基于最优潮流方法的传输容量计算研究.中国电机工程学报,2002,22(11):35-40.
    [23]Da Silva,Costa J G C,Manso L A F.Transmission Capacity:Availability,Maximum Transfer and Reliability.IEEE Trans.on Power Systems,2008,23(3):1105-1114.
    [24]李文沅.电力系统安全经济运行-模型与方法.重庆:重庆大学出版社,1989.
    [25]Stott B,Alsac O,Monticelli A J.Security Analysis and Optimization,Proceedings of the IEEE,1987,pp:1623-1644.
    [26]朱继忠,徐国禹.电力系统N-1安全有功经济调度.重庆大学学报,1992, 15(2):105-109.
    [27]李文沅.电力网络N-1安全性有功实时经济调度计算的研究.重庆大学博士学位论文,1989.
    [28]Qiu Wei,Flueck A J,Tu Feng.A New Parallel Algorithm for Security Constrained Optimal Power Flow with a Nonlinear Interior Point Method.IEEE Power Engineering Society General Meeting,San Francisco,USA,2005,Vol1:447-453.
    [29]Capitanescu F,Glavic M,Ernst D.Contingency Filtering Techniques for Preventive Security Constrained Optimal Power Flow.IEEE Trans.on Power Systems,2007,22(4):1690-1697.
    [30]Florin Capitanescu,Louis Wehenkel.Improving the Statement of the Corrective security-constrained Optimal Power Flow Problem.IEEE Trans on Power Systems,2007,22(2):887-889.
    [31]M C Jorge,Usaola Julio,L F Jose.Security-Constrained Optimal Generation Scheduling in Large-Scale Power Systems.IEEE Trans on Power Systems,2006,21(1):321-332.
    [32]李尹,张伯明,孙宏斌.基于非线性内点法的安全约束最优潮流(一):理论分析.电力系统自动化,2007,31(19):7-13.
    [33]李尹,张伯明,孙宏斌.基于非线性内点法的安全约束最优潮流(二):算法实现.电力系统自动化,2007,31(20):6-11.
    [34]孟祥星,韩学山.不确定性因素引起备用的探讨.电网技术,2005,29(1):30-34.
    [35]Aganagic M,Awobamise B.Economic Dispatch with Generation Contingency Constraints.IEEE Trans on Power Systems,1997,12(3):1229-1236.
    [36]孟祥星,韩学山.一种新的计及备用约束的调度模型.电网技术,2005,29(14):20-25.
    [37]李响,郭志忠.N-1静态安全潮流约束下的输电断面有功潮流控制.电网技术,2005,29(3):29-32.
    [38]李响,郭志忠.基于输电断面N-1静态安全潮流约束的联切负荷方案.电 力系统自动化,2004,28(22):42-44.
    [39]Arroyo J M,Galiana F D.Energy and Reserve Pricing in Security and Network-constrainted Electricity Markets.IEEE Transaction on Power System,2005,20(2):634-643.
    [40]王立永,张保会,王克球.市场环境下N-1原则的经济效益评价.电网技术,2006,30(9):16-21.
    [41]吴政球,叶世顺,匡文凯.电力市场日前N-1安全校正模型及算法.电力自动化设备,2008,28(10):42-45.
    [42]Madrigal M,Quintana V H.A Security-constrained Energy and Spinning Reserve Markets Clearing System using an Interior-point Method.IEEE Transactions on Power Systems,2000,15(4):1410-1416.
    [43]张国全,王秀丽,王锡凡.电力市场中旋转备用的效益和成本分析.电力系统自动化,2000,24(21):14-18.
    [44]任震,潘锡芒,黄雯莹.电力市场中计及发电机组可用率的备用分配计算.电力系统自动化,2002,26(17):16-18.
    [45]G.Anders.Probability Concepts in Electric Power Systems.John Wiley,New York,1990.
    [46]R Billinton and R N Allan.Reliability Evaluation of Power System.Pitman,1984.
    [47]郭永基.电力系统可靠性分析.北京:清华大学出版社,2003.
    [48]赵儆,康重庆,夏清.电力市场中可靠性问题的研究现状与发展前景.电力系统自动化,2004,28(5):6-10.
    [49]J W M Cheng,D T McGillis,F D Galima.Power System Reliability in a Deregulated Environment.Proc.IEEE Canadian Conference on Electrical and Computer Engineering,Vol.2,Halifax,Nova Scotia,2000,7-10.
    [50]K Debnath,R Billinton.Some Aspects of Generating Unit Availability Models.IEEE Trans on Energy Conversion,1989,4(1):41-46.
    [51]王韶,周家启.双回平行输电线路可靠性模型.中国电机工程学报,2003,23(9):53-56.
    [52]任震,万官泉,黄金凤.电力系统可靠性原始参数的改进预测.电力系统自动化,2003,27(4):37-40.
    [53]候志俭,吴际舜.电力系统安全校正中的卸负荷控制.电力系统自动化,1994,19(5):17-22.
    [54]赵渊,周家启,周念成.大电力系统可靠性评估的解析计算模型.中国电机工程学报,2006,26(5):19-25.
    [55]W Wangdee,R Billinton.Bulk Electric System Well-Being Analysis Using Sequential Monte Carlo Simulation.IEEE Trans on Energy Conversion,2006,21(1):188-193.
    [56]石文辉,别朝红,王锡凡.大型电力系统可靠性评估中的马尔可夫链蒙特卡洛方法.中国电机工程学报,2008,28(4):9-15.
    [57]王超,徐政,高鹏.大电网可靠性评估的指标体系探讨.电力系统及其自动化学报,2007,19(1):42-48.
    [58]李文沅,周家启,颜伟.基于可靠性的电力系统设备备用规划方法,中国电机工程学报,2006,26(15):7-11.
    [59]冯永青,吴文传,孙宏斌.现代能量控制中心的运行风险评估研究初探.中国电机工程学报,2005,13(25):73-79.
    [60]孙元章,程林,刘海涛.基于实时运行状态的电力系统运行可靠性评估.电网技术,2005,29(15):6-12.
    [61]Xiao Fei,J McCalley,Ou Yan.Contingency Probability Estimation Using Weather and Geographical Data for On-Line Security Assessment.Proc.of the 2006 Probabilistic Methods Applied to Power Systems.June.Stockholm,Sweden:1-7.
    [62]He Jian,Cheng Lin,Sun YuanZhang.Transformer Real-time Reliability Model Based on Operating Conditions.Journal of Zhejiang University:Science A,2007,31(17):6-11.
    [63]W H Fu,J D Mccalley,and V Vittal.Risk assessment for transformer loading.IEEE Trans.on Power Systems,2001,16(3):346-353.
    [64]J zhang,J Pu,and J D Mccalley.A Bayesian Approach for Short-term Transmission Line Thermal Overload Risk Assessment.IEEE Trans.on Power Delivery,2002,17(3):770-778.
    [65]H Wan,J D Mccalley,and V Vittal.Increasing Thermal Rating by Risk Analysis.IEEE Trans.on Power Systems,1999,14(3):815-828.
    [66]Liu Haitao,Sun Yuanzhang,Cheng Lin.On-line Short-term Reliability Evaluation using Fast Sorting Technique.IEE Procedings:Generation,Transmission&Distribution,2008,2(1):139-148.
    [67]Ni Ming,J D McCalley,V Vittal.On-line Risk-based Security Assessment.IEEE Trans.on Power Systems,2003,18(1):258-265.
    [68]何剑,程林,孙元章.电力系统运行可靠性成本价值评估.电力系统自动化,2009,33(2):5-9.
    [69]史慧杰,葛斐,丁明.输电网运行风险的在线评估.电网技术,2005,29(6):43-48.
    [70]王成亮,赵渊,周家启.基于日发电计划的电力系统运行风险概率评估.电力系统自动化,2008,32(4):6-10.
    [71]冯永青,张伯明,吴文传.基于可信性理论的电力系统运行风险评估:(一)运行风险的提出与发展.电力系统自动化,2006,30(1):17-23.
    [72]冯永青,吴文传,张伯明.基于可信性理论的电力系统运行风险评估:(二)理论基础.电力系统自动化,2006,30(2):11-15.
    [73]冯永青,吴文传,张伯明.基于可信性理论的电力系统运行风险评估:(三)应用与工程实践.电力系统自动化,2006,30(3):11-16.
    [74]Ni Ming,J D McCalley,V Vittal.Software Implementation of On-line Risk-based Security Assessment.IEEE Trans.on Power Systems,2003,18(1):258-265.
    [75]Condren J,Gedra T W,Damrongkulkamjorn P.Optimal power flow with expected security costs.IEEE Trans.on Power Systems,2006,21(2):541-547.
    [76]X Chen,M Ni,J McCalley.Use of Multicriterion Techniques for Control-Room Security Economy Decision-Making.Proc.of the 2002 Probabilistic Methods Applied to Power Systems,Sept.2002,Naples,Italy.
    [77]Xiao Fei,McCalley J D.Risk Based Multi-objective Optimization for Transmission Loading Relief Strategies.Power Engineering Society General Meeting,Tampa,USA,2007:1-7.
    [78]Xiao Fei,McCalley J D.Risk-Based Security and Economy Trade off Analysis for Real-time Operation.IEEE Trans.on Power Systems,2007,22(4):2287-2288.
    [79]Bouffard F,Galiana F D.Market-clearing with Stochastic Security-part Ⅰ:Formulation.IEEE Transaction on Power Systems,2005,20(4):1818-1826.
    [80]Bouffard F,Galiana F D,Market-Clearing with Stochastic Security-part Ⅱ:Case Studies.IEEE Transaction on Power System,2005,20(4):1827-1835.
    [81]Y J Dai,J D Mccalley,and V Vittal.Annual risk assessment for overload security.IEEE Trans.on Power Systems,2001,16(4):616-623.
    [82]J D McCalley,V Vittal,and N Abi-Samra.An Overview of Risk Based Severity Assessment.1999 IEEE Power Engineering Society Summer Meeting,Alberta,Canada,July18-22,1999:173-178.
    [83]王锡凡.现代电力系统分析.北京:科学出版社,2003:116-117.
    [84]何剑,程林,孙元章.条件相依的输变电设备短期可靠性模型.中国电机工程学报,2009,29(7):39-46.
    [85]H Wan,J D Mccalley,and V Vittal.Risk Based voltage security assessment.IEEE Trans.on Power Systems,2000,15(4):1247-1254.
    [86]J D Mccalley,V Vittal,and H Wan.Voltage risk assessment.IEEE Power Engineering Society Summer meeting,Edmonton,Alberta,Canada,1999,1:179-184.
    [87]V Vittal,J D Mccalley,V Vanacker.Transient instability risk assessment.IEEE Power Engineering Society Summer meeting,Edmonton,Alberta,Canada,1999,1:206-211.
    [88]Condren J,Gedra T W.Expected-security-cost optimal power flow with small-signal stability constraints.IEEE Trans.on Power Systems,2006, 21(4):1736-1743.
    [89]赖业宁,薛禹圣,高翔.发电容量充裕度的风险模型与分析.电力系统自动化,2006,30(17):1-6.
    [90]丁明,齐先军,安玲.旋转备用中考虑可靠性的多目标分层决策.电力系统自动化,2007,31(13):17-22.
    [91]于尔铿.经济调度与电力市场.国家电网,2006(8):11-12.
    [92]吴文传,宁辽逸,张伯明,等.一种考虑二次设备模型的在线静态运行风险评估方法.电力系统自动化,2008,32(7):1-5.
    [93]查浩,韩学山,杨朋朋.电网运行状态下的概率优化调度.中国电机工程学报,2008,28(28):54-60.
    [94]高亚静,周明,李庚银,等.基于马尔科夫链和故障枚举法的可用输电能力计算.中国电机工程学,2006,26(19):41-46.
    [95]Zha Hao,Han Xueshan,Wang Yanling,et al.An effective algorithm of the power system probabilistic optimal dispatching.Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies,Nanjing,China,2008.
    [96]张伯明,陈寿孙,严正.高等电力网络分析.北京:清华大学出版社,2007.
    [97]查浩,韩学山,王勇,张利.电力系统安全经济协调的概率调度理论研究.中国电机工程学报,2009,29(13):16-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700