用户名: 密码: 验证码:
松辽盆地南部长岭断陷火山岩储层预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松辽盆地深层火山岩的勘探近年来取得了重大发现,大庆油田于2005年12月在松辽盆地徐家围子断陷向国家储委提交了1000×10~8m~3的天然气探明储量,目的层为早白垩世营城组火山岩、营城组砂砾岩和登娄库组砂岩,其中营城组火山岩储量占总储量的89.7%。2007年中石油、中石化在松辽盆地南部的长岭断陷提交了超过1000×10~8m~3的火山岩储层的天然气探明储量,火山岩是松辽盆地深层的主要储层。
     松辽盆地长岭断陷早白垩世火山岩发育,通过重磁资料发现长岭断陷的中央主要多以中低磁性的酸性火山岩发育,在盆地周边中性—中基性的安山岩、玄武岩发育。利用地震和钻井资料建立火山岩的地震响应模型。根据火山机构的物理模型特征,选择倾角和相干体两种属性识别出了火山机构的各个相带,该成果应用于火山勘探中。利用波形分类方法识别火山岩相,利用地震属性的瞬时频率、瞬时频率斜度和反射强度属性进行有利储层预测,利用波阻抗反演等方法预测火山岩有利储层的分布范围。利用构造曲率法进行了火山岩裂缝的分布规律,吸收衰减判别火山岩含气性。
     在火山岩气藏的综合预测工作中,按火山机构-岩相、亚相-有利储层-含油气范围程序逐步进行,可以降低预测的多解性,提高钻探成功率。
     腰英台地区营城组火山岩储层和油气综合预测的结果表明,该区气藏类型为构造—岩性气藏;区内最有利的钻探部位是:起良好通道作用的断裂发育区的局部构造高点,特别是火山口与断裂共同发育区。
China's volcanic reservoir of oil and gas exploration and development began in the 1970s, in the late 1990s by rapid development. At present, almost all of China's major oil and gas basins are discovered volcanic rocks and volcanic reservoir. China has built a large number of a certain size, certain reserves and output to the reservoir rocks consisting mainly of oil and gas fields. Comparison with other countries, our country has more development the Cenozoic volcanic reservoir of oil and gas basins in the reservoir.
     Songliao Basin volcanic research began in the 20th century early 1990s, in 1996 after entering the rapid development period. Because the exploration of the actual needs of Songliao Basin volcanic reservoir studies continuously deepened in recent years in reservoir rocks and volcanic reservoir studies achieved a major breakthrough. Earthquake rocks from the non-recognition to the volcanic gas reservoir geology - earthquakes have established a comprehensive description of the corresponding series of theoretical and technical methods series. Daqing Oilfield in the current volcanic reservoir rocks and reservoir forecasts and exploration success rate of the leading international standard of living in the area, in the relevant theoretical research also living in the forefront of domestic and foreign counterparts.
     Songliao Basin, the exploration of deep volcanic rocks in recent years has made significant discovery, the Daqing Oilfield in December 2005 in the Songliao Basin Xujiaweizi depression to the State Reserve Committee submitted a 1000×108m3 proved reserves of natural gas, volcanic rock that is the Songliao Deep Basin, the main reservoir. However, in the southern part of Songliao Basin in Changling faulted constantly reveals new wells, the volcanic region from Changling lithology, larger changes in the same rocks, reservoir rocks on the size and distribution of the need for further understanding.
     To this end, the author relies on key projects in petrochemicals, "the Songliao Basin in Changling faulted volcanic reservoir characteristics of carry out the basic unit from the volcanic rock (volcanic bodies) point of a new awareness of volcanic reservoir characteristics of the research work. Through the volcanic reservoir description of the earthquake, in the geological model of restraint under the volcanic geology of the reservoir - comprehensive description of earthquakes, volcanic reservoir for the Fine forecast to provide a working guideline for speeding up the discovery of natural gas and improve the efficiency of exploration Important theoretical and practical significance.
     This paper mainly focus on the integrated study of volcanic reservoir with cores, gravity and magnetic data, logging and seismic data in the Changling fault depression of the Songliao basin following the elemental principles of litholgoy and geophysics in order to find the effective methods to predict volcanic reservoir. According to the Songliao Basin in southern Changling faulted the delineation of gravity and magnetic data to the distribution of volcanic rocks, seismic data interpretation of the distribution of volcanic the use of statistical methods to establish geological rock phase of the relationship between the reservoir and volcanic agencies and the reservoir of the relationship The use of waveform classification identification of volcanic rock, using dip properties and coherent method of identification of the volcano; phase and the use of reservoir rocks and volcanoes, the quantitative relationship with the agency relationship between the quantitative reservoir of semi-quantitative evaluation of seismic attributes at the same time And the geological reservoir effective statistical relationship between the reservoir effective earthquake prediction, using seismic inversion forecast favorable reservoir of distribution; forecast by tectonic stress fracture to find favorable reservoir. Above geological and seismic methods of effective reservoir prediction results for effective integrated reservoir forecast.
     1. Gravity and magnetic method
     The lithology of basement has been classified based on the vertical secondary derivative anomaly and continuation of gravity and geomagnetism. According to the geomagnetic nature of volcanic rocks, the distribution of intermediate and basic volcanic rocks was sketched out based on the waveletes analysis.
     2. Logging method
     According to the logging curve comparisons, the logging characteristics of volcanic rocks have the following principles. The rhyolite shows high natural gamma, electrical resistivity and low acoustic interval transit time (high velocity). The intermediate volcanic rocks, such as andesite, show high natural gamma and electrical resistivity and low acoustic interval transit time (high velocity). In general, from the basic volcanic rock to felsic volcanic rock, the radioactivity increases, the neutron response descends, the density decreases. Low electrical resistivity and high acoustic interval transit time are the unique characteristics of tuff.
     Element Capture Spectroscopy (ECS) data was employed to classify the volcanic rocks and to calculate the rock matrix parameters, that is, the ECS data was effective to recognize the lithology of volcanic rocks. The porosity of volcanic rocks can be recognized according to the density logging and nuclear magnetic resonance (NMR) logging as well as the rock matrix parameters calculated based on the ECS data. The effectivity of volcanic reservoir can be classified based on the porosity. The capillary pressure curve was calculated from the T2 distribution spectrum of NMR, then, the gas bedding was recognized based on the fluid saturation which was calculated based on the capillary pressure curve and the free water interface.
     3. Seismic reflection features analysis and recognition techniques
     The recognition resolution of seismic reflection to the deep volcanic reservoirs and the relationship among various wavelets were studied based on the wavelet forward of different frequency, thus, the recognition capability of current seismic data was deduced. The position and the spatial distribution of volcanic rocks were accurately sketched out with volcanic rocks orientated technique, for instance, the pre-stack depth migration technique and the unconventional section of seismic facies. 4. Integrated prediction of volcanic reservoir
     4.1 Prediction of development zones of volcanic craters
     The distribution and spatial extension of craters in the target area were recognized with coherence, dipping angle as well as various time slices of seismic data.
     4.2 the prediction of lateral distribution of volcanic facies
     The lateral distribution of volcanic facies was predicted with waveform clustering analysis method based on the distribution features in single well and the corresponding seismic reflection of volcanic rocks. The volcanic facies shows the following seismic reflection features. Volcanic vent facies: asymmetric acetabuliform, lenticular or wedge-shaped, low-middle frequency, weak-strong amplitude, bad continuity. Volcanic vent facies fingered with middle and lower subfacies of effusive facies in lateral. Explosive facies: sheet drape, slaty and wedge-shaped, and silllike drape, mid-low frequency and some is mid-high frequency, weak-mid amplitude and some is mid-strong amplitude, middle-well continuity and infrequent some is bad continuity. Effusive facies: wedge-shaped, sill-like drape, slaty and lenticular, mid-low frequency and some is mid-high frequency, mid-weak amplitude and some is mid-strong amplitude, middle-bad continuity and some is middle-well continuity. Extrusive facies: asymmetric bosslike, lenticular, slaty and wedge-shaped, mid-low frequency, mid-weak amplitude, bad continuity. Volcanogenitic sedimentary facies: silllike drape, mid-high frequency, strong amplitude, well continuity.
     Volcanic vent facies and its combination: asymmetric acetabuliform, lenticular or wedge-shaped, low-middle frequency, weak-strong amplitude, bad continuity. Volcanic vent facies fingered with middle and lower subfacies of effusive facies in lateral.
     Explosive facies and is combination: sheet drape, slaty and wedge-shaped, and silllike drape, mid-low frequency and some is mid-high frequency, weak-mid amplitude and some is mid-strong amplitude, middle-well continuity and infrequent some is bad continuity.
     Effusive facies and is combination: wedge-shaped, silllike drape, slaty and lenticular, mid-low frequency and some is mid-high frequency, mid-weak amplitude and some is mid-strong amplitude, middle-bad continuity and some is middle-well continuity.
     Extrusive facies and is combination: asymmetric bosslike, lenticular, slaty and wedge-shaped, mid-low frequency, mid-weak amplitude, bad continuity. Volcanogenitic sedimentary facies and is combination: silllike drape, mid-high frequency, strong amplitude, well continuity.
     4.3 Integrated prediction of volcanic reservoir
     The wave impedance inversion method was used here to predict volcanic reservoir. The tectonic evolution history as well as the development strata, occurrences and nature of fissures was modelled based on the regional tectonic stress field analysis. The gas saturation was analyzed with instantaneous wavelet technique.
     The distribution of volcanic reservoir and the volcanic gas pool were studied with the methods mentioned before. The volcanic reservoir was preferable to develop in the explosive facies and the effusive facies near the crater, the local relative tectonic highs and close to the fault, the development of volcanic reservoir was controlled by the volcanic edifices. The structure -lithology gas pools are dominating in the target area. The most advantageous position for drilling situates in the local tectonic highs of fault developed zones, especially the crater area. The current research results indicate the volcanic rocks of Yingcheng formation (K_(1yc)) in Yaoyingtai region have the best exploration and development potential and.in Dongling region have better potential.
引文
1.B.B.顿斯基赫,B.H.泽列普根,И.И.克罗尼道夫.古火山地质测量方法[M].林彻,何庆先,徐成彦,译.北京:地震出版社,1984,205-213.
    2.《地质科学大辞典》编委会.地质科学大辞典基础学科卷[M].北京:地质出版社,2006,996.
    3.陈国俊,王纬,张宏.地震相干体软件开发及其应用效果分析[J].工程地球物理学报,2004,1(5):399-403.
    4.陈建文,王德发,张晓东.松辽盆地徐家围子断陷营城组火山岩相和火山机构分析[J].地学前缘,2000,7(4):371-379.
    5.迟元林,王璞珺,单玄龙,等.中国陆相含油气盆地深层地层研究.以松辽盆地为例[M].长春:吉林科学技术出版社,2000.
    6.丛柏林,王清晨,张海政,等.中国合肥盆地新生代火山岩成因岩石学研究[J].岩石学报,1996,12(3):370-381.
    7.代诗华,江淑云,王军.准噶尔盆地石西油田火山岩储集层的测井描述.新疆石油地质,1997,18(2):125-129.
    8.邓攀,陈孟晋,高哲荣等.火山岩储层构造裂缝的测井识别及解释[J].石油学报,2002,26(6):32-36.
    9.地质矿产部《地质辞典》办公室.地质辞典(一)/普通地质/构造地质分册/上册[M].地质出版社,1983,169-170.
    10.董冬,杨申镳,段智斌.滨南油田下第三系复合火山相与火山岩油藏,石油与天然气地质,1988,9(2):355-376
    11.杜贤樾,肖焕钦.渤海湾盆地火成岩油气藏勘探研究进展[J].复式油气藏,1998,4:1-4.
    12.段云卿,覃天,张联盟,等.基于体属性的地震相干技术[J].石油地球物理勘探,2006,41(4):442-446.
    13.顿铁军.克拉玛依油田火山岩储层研究[J].西北地质,1995,16(2):58-66.
    14.费宝生.二连盆地阿北安山岩油气藏的勘探[J].复式油气藏,1998,4:9-12.
    15.冯志强.松辽盆地庆深大型气田的勘探前景[J].天然气工业,2006,26(6):1-5.
    16.冯子辉,刘伟.徐家围子断陷深层天然气的成因类型研究[J].天然气工业,2006,26(6):18-20.
    17.付广,吕延防,孟庆芬.松辽盆地北部深层火山岩气藏形成时期及成藏模式研究[J].中国海上油气(地质),2003,17(4):236-239.
    18.付晓飞,宋岩.松辽盆地无机成因气及气源模式[J].石油学报,2005,26(4):23-29.
    19.高君,刘金平,陈秀娟.火山岩体的地震识别技术及其应用[J].大庆石油地质与开发,2000,19(4):44-47
    20.高瑞祺,蔡希源.松辽盆地油气田形成条件与分布规律[M].北京:石油工业出版社,1997,181-211.
    21.郭齐军,万智民,焦守诠,等.火山岩储集层的研究~以北堡地区为例[J].石油实验地质,1997,19(4):337-340.
    22.郭占谦,王先彬,刘文龙.松辽盆地非生物成因气的成藏特征[J].中国科学(D 辑),1997,29(2):143-148.
    23.郭振华.松辽盆地北部徐家围子断陷储层火山岩岩性和地球化学特征及其与储层的关系.吉林大学硕士学位论文,2006.
    24.郭振华,王璞珺,印长海,等.松辽盆地北部火山岩岩相与测井相关系研究[J].吉林大学学报(地球科学版),2006,36(2),207-214.
    25.黄振国.雷琼第四纪火山.北京:科学出版社,1993.
    26.黄薇,印长海,刘晓,等.徐深气田芳深9区块火山岩储层预测方法[J].天然气工业,2006,26(6):14-18.
    27.黄小平,杜洪凌,史晓川.地震相分析在石南21井区沉积相划分中的应用[J].新疆石油地质,2004,25(6):671-672.
    28.姜在兴,操应长,王永刚,等.渤海湾盆地第三系火山岩油藏研究.石油天然气总公司“东部深层项目”研究报告,1997.
    29.金伯禄,张希友.长白山火山地质研究[M].延吉:东北朝鲜民族教育出版社,1994.
    30.科普切弗—德沃尔尼科夫,B.C.、E.Б.雅科夫列娃、M.A.彼特罗娃.火山岩及研究方法[M].北京:地质出版社,1978.
    31.郎东升,耿长喜,王力.松辽盆地北部深层天然气录井综合识别与评价技术[J].中国石油勘探,2006,5:44-48.
    32.李长山,陈建文,游俊,等.火山岩储层建模初探[J].地学前缘,2000,7(4):381-389.
    33.李明,邹才能,刘晓,等.松辽盆地北部深层火山岩气藏识别与预测技术[J].石油地球物理勘探,2002,37(50):477-484.
    34.李彦民.松辽盆地北部徐家围子地区深层火山岩储层地震、录井、测井综合解释技术研究[J].齐齐哈尔大学学报,2001,17(3):88-91.
    35.梁兵,武建华,王健,等.闵桥油田(苏北盆地东台坳陷金湖凹陷)火山岩油储构造特征研究.江苏石油勘探局研究报告,1999.
    36.梁桂蓉,黄晓红,赵宪生.利用地震波多参数组合预测沉积微相研究[J].地震研究,2004,27(3):252-255.
    37.廖周川,陈元春,张新培,等.利用测井技术识别黄沙坨地区火山岩储层[J].特种油气藏,2003,10(1):66-68.
    38.林万昌,陈汶滨,田继东.自组织特征映射神经网络在岩性识别中的应用[J].西南石油学院学报,1999,21(3):78-80
    39.刘财;郭智奇;杨宝俊等.黏弹各向异性介质中波的反射与透射问题分析[J].地球物理学报,2007,50(4):1216-1224
    40.刘财;张海江;杨宝俊.小波变换及其在薄储层识别中的应用[J].石油物探,1995,34(3):23-31
    41.刘财;冯晅;何敏等.非线性波动理论在地震勘探中的应用综述[J].地球物理学进展,2000,15(4):68-75
    42.刘财;郭华;李勤学等.波动方程双参数反演方法及其应用[J].石油地球物理勘探,1999,34(1):14-21
    43.刘启,舒萍,李松光.松辽盆地北部深层火山岩气藏综合描述技术[J].大庆石油地质与开发,2005,24(3),21-23.
    44.刘万洙,曲永保,王璞瑁,梁江平.松辽盆地徐家围子断陷深层天然气藏形成的地质条件分析[J].吉林大学学报(地球科学版),2003a,33(专辑V):145-149.
    45.刘万洙,王璞珺,门广田,边伟华,尹秀珍,许利群.松辽盆地北部深层火山岩储层特征[J].石油与天然气地质,2003b,24(1),28-31.
    46.刘为付.松辽盆地徐家围子断陷深层火山岩储层特征及有利区预测[J].石油与天然气地质,2004,25(1):115-119.
    47.刘为付,孙立新,刘双龙.松辽盆地莺山断陷火山岩地震反射特征及分布规律[J].石油实验地质,2000,22(3):256-259.
    48.刘为付,王永生,杜刚.松辽盆地徐家围子断陷营成组火山岩储集层特征[J].特种油气藏,2004,11(2):6-11.
    49.刘文灿,孙善平,李家振.大别山北麓晚侏罗世金刚台组火山岩地质及岩相构造特征[J].现代地质,1997,11(2),237-243
    50.刘祥,向天元.中国东北地区新生代火山和火山碎屑堆积物-资源与灾害[M],长春:吉林大学出版社,1997.
    51.刘毓筌.石油物探新技术系列调研成果[M].北京:石油工业出版社,1996.
    52.卢新卫,金章东.前馈神经网络的岩性识别方法[J].石油与天然气地质,1999,20(1):82-85
    53.罗静兰,曲志浩,孙卫,等.风化店火山岩岩相、储集性与油气的关系[J].石油学报,1996,17(1):32-39.
    54.罗静兰,邵红梅,张成立.火山岩油气藏研究方法与勘探技术综述J.石油学报,2003,24(1):31-37.
    55.罗立民,王允诚.自组织特征映射网络的改进及在储层预测中的应用[J].石油地球物理勘探,1997,32(2):237-245.
    56.蒙启安,门广田,张正和.松辽盆地深层火山岩体、岩相预测方法及应用[J].大庆石油地质与开发,2001,20(3),21-24.
    57.蒙启安,王璞珺,杨宝俊,程日辉.松辽盆地断陷期超层序界面的地质属性刻画及其油气地质意义[J].地质论评,2005,51(1):47-54.
    58.邱春光,王璞珺,门广田,等.松辽盆地徐家围子断陷火山岩岩相和亚相的测井识别[J].吉林大学学报(地球科学版),2003,33(专辑V):123-127.
    59.邱家骧,陶奎元,赵俊磊,等.火山岩[M].北京:地质出版社,1996.
    60.邱颖,孟庆武,李悌,等.神经网络用于岩性及岩相预测的可行性分析[J].地球物理学进展,2001,16(3):76-84.
    61.任延广,朱德丰,万传彪,等.松辽盆地徐家围子断陷天然气聚集规律与下步勘探方向[J].大庆石油地质与开发,2004,23(5):26-29.
    62.邵正奎,孟宪禄,王璞珺.松辽盆地储层火山岩地震反射特征及其分布规律[J].长春科技大学学报,1999,29(1):33-36.
    63.邵红梅,毛庆云,姜洪启,等.徐家围子断陷营城组火山岩气藏储层特征[J].天然气工业,2006,26(6):29-32
    64.束景锐,肖敦清,苏俊青.黄骅坳陷枣北地区沙三段火山岩油藏储层特征[J].特种油气藏,1997,4(3):1-5.
    65.孙晓猛,张梅生,杨宝俊,等.松辽盆地地质、地球物理特征及其构造[J].构造长春科技大学学报,2000,30(专辑):8-4.
    66.陶奎元.火山岩相构造学[M].南京:江苏科学技术出版社,1994.
    67.王德滋,周新民.火山岩岩石学[M].北京:科学出版社,1982.
    68.王璞珺,郑常青,舒萍,等.松辽盆地深层火山岩岩性分类方寒[J].大庆石油地质与开发,2007,26(3):6-14.
    69.王璞珺,吴河勇,庞彦明,等.松辽盆地火山岩相:相序、相模式与储层物性的定量关系[J],吉林大学学报(地球科学版),2006a,36(5):805-812.
    70.王璞珺,程日辉,王洪艳,等.松辽盆地滨北地区油气勘探方向探讨[J].石油勘探与开发,2006b,33(4):426-431.
    71.王璞珺,陈树民,刘万洙,等.松辽盆地火山岩相与火山岩储层的关系[J].石油与天然气地质,2003a,24(1):18-27.
    72.王璞珺,迟元林,刘万洙,等.松辽盆地火山岩相:类型、特征和储层意义[J].吉林大学学报(地球科学版),2003b,33(4),449-456.
    73.王璞珺,王树学,曲永保,任延广,1999.松辽盆地火山事件研究~营城组火山岩特征[J].长春科技大学学报,29(专辑Ⅰ),50-54.
    74.王璞珺,杜小弟,王俊,等.松辽盆地白垩纪年代地层研究及其地层时代划分[J].地质学报,1995,69(4):372-381.
    75.王西文,杨孔庆,周立宏,等.基于小波变换的地震相干体算法研究[J].地球物理学报,2002,45(6):847-852.
    76.王延光,杜启振.泥岩裂缝性储层地震勘探方法初探[J].地球物理学进展,2006,21(1):494-501.
    77.王永刚,李振春,刘礼农,等.利用地震信息预测储层裂缝发育带[J].石油物 探,2000,39(4):57-63.
    78.魏莲,肖慈珣.用自组织神经网络方法实现测井相定量识别[J].物探化探计算技术,2001,23(4):324-328.
    79.吴小州,王峰.廊固凹陷(冀中坳陷)火成岩油气藏的形成和勘探.华北石油管理局勘探开发研究院研究报告,1997.
    80.肖尚斌.渤海湾盆地火山岩及其相关油气藏分类[J].特种油气藏,1999,6(4):3-10.
    81.肖尚斌,姜在兴,操应长,等.火成岩油气藏分类初探[J].石油实验地质,1999,21(4):324-327.
    82.谢家莹,蓝善先,张德宝,等.运用火山地质学理论研究竹田头火山机构[J].火山地质与矿产,2000,21(2),87-95
    83.徐正顺,王渝明,庞彦明,等.大庆徐深气田火山岩气藏储集层识别与评价[J].石油勘探与开发,2006,33(5):521-531.
    84.薛林福,潘保芝.用自组织神经网络自动识别岩相[J].长春科技大学学报,1999,29(2):144-147.
    85.杨宝俊,刘财,焦新华,等.论松辽盆地基底的地球物理特征[J],长春科技大学学报,1999,29(专辑):13-20.
    86.杨峰平.松辽盆地徐家围子断陷火山岩及天然气成藏研究.中国地质大学博士学位论文,2005,71-76.
    87.杨辉,张研,刘晓,文百红,等.松辽盆地北部徐家围子断陷航磁异常特征及油气地质意义[J].石油地球物理勘探,2006a,41(1):97-99.
    88.杨辉,张研,邹才能,等.松辽盆地深层火山岩天然气勘探方向[J].石油勘探与开发,2006b,33(3):274-281
    89.杨勤勇.全三维地震解释[J].地球物理学进展,1999,14(3):128-137.
    90.杨世明,孙龙德,杨新华.自组织神经网络地震岩相分析[J].新疆石油地质,2004,25(5):532-534.
    91.杨玉峰,张秋,黄海平,等.松辽盆地徐家围子断陷无机成因天然气及其成藏模式[J].地学前缘,2000,7(4):523-533.
    92.曾广策,王正方,郑和荣,等.东营凹陷新生代火山岩及其与盆地演化、油藏的关系[J].地球科学,1997,22(2):157-163.
    93.张殿成,何德友,尚广弟,等.松辽盆地汪家屯东火山岩储层预测[J].石油物探,2000,39(2):36-43
    94.张洪,罗群,于兴河.欧北~大湾地区火山岩储层成因机制的研究[J].地球科学,2002,27(6):763-766.
    95.张进铎.地震解释技术现状及发展趋势[J].地球物理学进展,2006,21(2):578-587.
    96.张梅生,孙晓猛,彭向东,等.松辽盆地及周边地区中生代构造阶段划分[J].构造长春科技大学学报,1999,29(专辑):20-24.
    97.张树业,刘如曦,常丽华,等.火成岩结构构造图册[M].北京:地质出版社,1980.
    98.张秀容,杨亚娟,向景红.松辽盆地南部深层火山岩识别及成藏条件分析[J].勘探地球物理进展,2006,29(3):211-215.
    99.张贻侠,张兴洲,杨宝俊,等冲国满洲里-绥芬河地学断面综合研究报告,长春地质学院,1999.
    100.张应波,张骥东.地震岩性预测新方法探索[J].石油地球物理勘探,1999,34(6):711-722.
    101.张治国,杨毅恒,夏立显.自组织特征映射神经网络在测井岩性识别中的应用[J].地球物理学进展,2005,20(2):332-336.
    102.赵澄林,孟卫工,金春爽,等.辽河盆地火山岩与油气[M.北京:石油工业出版社,1999.
    103.赵海玲,邓晋福,陈发景,等冲国东北地区中生代火山岩岩石学特征与盆地形成[J].现代地质,1998,12(1):56-61.
    104.赵海玲,邓晋福,陈发景,等.松辽盆地东南缘中生代火山岩及其盆地形成的构造背 景[J].地球科学,1996,21(4):421-428.
    105.赵海玲,刘振文,李剑,等.火成岩油气储层的岩石学特征及研究方向[J].石油与天然气地质,2004,25(6):609-612.
    106.赵政璋,赵贤正,王英民,等.储层预测理论与实践[M].北京:科学出版社,2005.
    107.郑建东,刘传平,李红娟.徐深气田深层火山岩岩性测井识别及应用[J].国外测井技术,2006,21(2):11-16.
    108.郑建东,杨学峰,朱建华,等.徐深气田火山岩储层气水层识别方法研究[J].测井技术,2006,30(6):516-519.
    109.周超,董庆勇,许长斌.龙湾筒凹陷九佛堂组火山岩储层特征研究[J].特种油气藏,1999,6(3):13-18.
    110.周荔青,吴聿元,张淮.松辽盆地断陷层系油气成藏的分区特征[J].石油实验地质,2007,29(1):7-12.
    111.庄锡进,靳军,支东明.Stratimagic软件在准噶尔盆地地震勘探中的应用[J].新疆石油地质,2002,23(3):245-247.
    112.邹新宁,孙卫,张盟勃.沼泽沉积环境的辫状河道特征及其识别方法[J].石油地球物理勘探,2005,40(4):438-443.
    113.Bahorich M,Farmar S.3-D seismic discontinuity for faults and stratigraphic features:The coherence cubs[J].The Leading Edge,1995,14(10):1053-1058.
    114.Cas,R A,Wright J V,Volcanic successions:ancient and modem,London:Allen and Unwin,1987
    115.Chen Z Y,Huo Y,Li J S,et al.Relationship between Tertiary volcanic rocks and hydrocarbons in the Liaohe basin,people's Republic of China[J].AAPG Bull,1999,83(6):1004-1014.
    116.Chernov V I,Solovyeva V N,Koyava K M.Storage capacity and hydrodynamic characterization of volcanic reservoirs[J].Neftyanoye Khozyaystvo,1992,50(9):26-28.
    117.Fisher R V,Schmincke H U.Pyroclastic rocks[M].Berlin Heidelberg New York:Springer,1984.
    118.Gaonac'h H,Lovejoy S,Schertzer D.Scaling vesicle distributions and volcanic eruptions[J],Bull Volcanol,2005,67:350-357.
    119.Gaonac'h H,Lovejoy S,Stix J,et al.A scaling growth model for bubbles in basaltic lava flows.Earth Planet Sci Lett,1996a,139:395-409.
    120.Gaonac'h H,Stix J,Lovejoy S.Scaling effects on vesicule shape,size and heterogeneity of lavas from Mount Etna.J Volcanol Geotherm Res,1996b,74:131-153.
    121.Gersztenkorn A,Marfurt K J.Eigen structure~based coherence computations as an aid to 3~D structural and stratigraphic mapping[J].Geophysic,1999,64(5):1468-1479.
    122.Gries R R,Clayton J L,Leonard C.Geology,thermal maturation,and source rock geochemistry in the volcanic covered basin:San Juan Sag,south~central Colorado.AAPG Bull,1997,83(6):1004-1014.
    123.Hearn C L,Ebanks W J,Tye R S,et al.Geological factors influencing reservoir performance of the Hartzog Draw Field,Wyoming[J].Journal of Petroleum Technology,1984,36(9):1 335-1 344.
    124.Herd R A,Pinkerton H.Bubble coalescence in basaltic lava:its impact on the evolution of bubble populations.J Volcanol Geotherm Res,1997,75:137-157.
    125.Instituto Argentino del Petroleo yel Gas,2005,SIPG—Modulos up y down:http://www.iapg.org.ar/sectores/estadisticas/productos/listados/agosto05.htm(accessed November 15,2005).
    126. Jackson J A. Glossary of geology-fourth edition [M]. American Geological Institute Alexandria, Virginia, 1997.
    
    127. Klug C, Cashman K V. Permeability development in vesiculating magmas: implications for fragmentation. Bull Volcanol, 1996,58:87-100.
    
    128. Lajoie J.Facies models: Volcaniclastic rocks[J], Geoscience Canada, 1979, 6(3), 129-139.
    
    129. Levin, L E. Volcanogenic and volcaniclastic reservoir rocks in Mesozoic-Cenozoic island arcs: examples from the Caucasus and the NW Pacific. J Petrol Geol, 1995, 18(3): 267-288.
    
    130. Luo J L, Zhang C L, Qu Z H. Volcanic reservoir rocks: a case study of the Cretaceous Fenghuadian suite, Huanghua basin, eastern China. Petrol Geol, 1999, 22(4): 397— 415.
    
    131.Marfurt K J, Sudhaker V, Gersztenkorn A, et al. Coherency calculations in the presence of structural dip [J]. Geophysics, 1999,64(1): 104—111.
    
    132. Marfurt, K J , Kirlin R L , Farmer S L, et al. 3~D seismic attributes using a semblance~based coherency algorithm[J]. Geophysics, 1998, 63 (4) : 1150— 1165.
    
    133. Ohguchi, Takeshi. Review of Miocene volcanic sequences relating to volcanic reservoirs, Akita Prefecture, Northeast Japan[J]. Journal of the Japanese Association of Petroleum Technology, 2002,67(5): 431~439.
    
    134. Pike R J. Volcanoes on the inner planets; some preliminary comparisons of gross topography. Proceedings of the Lunar and Planetary Science Conference, 1978, 9( 3):3239~3273.
    
    135. Randolph E J,Yang Z Y, Chen Y, et al. Paleomagnetic constraints on the geodynamic history of the major blocks of China from the Permian to the present[J]. Journal of Geophysical Research, 1992,97(10):13 953-13 989.
    
    136. Sakata S, Makoto T, Shun I, et al. Origin of light hydrocarbons from volcanic rocks in the "Green Tuff" rigion of northeast Japan: boigenic versus magmatic. Chem Geol, 1989,74:21-248.
    
    137. Sheriff R E, Taner M T. Geologic interpretation of seismic-attribute measurements[J]. AAPG Bulletin, 1978,62(3):562.
    
    138. Sheriff R E, Taner M T. Seismic attribute measures help define reservoirs[J]. Oil and Gas Journal, 1979,77(34): 182-186.
    
    139. Sruogal P, Rubinstein N. Processes controlling porosity and permeability in volcanic reservoirs from the Austral and Neuquen basins, Argentina [J]. AAPG Bulletin, 2007, 91(1): 115-129.
    
    140. Stewart S A, Allen P J.3D seismic reflection mapping of the Silverpit multi-ringed crater, North Sea[J]. Bulletin of the Geological Society of America, 2005, 117(2):354-368
    
    141. Stewart S A, Clark J A.Impact of salt on the structure of the central North Sea hydrocarbon fairways [J]. Petroleum Geology of Northwest Europe: Proceedings of the Conference, 1999,5:179-200
    
    142. Thordarson T, Larsen G. Volcanism in Iceland in historical time: Volcano types, eruption styles and eruptive history [J]. Journal of Geodynamics, 2007,43:118—152.
    
    143. Thouret J.C. Volcanic geomorphology- an overview [J]. Earth Science reviews, 1999, 47:95-111.
    
    144. Wang P J, Hou Q J, Wang K Y, et al.Discovery of high CH4 primary fluid inclusions in the reservoir volcanic rocks of the Songliao basin and its significance, NE China[J].Acta Geologica Sinica,2007,81(1): 113—120
    
    145. Wang, P J, Chen F K, Chen S M, et al.Geochemical and Nd-Sr-Pb isotopic composition of Mesozoic volcanic rocks in the Songliao basin,NE China[J].Geochemical Journal,2006,40(2),149-159.
    146.Wang P J,Ren Y G,Shah X L,et al,Tbe cretaceous volcanic succession around the Songliao Basin,NE China:Relationship between volcanism and sedimentation,Geological Journal,2002a,37(2),97-115.
    147.Wang P J,Liu W Z,Wang S X,et al.~(40)Ar/~(39)Ar and K/Ar dating on the volcanic rocks in the Songiiao Basin,NE China:constraints on stratigraphy and basin dynamics [J].International Journal of Earth Sciences,2002b,91(2):331-340.
    148.Wang P J,Muharrem S,Chen F K,et al.Volcanics within and around the Songliao Basin,NE China:constraints on basic dynamics.IGCP-420 continental growth in the Phanerozoic:evidence from central Asia,ChangChun,China,2002c.
    149.Zhao X X,Robert C S,Zhou Y X,et al.New paleomagnetic results from Northern China:collision and suturing with Siberia and Kazakhstan[J].Tectonophysics,1990a,181(1):43-81
    150.Zhao XX,Robert C S,Zhou Y X,et al.New Miocene paleomagnetic results from Northern China and reappraisal of late Mesozoic paleomagnetic data of Siberia.American Geophysical Union,1990b,71(28):865
    151.Zorin Y A.Geodynamics of the western part of Mongolia-Okhotsk collision belt;stacking and exhumation[J].Annales Geophysicae,1998,16(Sup.1):96.
    152.Zorin,Y A.Geodynamics of the western part of the Mongolia-Okhotsk collisional belt,Trans-Baikal region(Russia) and Mongolia[J].Tectonophysics,1999,306(1):33-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700