用户名: 密码: 验证码:
水流作用下含裂纹悬空管道数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管道运输是五大运输方式之一,在世界范围内都得到了广泛的应用与发展,而且油气管道一直是世界经济的大动脉。随着社会经济的不断发展,输油管道这种输送方式,成了各个国家生命线工程中的重要组成部分。然而,管线在带给人们方便和快捷的同时,由于管线老化等多种原因,导致因裂纹等缺陷引发的恶性安全事故时有发生,造成巨大损失,同时给经济的发展,社会和财产安全,生态环境带来巨大影响。
     我国穿越河流的输油管道在长距离输油管道工程中占相当比例。早期铺设的原油管线大部分已运行三十年左右,而且还在担负重要任务。再者当时的穿越多数采取大开挖的方法,有些未达到设计深度,再加上多年的冲刷和枯水季老百姓取土,很多管线已外露。这类管道在水流作用下,可能因冲刷而形成悬跨。管道悬跨段由于没有土壤约束,在水流尾流旋涡的作用下易产生振动。若管道存在缺陷,其承压能力会下降,再加上旋涡引起的疲劳载荷,在服役中会导致其突然失效,影响正常生产、带来环境污染,给国民经济造成巨大损失。
     本文针对上述问题,对水流作用下悬空管道绕流场进行数值分析。并在此基础上,研究含裂纹缺陷悬空管道在多种载荷联合作用下缺陷处的应力和管道疲劳循环次数。主要内容如下:
     1、高雷诺数下管道绕流特性及绕流机理研究
     水下管道形成悬跨后,在一定流速时,管道后面旋涡泄放频率可能接近管道的自振频率,从而出现垂直于水流的类似共振现象,并导致沿水流方向的振动和拖曳力的增大。管道两个方向的振动可产生很大的交变应力,使管道发生疲劳破坏。
     2、高雷诺数下静止管道绕流数值分析
     根据流体力学和计算流体力学理论,研究高雷诺数情况下静止管道绕流场,在计算模拟中监视管壁的升力系数和阻力系数,并得出管道绕流的涡量等值线分布、压力分布、切应力分布及静止管道的旋涡自然脱落频率。
     3、高雷诺数下悬空管道横向振动数值分析
     研究了悬空管道的横向振动;横向涡激振动对疲劳失效的影响远大于顺流涡激振动的影响,因此,为避免发生横向涡激振动,计算不同频率比条件下的升力系数、阻力系数、升力系数功率谱及涡量等值线分布图,确定管道发生“锁频现象”的频率比,得出水下输油管道悬空段的临界长度曲线。
     4、水流作用下含周向裂纹悬空管道数值分析
     建立悬空管道的计算模型,结合管道的支撑条件,研究含周向裂纹管道在多种载荷联合作用下的峰值应力和循环次数。并具体分析了裂纹处弯矩、裂纹长度、裂纹深度、管道内压、水流载荷和裂纹在管道横截面上的钟点这些因素对管道峰值应力和循环次数的影响。
     5、水流作用下含轴向裂纹悬空管道数值分析
     建立计算模型,结合管道的支撑条件,研究含轴向裂纹管道在多种载荷联合作用下的峰值应力和循环次数。并具体分析了裂纹处弯矩、裂纹长度、裂纹深度、管道内压和水流载荷和这些因素对管道峰值应力和循环次数的影响。
     6、水流作用下含双裂纹悬空管道数值分析
     建立含两个裂纹缺陷的管道的模型,研究两个缺陷在相互影响区域内,相对位置对管道峰值应力和循环次数的影响。比较得出管道含双缺陷时比单个缺陷时危险,而单个缺陷时含周向缺陷管道要比含轴向缺陷管道安全度低。
As one of the five most important transport manners, pipelines have been used all over the world. Also, oil and gas pipelines have been being the aorta of the world economy. With the development of economy, pipelines become a important part of lifeline works in every country. But, at the same time that they bring us convenience and fast transport, they also induce many safety accidents which cause huge losses for aging of pipe, cracks, etc. These accidents seriously affect the development of economy, safety of society and property, also, the ecological environment.
     In china, the oil pipelines across the river account for a considerable proportion among long distance pipelines. Most of the oil pipelines laid early have run about 30 years, and still shoulder the important tasks. Further, the parts across the river are laid with the method of excavation, part of them do not reach the design depth, coupled with the erosion of water and fetching soil of people, some pipelines has been bared. Under the eroding of water, such pipelines are easy to be suspended. For there being no constraint of soil, the suspended part is very easy to oscillate under the effect of water wake vortex. If there are defects in the suspended part of the pipeline, its pressure capacity will decrease. Coupled with the action of vortex, it is easy to failure suddently, which will affect normal production, pollute envorinment and cause huge losses.
     Aiming at above problems, numerical simulation of water flowing around a suspended pipe is done. On the basis of that, the maximum stress and fatigue cycles of suspended pipe with cracks are studied. Main content of the paper is as follows
     1、Flow characteristic and theory under high Reynolds number
     In a certain velocity, relief frequency eddy behind the suspended pipe can be close to the natural frequency channels. Thus similar resonance effect vertical to the flow appears. It leads the vibration along the flow direction and drag increase. Two directions of vibration can produce great alternating stress, which will cause the pipeline to fail.
     2、Numerical analysis of water flowing around pipe under high Reynolds number
     According to hydromechanics and computation hydromechanics theory, numerical analysis of flow around a pipe under high reynold number is studied. Lift and drag coefficients are monitored. The distribution of eddy contours, pressure distribution, shear stress distribution and vortex shedding natural frequency of immobile pipe are gained.
     3、Numerical analysis of viscous flow around a suspended pipe which is resonant transversely in a uniform stream under high Reynolds number
     Transverse vibration of suspended pipe is studied. The influence on fatigue life of transverse vortex-induced vibration is far greater than that of flow direction. Therefore, in order to avoid the transverse vortex-induced vibration, lift coefficient, drag coefficient, the distribution of vortex contours and power spectrum of lift coefficient under different frequency ratios are calculated. The frequency ratio is specified when“frequency-locking phenomenon”occurs, further underwater suspended pipe's critical lengthes are calculated under different flow rates.
     4、Numerical simulation of underwater pipe with a circumferential crack flaw
     Computation model of a suspended pipe with a circumferential crack flaw is established. Combined with support conditions, peak stresses and fatigue cycles of pipe with a circumferential crack flaw under several loads are calculated. Also, the influence of moment, length of the crack, depth of the crack, defect position, internal pressure of the pipe and water load is analyzed on peak stress and fatigue life.
     5、Numerical simulation of underwater pipe with a longitudinal crack flaw
     Computation model of a suspended pipe with a longitudinal crack flaw is established, combined with support conditions, peak stresses and fatigue cycles of pipe with a circumferential crack flaw under several loads are calculated. Also, the influence of moment, length of the crack, depth of the crack, internal pressure of the pipe and water load is analyzed on peak stress and fatigue life.
     6、Numerical simulation of underwater pipe with two crack flaws
     Computation model of a suspended pipe with two crack flaws is established. The influence of relative position of the defects is studied when they are in the region that affecting each other. After comparative analysis, the result shows that the pipeline with two flaws is more dangerous than that with one flaw. If there is only one defect in the pipeline, the circumfetential flaw is more harmful.
引文
[1]赵金洲,喻西崇,李长俊.缺陷管道适用性评价技术[M].北京:中国石化出版社,2005.
    [2]潘家华.全面提高我国油气储运事业的整体水平[J].油气储运, 2004,23 (5):1-6.
    [3]严大凡,翁永基,董绍华.油气长输管道风险评价与完整性管理[M].北京:化学工业出版社,2005.
    [4]约翰B.赫比希.海底管线设计原理[M].北京:石油工业出版社,1988.
    [5]孟昭瑛,杨树耕,王仲捷.水下管道涡激振动的实验研究[J].水利学报,1994,(7):43-50.
    [6] OBASAJUED,BEARMANP W,GRAHAMJMR.A study of forces,circulation and vortex pattern around a culinder in oscillating and vortex pattern around a cylinder in oscillating flow[J].J.Fluid Mech,1988(196):467-494.
    [7] WILLIAMSON C H K. Sinusoidal flow relative to circular cylinders [J].J.Fluid Mech.1985,(155):141-174.
    [8] Zdravkovich M M. Flow around circular cylinders-a comprehensive guide through flow phenomena, experiments, applications, mathematical models, and computer simulations: Vol 2 [M]. New York: Oxford University Press Inc.2003.
    [9] JPT; journal of petroleum technology Group. Downhole Fiber-Optic Multiphase Flowmeter[J]. Journal of Petroleum Technology,2002,54(12):0149-2136.
    [10] GUILMINEAU,QUEUTEY P.A numerical simulation of vortex shedding from an oscillating circular cylinder[J].Journal of Fluids and Structures,2002,16(6):773-794.
    [11] DUTSCH H,DURST F,BECKER S,LIENHART H.Low-Reynolds-number flow around an oscillating circulating circular cylinder at low Keulegan-Carpenter numbers[J].Fluid Mech,1998,(360):249-271.
    [12]戴光清,LAMKM.圆柱振荡流中的斜向涡街[J].水动力学研究与发展A,2003,18(2):224-232.
    [13]戴光清,王滨蓉,杨庆.数字PIV技术在圆柱振荡流中的应用[J].四川大学学报(工程科学版),2001,33(6):1-5.
    [14] LAMKM.DAIGQ.Formulation of vortex street and vortex pair from a circular cylinder oscillating in water [J].Experimental Thermal and Fluid science,2002,(26):901-915.
    [15] LUXY,ALTON C D.Calculation of the timing of vortex formation from an oscillating culinder[J].Journal of Fluids and Structures,1996,(10):527-541.
    [16] WILLIAMSON C H K. Sinusoidal flow relative to circular cylinders [J].J.Fluid Mech,1985,(155):141-174.
    [17] ROCCHI D,ZASSO A.Vortex shedding from a circular cylinder in a smooth and wired configuration:comparison between 3d LES simulation and experimental analysis[J].Journal of Wind Engneering and Industrial Aerodynamics,2002,(90):475-489.
    [18] MATSUMOTO M,YAGI T,GOTO M,SAKAI S.Rain-wind-induced vibrationofinclined cables at limited high reduced wind velocity region[J].Journal of Wind Engineering and Industrial Aerodynamics,2003,(91):1-12.
    [19] WU C H,CHANG C Y,TSENG C H.Pyrolysis products of uncoated printing and writing paper of MSW[J].Fuel,2002,(81):719-725.
    [20]凌国平,凌国灿.圆柱振荡绕流中涡旋运动模式的数值模拟[J].计算物理,1996,13(1):73-78.
    [21]王革,赖国璋,李玉成,王晓明.有限元-有限差分法对振荡流加任意方向均匀来流中圆柱绕流的数值模拟分析[J].水动力学研究与进展A,1994,9(2):224-233.
    [22]曹丰产,项海帆.圆柱非定常绕流及涡致振动的数值计算[J].水动力学研究与进展A,2001,16(1):111-117.
    [23]陈兵,李玉成,赖国璋.近底水平圆柱振荡绕流的三维数值模拟[J].水动力学研究与进展A,2002,17(1):9-16.
    [24]金基铎,宋志勇,杨晓东.两端固定输流管道的稳定性和参数共振[J].振动工程学报,2004,17(2),190-195.
    [25]周志勇,陈艾荣,项海帆.涡方法分析并列圆柱的旋涡脱落现象[J].空气动力学学报,2003,21:1-9.
    [26]杨广里等编著.断裂力学及应用[M].第1版.北京:中国铁道出版社,1990.4-5.
    [27]李志安等编著.压力容器断裂理论与缺陷评定[M].第1版.大连:大连理工大学出版社,1994.2-4.
    [28]俞树荣,王志文.压力容器安全评定的现代方法[J].化工机械,1995,22(3):52-55.
    [29]挪威船级社,海洋管道规程(1981).北京:石油工业出版社,1985.
    [30]中国船级社,海底管道系统检验规范.北京:人民交通出版社,1992.
    [31] KOKUK I.Higher order approximations in stress analysis of submarine pipelines[J].J Energy Resour Tech,Trans ASME,1980,102:190-196.
    [32] Pantazopoulos MS.Fourier methodology for pipeline span vortex-induced vibration analysis in combined flow[C]. Proceedings of OMAE'95,1993.
    [33] Anfinsen KA. Review of free spanning pipelines[C]. Proceedings of ISOPE'95,1995.
    [34] Crossley.Generalized force model for VIV of pipeline spans[C]. Proceedings of OMAE' 98,1998
    [35] Bryndum MB.Application of the generalized force model for VIV in pipeline span design[C]. Proceedings of OMAE' 98,1998.
    [36] Tao Xu.Wave-induced fatigue of multi-span pipelines[J]. Marine Structure,1999,(12):83-106.
    [37]董玉华.长输管道环焊接头缺陷评定方法研究[J].油气储运,2001,20(7):44-47.
    [38] DNV.SUBMARINE SYSTEM.DET NORSKE VERITAS,2000
    [39]刘洪伟,张玉凤,霍立兴,王东坡.BS7910疲劳评定方法及特点[J].焊接,2005,(1):12-15.
    [40]冯西桥,何树延.表面裂纹疲劳扩展的一种损伤力学方法[J].清华大学学报(自然科学版),1997,37(5):78-82.
    [41]冯西桥,何树延.管道中表面裂纹的疲劳扩展研究[J].清华大学学报(自然科学版),1998,38(7):35-38.
    [42]刘长军,李培宁,孙亮,徐宏.对ASME Code CaseN-494周向裂纹管失效评定曲线的评价[J].压力容器, 2000, 17 (2),50-56.
    [43]秦红,陈新德,孙连奎,郑敏荣.多裂纹弹塑性断裂评定研究[J].石油化工设备.1996,25(4):9-15.
    [44]郭茶秀,魏新利,王定标,刘宏.复杂载荷下含缺陷管道的极限载荷及Lr参量[J].郑州大学学报(工学版),2004,25(1):49-52.
    [45]轩福贞,李培宁,郭茶秀.复杂载荷下含缺陷结构的Lr参量研究[J].机械强度2001,23(1): 8-10.
    [46]董亚民,冯峰,黄克智.管道环向裂纹在简单加载下的撕裂失稳与塑性失稳研究[J].工程力学,1999,16(5),1-7.
    [47]署恒木,李继志.含裂纹管道剩余强度的评价方法[J].石油机械,2000,28(7):51-54.
    [48]署恒木.含周向裂纹管道在非对称弯矩组合载荷作用下塑性极限载荷分析[J].石油大学学报(自然科学版),2001年,25(2):91-94.
    [49]徐宏,李培宁,袁宁一.含周向缺陷管道的塑性失稳失效评定的名义应力比法[J].核动力工程,1995, 16(6):528-532.
    [50]徐宏,袁宁一,李培宁.含周向缺陷管道塑性失稳失效时的许可缺陷尺寸表[J].核动力工程,1995,16(3),284-288.
    [51]帅健,许葵.裂纹管道失效评定中的有限元方法[J].油气储运,2003, 22(3):18-21.
    [52]申仲翰.内流对海底管线涡激振动与疲劳寿命的影响[J].海洋工程,1995,13(3):1-8.
    [53]马良编译.部分埋入海底的管道上的波浪力[J].国外油气储运,1992,10(6):25-27.
    [54]方华灿.油气长输管线可靠性分析[M].北京:石油工业出版社,2002:232,160-161.
    [55]庄茁.天然气管道裂纹稳定扩展问题的分析模型和最小二乘法解答[J].固体力学学报,1997,18(3):229-239.
    [56]庄茁.天然气管道止裂构件的分析和设计[J].固体力学学报,1998,19(3):213-227.
    [57]梁政、朱晓环.海洋油气管道极限冲刷长度的进一步研究[J].中国海洋油气(工程),1990,2(3):31-41.
    [58]王维.确定海底埋设输油管线允限冲刷长度的一种实用方法[J].西南石油学院学报,1996,18(3):94-97.
    [59]秦崇仁.波浪作用下海底裸置管道周围的冲刷[J].港工技术,1995,(3): 7-12.
    [60]戴干策,陈敏恒.化工流体力学[M].北京:化学工业出版社,2005.
    [61]马良.海底管道在水流作用时诱发的振动效应[J].中国海洋平台,2000,15(2):30-34.
    [62]李万平.计算流体力学[M].武汉:华中科技大学出版社,2004.
    [63]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [64]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [65] ZHAO Ming and TENG Bin.Viscous Flow over A Circular Cylinder[J].China Ocean Engineering, 2004,18(2):267-280.
    [66] H.K.Versteeg, W.Malalasekera. An Introduction to Computational Fluid Dynamics: The Finite Volume Method[C].Wiley,New York,1995.
    [67] P.Rollet-Miet, D.Laurence, J.Ferziger. LES and RANS of turbulent flow inTube bundles[J].International Jouornal of Heat and Fluid Flow,1999,20(3): 241-254.
    [68] Fluent Inc.,FLUENT User’s Guide[R]. Fluent Inc.,2003.
    [69] J.O.Hinze, Turbulence[R]. McGraw-Hill, New York,1975.
    [70] B.E.Launder,D.B.Spalding. Lectures in Mathematical Models of Turbulence[C]. Academic Press,London,1972.
    [71]郭鸿志.传输过程数值模拟[M].北京:冶金工业出版社,1998.
    [72] V.Yakhot, S.A.Orzag. Renormalization group analysis of turbulence: basic theory[J].Scient Comput,1986,1:3-11.
    [73]吴文权,居江宁.圆柱绕流远场旋涡结构的数值研究[J].工程热物理学报,2001,22(22):17-20.
    [74]刘明侯,周裕,陈义良等.圆柱绕流尾迹中相干结构对湍流特性的影响[J].力学学报,2002,34(4):508-518.
    [75]陈斌,郭烈锦,杨晓刚.圆柱绕流的离散涡数值模拟[J].自然科学进展,2002,12(9):964-969.
    [76]张乐天.CFD软件在流体机械中的应用研究[D].大庆:大庆石油学院,2006.
    [77]龙飞飞,戴光,付冰.高雷诺数下静止管道绕流的数值分析[J].大庆石油学院院报,2007,31(6):90-94.
    [78]刘宇陆,钟宝昌,郑是增.非定常圆柱绕流的实验研究[J].上海力学,1995,16(3):223-228.
    [79]吴剑,齐鄂荣,李炜等.应用PIV系统研究横流中近壁水平圆柱绕流旋涡特性[J].水科学进展,2005,16(5):628-633.
    [80]凌国平,凌国灿.较小KC数下振荡流绕圆柱流动的数值模拟[J].华中理工大学学报,1995,23(1):123-125.
    [81]龙飞飞,姚嘉,付冰.均匀流中悬空管道横向振动的数值分析[J].大庆石油学院学报,2008,32(1):61-62.
    [82]戴光,付冰,龙飞飞.均匀流中悬空管道横向共振的数值分析[J].压力容器,2007,24(3):31-34.
    [83]新疆三叶管道技术有限责任公司.庆-哈线输油管道检测报告[R].2003.
    [84]王祖权,邓曾禄,周李成,耿运贵.关于直埋管道强度计算中有关概念的辨析[J].焦作矿业学院学报,1994, 13(4):20-25
    [85]宋吉卫,肖熙.海底管线缺陷的模糊综合评判[J].中国海洋平台,2004,19(2):38-41
    [86]杜平安,甘娥忠,于亚婷编著.有限元法—原理、建模及应用[M].国防工业出版社,2004.
    [87]丁皓江,何福保等编.弹性和塑性力学中的有限单元法[M].北京:机械工业出版社,1989.
    [88]朱伯芳.有限单元法原理和应用[M].第二版.北京:中国水利电力出版社,1998.
    [89] ASCE. Proc. Symp. on Application of Finite Element Methods in Civil Engineering[S].1969.
    [90]吴鸿庆,任侠.结构有限元分析[M].中国铁道出版社,2000.
    [91] K. J. Bathe, Finite Element Procedure in Engineering Analysis. Prentice-Hall[M],1982.
    [92]王永伟,林哲.表面裂纹的三维模拟及应力强度因子计算[J].中国海洋平台,2006,21(3):23-26.
    [93] Chiew S P.Lie S T。Lee C K.Huang Z W.Stress intensity factors for a surface crack in a tubular T-joint[J].International Journal of Pressure Vessels and Piping,2001,78:677—685.
    [94] Lin XB,Smith RA.Finite element modeling of fatigue crack growth of surface cracked plates DPart I:The numerical technique[J].English Fracture Mech,1999,63:503—522.
    [95] LiuMin,HuoLixing,ZhangYufeng. An improved FOSM method for calculating failure probability of welded pipes with flaws,Transactions of Nanjing University of Aeronautics&Astronautics.1999,16(2):188-192
    [96]孙启新,董玉平.基于ANSYS的U形波纹管疲劳寿命分析[J].中国制造业信息化,2007,(9):59-61.
    [97]何君毅.工程结构中非线性问题的数值解法[M].合肥:国防大学货出版社,1994.
    [98]刘涛,杨凤鹏.精通ANSYS[M].北京:清华人学出版社,2002.
    [99] Hsuan,Y.G.;Zhang,J.Y.;Wong,W.K.Evaluation of long term stress crack resistance of corrugated high density polyethylene pipes[J].Plastics, Rubber and Composites,2007,36(5):201-206.
    [100] MIURA NAOKI.Evaluation of crack opening behavior for cracked pipes.Effect of restraint on crack opening[J].Nippo Kikai Gakkai Zairyo Rikigaku Bumon Koenkai Koen Ronbunshu,2000,20(1):389-390.
    [101]Andrea Carpinteri,Roberto Brighenti.Circumferentially notched pipe with an external surface crack under complex loading[J].International Jouranl of Mechanical Sciences,2003,45(12):1929-1947.
    [102]陈宝忠,谢禹钧,孔令超.关于管道环向穿透裂纹的应力强度因子[J]。抚顺石油学院学报,1998,18(2):25-29.
    [103] Y.Kayamori,P.S.J.Crofton,R.A.Smith.Two-parameter criteria for ductile crack initiation and propagation in high-grade line pipes[J].Key Engineering Materials,2007,348:493-496.
    [104] Asano Masayuki,Itatani Masao,Kikuchi Masaaki,Saito Toshiyuki.J-R curves of an axial crack in a STS410 pipe and simplified failure evaluation method[J]. Nippo Kikai Gakkai Zairyo Rikigaku Bumon Koenkai Koen Ronbunshu ,2004,(4):91-92.
    [105] Tkaczyk T,ODowd NP,Howard BP.Comparison of crack driving force estimation schemes for weld defects in reeled pipelines[C].Seventeenth International Offshore and Offshore and Polar Engineering Conference Proceedings.2007
    [106] Hosaka Katsum,Yoshino Masakazu,Otaka Masahiro,Asada Yasuhide.Evaluation on fatigue crack growth rate of carbon steel piping in simulated LWR Water environment[J].Nihon Kikai Gakkai Nenji Taikai Koen Ronbunshu, 2001,(1):401-402.
    [107]娄忆清,陈江,翁晓红.低压供汽管道安装焊缝缺陷安全评定[J].浙江工业大学学报,2002,30(1):42-47.
    [108]燕秀发,谢禹钧,戴耀.基于概率断裂力学的管道失效分析[J].机械设计,2004,21(11):35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700