用户名: 密码: 验证码:
快速化学液相沉积法制备抗氧化C_f/C复合材料及其焊接性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪80年代以来,C_f/C复合材料以其密度低、高比强度、耐磨、耐烧蚀等特点已广泛应用于航天航空、化工、医用等领域,但是C_f/C复合材料制造成本昂贵、高温抗氧化性差和复杂成型预制体制作难度大等因素制约了其多领域应用。
     本文利用快速化学液相沉积(Rapid Chemical Liquid Deposition,简称RCLD法)专利技术,快速制备出密度达1.7g/cm~3以上的C_f/C复合材料,分别采用浓硝酸、电化学对预制体碳纤维表面进行改性;利用SEM分析和三点弯曲强度测试,对比了两种改性方法对C_f/C复合材料组织及性能的影响,获得了试验条件中较理想的碳纤维“温和”处理工艺条件:电化学处理,1.2V,5分钟。
     研究了不同密度的预制体和不同的沉积时间对C_f/C复合材料密度及结构的影响。结果表明:基体碳围绕纤维呈同心圆层状排列,层数的多少和厚度与预制体的密度有关,碳纤维之间依靠基体碳连接。C_f/C复合材料的密度与沉积时间有关,对于密度为0.12和0.58g/cm~3的预制体,沉积时间达到4h之前,材料密度随时间增长而增大的速度较快,4h~5h之间,材料密度增大很小,5h~6h之间,材料的密度基本保持不变;对于密度为0.66g/cm~3的预制体,在3h~6h过程中,材料的密度一直呈增大趋势。C_f/C复合材料的密度与预制体密度有关,在相同的沉积时间下,材料的密度随预制体密度的增加而变小。
     测试了C_f/C复合材料的电阻率和肖式硬度,电阻率介于87.5Ω·μm~119.5Ω·μm,平均值为103.5Ω·μm;当预制体密度为0.12g/cm~3、0.58g/cm~3、0.66g/cm~3时,C_f/C材料的肖式硬度分别为78HSD、90HSD、96HSD。
     使用万能材料试验机测量了C_f/C复合材料的抗弯强度和压缩强度,最大值分别为122.51MPa和102.57MPa。通过分析研究了C_f/C复合材料抗弯强度的变化规律以及C_f/C复合材料的弯曲应力—应变曲线特征。SEM观察C_f/C复合材料断面特征,分析了C_f/C复合材料弯曲断裂机制。结果显示,C_f/C复合材料抗弯强度随预制体密度的增加而增大;界面结合能力强的材料呈现脆性断裂特征,界面结合适中的材料出现假塑性效应。
     利用二次沉积法,在C_f/C复合材料外层沉积含C和S化物的复合层,通过正交实验设计对二次沉积工艺参数进行优化,根据材料的各项性能指标,确定了优化参数:硅油作为二次沉积原料中的硅源,硅油质量百分含量为20%,控制器单位电压升起时间为60分钟。密度最大达1.94g/cm~3;显气孔率最大为17.07%。研究发现:材料密度越大,其显气孔率越小。利用XRD、SEM及EDS等分析手段研究了C_f/C-Si系化合物复合材料物相形态和分布,结果表明:Si化物和碳共沉积到C_f/C材料外表面和表层孔隙中。测量了C_f/C-Si化物复合材料抗弯强度和压缩强度,C_f/C-Si化物复合材料抗弯强度最大为119.54MPa,相比C_f/C复合材料大约降低5%~10%;抗压强度最大为80.02MPa,相比C_f/C复合材料大约降低10%~15%。利用热失重、DSC及氧化动力学等分析手段,研究了C_f/C-Si化物复合材料在空气中的氧化行为。研究发现,C_f/C-Si化物复合材料相比C_f/C复合材料其抗氧化性能提高4~5倍。
     利用热失重法、DSC分析及氧化动力学理论,研究了C_f/C-Si化物复合材料在空气中的氧化行为。结果表明,Si化物显著地占据了C_f/C复合材料表层的反应活化点,有效地阻碍了氧的扩散氧化作用,使C_f/C复合材料的氧化起始温度达到684.0℃。
     研究了氧化效应对C_f/C复合材料的组织结构和宏观尺度的影响。各温度点下的等温氧化失重曲线均服从线性规律,随着温度的升高,氧化失重率呈增加趋势。结合SEM,分析了预制体密度对C_f/C复合材料氧化微观形貌的影响,研究了预制体密度对C_f/C复合材料失重率的影响。研究表明:热解碳更易于被氧化,随着预制体密度的增加,C_f/C复合材料的氧化失重率减小,抗氧化性增强。
     采用真空钎焊法对C_f/C复合材料的钎焊进行了研究。分析了C_f/C复合材料/Cu-Ti/C_f/C复合材料的真空钎焊接头的界面组织结构、室温力学性能,以及不同的工艺参数等对界面组织和力学性能的影响,建立了C_f/C复合材料钎焊过程的物理模型。以Cu为基体,设计了不同配比的Cu-Ti钎料。对不同配比的钎料,采用座滴试样的比接触面积法,测试了钎料对C_f/C复合材料的润湿性能。试验结果表明,随着Ti含量的增加,钎料对C_f/C复合材料的润湿性能显著提高。当Ti含量在15%时,钎料的润湿性最好,铺展面积最大。熔化钎料中的活性元素Ti向接触面偏聚,反应生成TiC,这样会降低液态金属与C_f/C复合材料的界面能,促进润湿。当Ti含量过少时,C与Ti在界面反应生成的化合物太少而且不均匀,使得钎料的润湿性变差。而Ti含量过高时,生成大量β-TiCu_4化合物,润湿性变差。
     利用Cu-Ti钎料钎焊时,接头区域的组织为C_f/C、TiC、Cu-Ti共晶组织(β-TiCu_4+α-Cu),依据所发现的界面结构,提出了界面结构的形成机理和界面形成过程模型。
     试验结果表明,当钎焊工艺参数变化时,C_fC复合材料/Cu-Ti/C_f复合材料C接头界面生成物的种类并未改变,TiC层的厚度和Cu-Ti共晶组织(β-TiCu_4+α-Cu)所占界的比例会发生一定的变化。随着钎焊温度的提高或保温时间的延长,TiC的厚度逐渐增大;而钎缝中的Cu-Ti共晶组织逐渐减少。当钎焊温度为1050℃、保温时间为30min时,接头可以获得最佳的剪切强度21MPa。
Since 1980s,the C_f/C composite has more and more applications in many industries such as aerospace,chemistry,medicine,etc,due to its low density,high specific strength,excellent wear and ablation resistance.However,the high cost,low oxidation resistance at high temperature and complexity in preformed parts' fabrication of this kind of material restrict its further application.
     In this work,rapid fabrication of C_f/C composites were successfully achieved by using rapid chemical liquid deposition technology,and C_f/C composites with a density up to 1.7 g/cm~3 were fabricated.The surfaces of C_f/C composites were modified with electrochemical method by using concentrated nitric acid.The effects of two different modification methods on the microstructure and properties were compared by using SEM and three point bending test.The ideal surface modification procedure is as follows:electrochemical method,1.2 V,5 minutes.
     Effect of density of fibrous body and deposition time on the density and microstructure of C_f/C composite were investigated.The results show that the C matrix surrounds the C fibers in multiple circular layers,with the number of layers related to thickness and density of fibrous body.The density of C_f/C composite depends on its deposition time.With fibrous body with densities of 0.12 and 0.58 g/cm~3,the density of C_f/C composite increased rapidly with deposition time at beginning.After 4 hours deposition,the density of C_f/C composite increased very slowly.And after 5 hours deposition,the density of C_f/C composite did not change any more.With fibrous body with a density of 0.66 g/cm~3,the density of C_f/C composite kept increasing during the initial 6 hours of deposition.The density of C_f/C composite relate to the density of fibrous body.With a constant deposition time,the density of C_f/C composite decreased with increasing the density of fibrous body.
     The resistivity and scleroscope hardness of the resultant C_f/C composite were measured.The resistivities fall between 87.5Ω·μm and 119.5Ω·μm,with an average value of 103.5Ω·μm.With three kinds of fibrous body with different densities(0.12 g/cm~3,0.58 g/cm~3 and 0.66g/cm~3),the hardnesses of C_f/C composites are 78,90 and 96 HSD,respectively。
     The bending strength and compressive strength were measured by using universal testing machine.The maximum bending strength and compressive strength are 122.51 MPa and 102.57 MPa respectively.Various factors affecting the strength of C_f/C and the characteristic of stress-strain curve were analyzed.The fracture appearances of C_f/C composites were investigated by using SEM,and the fracture mechanism for C_f/C was analyzed.It is indicated that the bending strengths of C_f/C composites increased with the increasing of density of fibrous body.The fracture appearances of C_f/C composites with high interface bonding strength exhibit a typical brittle characteristic,and those of C_f/C composites with a modest interface bonding strength exhibit pseudo-plastic characteristics.
     A layer containing C and Si series chemical compound were deposited on C_f/C composite through secondary deposition method.The deposition parameters were optimized by Orthogonal design,the optimal parameters were obtained.Silicone oil with a Si fraction of 20%was used as source of silicon.The rise time for 1 volt is 60 minutes.The maximum density is 1.94 g/cm~3,and the maximum porosity is 17.07%. The morphology and distribution of various phases were analyzed with XRD,SEM and EDS.The results show that C and Si series chemical compound were deposited together into the surface pore of C_f/C composite.The bending strength and compressive strength of C_f/C-Si series chemical compound composites were measured.The maximum bending strength is 119.54 MPa,lower by 5%~10%compared with that of C_f/C composite.The maximum compressive strength is 80.02 MPa,higher by 10%~15%.The oxidation behaviors of C_f/C-Si series chemical compound composites were investigated with thermogravimetry,DSC and oxidation kinetics.Compared with C_f/C composite,the oxidation resistance of C_f/C-Si series chemical compound composite increases by 4-5 times.This is attributed to that the Si series chemical compound surface layer can effectively prevent the composite from oxidizing.The initial oxidation temperature of C_f/C-Si series chemical compound composites rised up to 684.0℃.
     The effect of oxidation on the structure and maco-dimension.The isothermal oxidation weight loss curve is linear curve.With increasing temperature,the weight loss rates due to oxidation increase.By means of SEM,the effect of the density of fibrous body on micro-morphology of oxidized C_f/C composite and weight loss rate were investigated.The results show that pyrolytic carbon is more liable to oxidation. With increasing the density of fibrous body,the weight loss rates of C_f/C decrease.
     Systematic studies were conducted on vacuum brazing of C_f/C composite. Microstructures and properties of C_f/C/Cu-Ti/ C_f/C brazing joints under various brazing parameters were investigated.Cu-based and Al-based brazes with different content of Ti were designed.The wet abilities of the brazes were measured by specific contact area method.The results show that the wet abilities of both Cu-based and Al-based brazes on C_f/C composites were improved with increasing content of Ti.In case of 15%of Ti,both Cu-based and Al-based brazes on C_f/C composites exhibit optimal wet abilities.Ti in molten braze diffuse towards interface between C_f/C and braze,and react with C to form TiC,reducing the interfacial energy and improve the wet ability.With low Ti content,only few isolated TiC particles form on the interface and thus the wet abilities are not acceptable.However,with too high Ti content,a lot ofβ-TiCu_4 chemical compounds were found,the wet abilities are not acceptable.
     The microstructure of joint brazed with Cu-Ti consists of C_f/C,TiC,Cu-Ti eutecticβ-TiCu_4+α-Cu.Based on the structure of joint,a physical model for brazing process of C_f/C composite and a mechanism for interface structure formation were developed.
     The constituents in the brazing joint do not vary with the brazing process parameter, only the fraction of each constituent(C_f/C,TiC,Cu-Ti eutectic andβ-TiCu_4+α-Cu) and the thickness of TiC change.With increasing of brazing temperature and soak time, the thickness of TiC increase,and the amount of Cu-Ti eutectic decease.With a brazing temperature of 1050℃for 30min,joints with a shear strength of 21MPa were obtained.
引文
[1]李贺军,碳/碳复合材料.新型碳材料,2001,16(2):79-80.
    [2]曾燮榕,李克智,碳/碳复合材料应用于思考,碳素技术,2001,(5):24-27.
    [3]Colecki et al,method of Rapidly Densifying aPorous structure,USP:5348774.
    [4]李贺军,曾燮榕,李克智等,我国碳/碳复合材料研究进展[J],碳素,2001,4:8-13.
    [5]《碳/碳复合材料飞机刹车盘研制》,山东山大华特科技股份有限公司资料,2007.
    [6]方海涛,朱景川,尹中大,碳/碳复合材料抗氧化陶瓷涂层研究进展[J],高技术通讯,1999,(8):54-58.
    [7]陈茂爱,陈俊华,高进强编著,复合材料的焊接,北京:化学工业出版社,2005.
    [8]朱良杰,廖东娟,C/C复合材料在美国导弹上的应用[J],宇航材料工艺,1993,4:2-14.
    [9]李蕴欣,张绍维,周瑞发,碳/碳复合材料[J],材料科学与工程学报,1996,14(2):6-14.
    [10]Luo Ruiying,Li Hejun,Yang Zheng,Kang Mokuang,Preparation of high tribological properties carbon/carbon[J],Chinese Journal of Materials Research,1996,10(1):90-94.
    [11]于谢,刘根山,李溪滨等,不同C/C复合材料飞机刹车盘基本性能的对比分析[J],复合材料学报,2003,20(3):35-40.
    [12]Wang Can,Zhu Zhengang,Hou Xianghui,et al,Damping characteristics of CVI-densified carbon-carbon composites[J],Carbon,2003,38(13):1821-1824.
    [13]任学佑,马福康.碳/碳复合材料的发展前景[J].材料导报,1996,10(2):72-75.
    [14]Savage G,Carbon-Carbon Composites[M],London:Chapman & Hall,1993.
    [15]Bucker J D,Development of Ultra-high Temperature Testing Equipment and Some Mechanicaland Thermal Properties of Advanced Carbon-Carbon Composites[J],Ceramic Bulletin,1988,67(2):364-372.
    [16]黄荔海,李贺军,刘皓等,碳/碳复合材料密封性能分析[J],材料科学与工程学报,2006,24(6):826-829.
    [17]J.德尔蒙特,.碳纤维和石墨纤维复合材料技术,北京:科学出版社,1987.
    [18]张玉龙,李长德,王喜梅等,高技术复合材料制备手册,北京:国防工业出版社,2003.
    [19]贺福,王茂章,碳纤维及其复合材料,北京:科学出版社,1997.
    [20]徐松华,碳/碳复合材料的沉积工艺、力学性能及热物理性能研究[硕士学位论文],北京:北京航空航天大学,2004.
    [21]闫国杰,高压浸渍—碳化制备C_f/C复合材料工艺及机理研究[硕士学位论文],西安:西北工业大学,1997.
    [22]葛明龙,田吕义,孙纪国,碳纤维增强复合材料在国外液体火箭发动机上的应用,导弹与航天运载技术,2003,(4):22-26.
    [23]沈曾民,新型碳材料,北京:化学工业出版社,2003.
    [24]罗益锋,世界高科技纤维的重要新动向,高科技纤维与应用,1998,(1):5-22.
    [25]曾汉民,CF及其复合材料显微图[M],广州:中山大学出版社,1995.
    [26]Wang Can,Zhu Zhengang,Hou Xianghui,et al,Damping characteristics of CVI densified carbon-carbon composites[J],Carbon,2000,38(13):1821 -1824.
    [27]吴凤秋,熊翔,黄启忠等,CVD沉积密度对2D-碳/碳复合材料力学性能的影响[J],碳素,2002,4:26-29.
    [28]李江鸿,熊翔,张红波等,纤维体积分数对碳/碳复合材料力学性能的影响[J],中南大学学报(自然科学版),2005,36(3):376-380.
    [29]张福勤,黄启忠,巩前明等,石墨化度对碳/碳复合材料力学性能的影响[J],中南工业大学学报,2001,32(3):289-294.
    [30]孙万昌,李贺军,张秀莲等,高温处理对液相气化沉积碳/碳复合材料组织结构及力学性能的影响[J],航空学报,2002,23(3):277-279.
    [31]李翠云,李辅安,碳/碳复合材料的应用研究进展[J],化工新型材料,2006,34(3):18-20.
    [32]李崇俊,马伯信,金志浩,化学气相沉积/渗透技术综述[J].固体火箭技术,1999,22(1):54-58.
    [33]Scaringella D T,Mass L,Connors D E,et al,Method for Densifying and Refurbishing Brakes[P],US Patent:5547717,1996.8.20.
    [34]Thurston G S,Suplinskas R J,Carroll T J,et al,Apparatus for Densification of Porous Billets[P],US Patent:5389152,1994.2.14.
    [35]嵇阿琳,霍肖旭,马伯信,CLVD法制备碳毡.碳复合材料[J].新型碳材料,2002,17(1):41-44.
    [36]成米飞,张立同,高温长寿命C/C防氧化复合梯度涂层的研究[J].高技术通讯,1996,6(5):16-18.
    [37]李瑞珍崔红,抗氧化处理对3D-C/C复合材料性能的影响[J].宇航材料工艺,2004,2:54-57.
    [38]孙万昌,李贺军,陈三平等,CLVI制备C/C复合材料的微观结构及力学性能研究[J].无机材料学报,2003,18(1):121-128.
    [39]R.I.Baxter,R.D.Rawlings,N.Iwashita,et al,Effect of chemical vapor infiltration on erosion and thermal properties of porous carbon/carbon composite thermal insulation[J],Carbon,2000,38(3):441-449.
    [40]Luo Ruiying,Fabrication of carbon/carbon composites by an electrified preform heating CVI method[J],Carbon,2002,40(11):1957-1963.
    [41]罗瑞盈,.结构碳/碳复合材料力学性能及微观结构研究[J].碳素技术,2000,2:11-14.
    [42]侯向辉,CVI制备碳/碳复合材料致密化行为模拟研究[J].兵器材料科学与工程,1999,22(2):28-33.
    [43]周振中,李铁虎,艾艳,催化化学气相渗透法制备C/C复合材料[J].新型碳材料,2006,21(1):43-47.
    [44]孙国岭,李贺军,齐乐华,C/C复合材料热梯度CVI工艺致密化过程的非稳态温度场分析[J].金属学报,2006,42(10):1046-1050.
    [45]罗新,李贺军,李克智,C/C复合材料CVI工艺的计算机模拟研究进展[J].宇航材料工艺,2006,4:7-11.
    [46]陈晋,徐永东,曾庆丰,CVI反应器内部气体流场的有限元模拟及优化设计[J].航空材料学报,2006,26(5):87-91.
    [47]孙国岭,李贺军,齐乐华,CVI工艺建模研究进展[J],材料工程,2006,增刊1:441-444.
    [48]Donald.L Schmid.T,Kenenth.E Danidson,L Scott,Theibery,Evolution of carborr carbon composites[J],SAMPE Journal,1996,32(4):44-50.
    [49]丁海英.碳/碳复合材料氧化及防护性能研究[硕士学位论文],北京,北京航空航天大学,2004.
    [50]王世驹,安红艳,陈渝眉,朱金华,碳/碳复合材料氧化行为的研究[J],兵器材料科学与工程,1999,22(4):36-40.
    [51]Chen-Chi ma,Nyan-Hwa tai,Wen-Chi chang,Huai-Te chao,.Microstructure and oxidation resistance of SiC coated carbon-composites via pressureless reaction sinitering[J],Journal of material science.1996,31(3):649-654.
    [52]H.Leite,U.Dambacher,et al,Microstructure and properties of multilayer coatings with covalent bonded hard materials[J],Surf.Coat.Tech.116-119,1999:313-320.
    [53]Z.Fan,Y.Song,et al,Oxidation behavior of fine-grained SiC-B4C/C composites up to 1400℃ [J],Carbon,2003,41:429-436.
    [54]M.Aparicio,A.Duran,et al,Yttrium silicate coatings for oxidation protection of carbon silicon carbide composites[J],J.Am.Ceram.Soc.2000,83:1351-1355.
    [55]J.D.Webster,M.E.Westwood.et al,Oxidation protection coatings for C/SiC based on yttrium silicate[J],J.Eur.Ceram.Soc.1998,18:1345-2350.
    [56]Cheng Laifei,Xu Yongdong,et al,Effect of carbon interlayer on oxidation behavior of C/SiC composites with a coating from room temperature to 1500℃[J],Mater Sci Eng A.2001,300:219-225.
    [57]Cheng Laifei,Xu Yongdong,et al,Oxidation and defect control of CVD SiC coating on three-dimensiomal C/SiC composites[J],Carbon.2001,40:2229-2234.
    [58]Cheng Laifei,Xu Yongdong,et al,Effect of glass sealing on the oxidation behavior of three dimensional C/SiC composites in air[J],Carbon.2001,39:1127-1133.
    [59]J.D.Webster,F.H.Hayes,et al,Thermod yaamic modelling and experimental studies in the design of integrated oxidation protection systems for ceramic matrix composites[J],Key Eng Mater.127-131,1997:1225-1232.
    [60]M.E.Westwood,R.J.Day,et al,The use of finite element analysis in the design of integrated oxidation protection systems for ceramic matrix composites[J],Key Eng Mater.127-131,1997:1233-1240.
    [61]Cheng Laifei,Xu Yongdong,et al,Oxidation behavior of C-SiC composites with a Si-w coating from room temperaure to 1500℃[J],Carbon,2000,38:2133-2138.
    [62]刘荣军,周新贵,等.CVD法制备SiC先进陶瓷材料研究进展[J].材料工程,2002(7):46-49.
    [63]S.Goujard,L.Vandenbukcke,et al,The oxidation behaviour of two -and three -dimensional C/SiC thermostructural materials protected by chemical -vapour -deposition polylayers coatings[J],J.Mater.Sci.1994,29:6212-6220.
    [64]L.D.Bentson,R.J.Price,et al,Moisture and oxidation resistant carbon/carbon composites[P],USA petant:5298311,1994-03-29.
    [65]H.Fritze,J.Jojic,et aI,Muilite based oxidation protection for SiC-C/C composites in air at temperatures up to 1900 K[J],J.Eur.ceram.Soc.1998,18:2351-2364.
    [66]H.Fritze,J,Jojic,et al,Mullite based oxidation protection for SiC-C/C composites in air at temperatures up to 1900 K[J],Key.Eng.Mater.132-136,1997:1629-1632.
    [67]R.Naslain,R.Pailler,et al,Processing of ceramic matrix composites by pulsed-CVI and related techniques[J],Key.Eny.Mater.206-213,2002:2189-2192.
    [68]F.Lamouroux,S.Bertrand,et al,Oxidation-resistant carbon-fiber-reinforced ceramic-matrix composites[J],Compos.Sci.Tech.1999,59:1073-1085.
    [69]J.E.Sheehan,K.W.Buesking,B.J.Sullivan,Carbon-carbon composites[J],Annu rev.mater.sci,1994,24:19-44.
    [70]zhu Yao-Can,S.Ohtani,Y.Sato,N.Iwonoto,Formation of a functional gradient (Si3O4+SiC)/C layer for the oxidation protection carbon-carbon composites[J],carbon,1999,37(9):1417-1423.
    [71]A.Joshi.J.Slee,Coating with particulate dispersions for high temperature oxidation protection of carbon and C/Ccomposites[J],Composites(Part A),1997,28A(2)181-189.
    [72]Meil.I.Guo,Kui.Shen,Yudong.Zheng Multilayered coatings for protecting carbon-carbon composites from sxidation[J],Carbon,1995,33(4):449-453.
    [73]F.J.Buchanan,J.A.Ittle.Particulate-containing glass sealants for carbon-carbon composites[J],Carbon,1995,33(4):491-498.
    [74]F.J.Buchan,J A Lttle,Glass sealants for carborn-carbon composites[J],Journal of materialscience,1993,28:2324-2330.
    [75]K.Koba.Yashi.K.Maeda,H.Sano.YuchiYama,Formation and oxidation resistance of the coating formed on carbon material composed of B4C-SiC powder[J],Carbon,1995,33(4):397-403.
    [76]H.T.Tsou,W.Kowbel,A.multilayer.Plasma-assisted CVD coating for oxidation protection of carbon-carbon composites[J],Journal of advanced material,1996,27(3):9-13.
    [77]成来飞,张立同,高温长寿命C/C防氧化复合梯度涂层的研究[J],高技术通讯,1996,6(5):16-18.
    [78]SAVAGE.G,Caron-carbon complsites[M],Canbridge:Chapman &hall,1993:193.
    [79]T.Morinoto,Y.Ogura,M.Kondo,T..Ueda,Multilayer coating for carbon-carbon composites[J],Carbon,1995,33(4):351-357.
    [80]郭海明,舒武炳,乔生儒,白世鸿,孟国文,C/C复合材料防氧化复合涂层的制备及其性能{J},宁航材料工艺,1998,28(5):37-40.
    [81]Wang,Ruoding,Yokota,Hideaki.Sano,Yasuo.Uchi.Yama,Kazou.Kob.Yashi,Effects of lanthanum boride on oxidation of C/Ccomposites[J],Car-bon,1997,35(7)1035-1035.
    [82]李贺军,间燮榕,朱小旗,徐志淮,碳/碳复合材料抗氧化研究[J],碳素,1999(3):2-7.
    [83]成来飞,张立同,液相法制备C/C防氧止涂层的液相辅展研究[J],航空学报,1996,17(4):508-510.
    [84]成来飞,张立同,韩金探,液相法制备碳-碳Si-Mo防氧化涂层[J],高技术通讯,1996,6(4):17-20.
    [85]L.M.Manocha,Satish.M Manocha,Studies on solution-derived ceramic coating for oxidation protection of carbon-carbon composites[J],Carbon,1995,33(4):435.-440.
    [86]V.K.Parashar,V.Raman,O.P.Bahl,Oxidation resistance material for carbon /carbon composites by the solgel process[J],Journal of material science letter,1997,16(6):479-481.
    [87]B.Enrebutg,Phli.Ipl.(Potomac,MD).Kru.Konis Val.J(Lexington.MA),Processing of carbon/carbon composites using supercritical fluid techonlogy[P],United states patent 5 035921.
    [88]唐伟忠.薄膜材料制备原理、技术及应用.北京:冶金工业出版社,1998.
    [89]Kondo.Masayuki,Oguray.Yuzuru.et al,Journal of the Japan institute of metals,1999,63(5):661-668.
    [90]李彬.溶胶-凝胶法及其在无机材料合成中的应用.机械工程材料,1990,(2):26-30.
    [91]N.E.L.Obiondo,L.E.Jones,A.G.Clare,Halogenated glass system for the protection of structureal carbon/carbon composites[J],Carbon,1995,33(4):499-508.
    [92]郭全贵,宋进人,刘朗,张碧江,碳材料高温氧化防护陶瓷涂层体系研究进展[J],宇航材料工艺,1998,28(2):11-16.
    [93]罗瑞盈,李东生,提高碳/碳复合材料抗氧化性能的一种新途径[J],宇航学报,1998,19(4):95-99.
    [94]J.K.Mun,Co.Park,Bi.Yoon,K.S.Kim,H.Jjoo,A study of the effect of various inhabitors in C/C composites[J],journal of material science,1995,30:1529-1534.
    [95]Paul.R.Romine,Ozden.O.Ochoa,An assessment of the effect of inhabitor oxidation of the response of oxidation -resistant carbon/carbon composites[J],.Composites science and technology,1996,56(5):569-579.
    [96]Carroll,J Thomas.(Salem,NH),Connors.Jr,Donald.F.(Tewsbury,MA),Supl Inakas,Ray-Mond,J.(Gaverhill,MA),Thurston,GarreTt S(Lowell,MA),Method of densifying porous billets[P],United states Patent,5 397 595.
    [97]E Bruneton.Narcyb,Oberlina,Carbon-carbon composites prepared by a rapid desification process[J],Carbon,1997,35(10-11):1593-1598.
    [98]耿浩然,一种制备碳纤维增强碳化硅复合材料的装置(实用新型),中国:2003(03271260X).
    [99]V.Raman,O.P.Bahl,Synthesis of silicon carbid incir-poratde carbon-carbon composited by the sol-gel process[J],Journal of material science letter,1995,14(16):1150-1152.
    [100]J.S.Fiseheniek,A.Zem,et al,The morphology of silicon carbide in C/C-SiC composites,Mater.Sci.& Eng.A,2002,332:146-152.
    [101]K.A.Appiah,Wang Z.L,W.J.Lackey,Characterization of interfaces in C fiber-reinforced laminated C-SiC matrix composites,Carbon,2000,38:831-838.
    [102]Luo Ruiying,Yang Zheng,Li Liefeng,Effect of additives on mechanical properties of oxidation-resistant carbon/carbon composite fabricated by rapid CVD method,Carbon,2000,38(15):2109-2115.
    [103]Zhang,W.G,Cheng,H.M,Sano,H,et al,The effects of nanopartieulate SiC upon the oxidation behavior of C-SiC-B_4C composites,Carbon,1998,36(11):1591-1595.
    [104]Kowbel.W,Huang Y,et a,Effect of boron ion implantation on the oxidation behavior of three-dimensional carbon-carbon composite[J],Carbon,1993,31(2):355-363.
    [105]Guo Meili,Shen Kui,Zheng Yudong,Multilayered coatings for protecting carbon-carbon composites from oxidation[J],Carbon,1995,33(4):359-365.
    [106]成来飞,张立同,徐永东,李明军,碳-碳复合材料复合防氧化涂层材料及其制备方法[J],西北工业大学学报,1998,16(1):129-132.
    [107]曾燮榕,杨峥,李贺军,郑长卿,防止C/C复合材料氧化的MoSi_2/SiC双相涂层系统的研究[J],航空学报,1997,18(4):427-432.
    [108]成来飞,张立同,韩金探,碳-碳复合材料防氧化涂层制备新工艺--液相反应生成法[J],高技术通讯,1992,2(9):4.
    [109]Hall.l.w,Microstructure analysis of isothermally exposed Ti/SiC MMC,Journal of materials science,1992,27(12):3835-3842.
    [110]陈茂爱,陈俊华,高进强,复合材料的焊接[M],化学工业出版社,2005年1月.
    [111]Milena.Salvo,Patrick.Lemoine,Monica.Ferraris,Margherita,Montorsi,Joining of carbon-carbon composites for thermonuclear fusion applications,Journal of the American Ceramic Society,1997,80(1):206-212.
    [112]Parviz Dadras,Gopai M.Mehrotra,Joining of carbon-carbon composites by graphite formation,Journal of the American Ceramic Society,1994,77(6):1419-1424.
    [113]Parviz.Dadras,Gopal.M.Mehrotra,Solid-State diffusion bonding of Carbon-Carbon composites with Borides and Carbides,Journal of the American Ceramic Society,1993,76(5):1274-1280.
    [114]Dadras,P,Ngai T,Mehrotra.G.M,Joining of carbon-carbon composites using Boron and Titanium disilicide interlayers,Journal of the American Ceramic Society,1997,80(1):125-132.
    [115]李培森,任耀文,燕泽明编著,真空钎焊[M],北京:国防工业出版社,1984.
    [116]任耀文编著,真空钎焊工艺[M],北京:机械工业出版社,1993.
    [117]Pietro,Appendino,Monica.Ferraris,Valentina.Casalegno,et al,Direct joining of CFC to copper[J],Journal of Nuclear Materials,2004,329-333.
    [1]孙万昌,李贺军,张守阳等,快速液相气化法制备碳/碳复合材料研究进展[J].硅酸盐学报,2002,30(4):513-516.
    [2]邹僖,钎焊[M],北京:机械工业出版社,1991.
    [3]祝桂红,陶瓷工艺实验[M],北京:中国建筑工业出版社.1983.
    [4]游常,C/SiC复合材料的制备及防氧化涂层研究[硕士学位论文],西安:西北工业大学,2000.
    [1]Wang Can Wang,Zhu Zhengang Zhu,Hou Xianghui Hou,et al,Damping characteristics of CVI densified carbon-carbon composites[J],Carbon,2000,38(13):1821-1824.
    [2]吴凤秋,熊翔,黄启忠等,CVD沉积密度对2D-炭/炭复合材料力学性能的影响[J],炭素,2002,4:26-29.
    [3]李翠云,李辅安,碳/碳复合材料的应用研究进展[J],化工新型材料,2006,34(3):18-20.
    [4]李崇俊,马伯信,金志浩,化学气相沉积/渗透技术综述[J],固体火箭技术,1999,22(1):54-58.
    [5]D T Scaringeila,L Mass,D E Connors,et al,Method for Densifying and Refurbishing Brakes[P],US Patent:5547717,1996.8.20.
    [6]嵇阿琳,霍肖旭,马伯信,CLVD法制备炭毡-炭复合材料[J],新型炭材料,2002,17(1):41-44.
    [7]李贺军,曾燮榕,李克智等,我国炭/炭复合材料研究进展[J],炭素,2001,4:8-13.
    [8]R.I.Baxter,R.D.Rawlings,N.Iwashita,et al,Effect of chemical vapor infiltration on erosion and thermal properties of porous carbon/carbon composite thermal insulation[J],Carbon,2000,38(3):441-449.
    [9]Luo Ruiying,Fabdeation of carbon/carbon composites by an electrified preform heating CVi method[J],Carbon,2002,40(11):1957-1963.
    [10]罗瑞盈,结构炭/炭复合材料力学性能及微观结构研究[J],炭素技术,2000,2:11-14.
    [11]J.德尔蒙特,碳纤维和石墨纤维复合材料技术,北京:科学出版社,1987.
    [12]张玉龙,李长德,王喜梅等,高技术复合材料制备手册,北京:国防工业出版社,2003
    [13]贺福,王茂章,碳纤维及其复合材料,北京:科学出版社,1997.
    [14]徐松华,炭/炭复合材料的沉积工艺、力学性能及热物理性能研究[硕士学位论文],北京:北京航空航天大学,2004.
    [15]闫国杰,高压浸渍-炭化制备C_f/C复合材料工艺及机理研究[硕士学位论文],西安:西北工业大学,1997.
    [16]沈曾民,新型碳材料,北京:化学工业出版社,2003.
    [17]罗益锋,世界高科技纤维的重要新动向,高科技纤维与应用,1998,(1):5-22.
    [18]J S Lee,T J Kang,Changes in physico-chemical and morphological properties of carbon fiber by surface treatment.Carbon,1997,35(2):209-216.
    [19]吴庆,陈惠芳,潘鼎,碳纤维的表面处理,化工新型材料,2000,28(3):11-14.
    [20]lwashitan,Psomiadoue,Y Sawada.,Effect of coupling treatment of carbon fiber surface on mechanical properties of carbon fiber reinforced carbon composites,Composites Part A,1998,29:965-972.
    [21]JS Lee,L T Drzal,Surface characterization and adhesion of carbon fibers to epoxy and olycarbonate,International Journal of Adhesion & Adhesives,2005,25(5):389-394.
    [22]杨永岗,贺福,王茂章等,碳纤维表面处理及其评价,材料研究学报,1996,10(5):460-466.
    [23]殷永霞,沃西源,碳纤维表面改性研究进展,航天返回与遥感,2004,25(1):51-54.
    [24]Norio lwashita,Eleni Psomiadou and Yoshihiro Sawada,Effect of coupling treatment of carbon fiber surface on mechanical properties of carbon fiber reinforced carbon composites,Composites Part A 1998,29A:965-972.
    [25]郭云霞,刘杰,梁节英,电化学改性对PAN基碳纤维表面状态的影响.复合材料学报,2005,22(3):49-54.
    [26]Soo-Jin Park,Jean-Baptiste Donner,Anodic Surface Treatment on Carbon Fibers:Determination of Acid-Base Interaction Parameter between Two Unidentical Solid Surfaces in a Composite System,Journal of Colloid and Interface,1998,(206):29-32.
    [27]刘杰,郭云霞,梁节英.碳纤维表面电化学氧化的研究.化工进展,2004,23(3):282-285
    [28]陈广立,耿浩然,陈俊华等,表层SiC梯度分布C_f/C-SiC复合材料的制备与组织性能研究.碳素,2006,(2):9-13.
    [29]张芬,耿浩然,陈广立等,快速化学液相沉积法制备C_f/C复合材料及材料性能.现代制造工程,2005,(10):40-42.
    [30]E.Casal,M.Granda,J.Bermejo.et al,Influence of porosity on the apparent interlaminar shear strength of pitch-based unidirectional C/C composites,Carbon,2001,39(1):73-82.
    [31]Norio Iwashita,Eleni Psomiadou and Yoshihiro Sawada,Effect of coupling treatment of carbon fiber surface on mechanical properties of carbon fiber reinforced carbon composites,Composites Part A 1998,29A:965-972.
    [32]郭云霞,刘杰,梁节英,电化学改性对PAN基碳纤维表面状态的影响,复合材料学 报,2005,22(3):49-54
    [33]Soo-Jin Park,Jean-Baptiste Donnet,Anodic Surface Treatment on Carbon Fibers:Determination of Acid-Base Interaction Parameter between Two Unidentical Solid Surfaces in a Composite System,Journal of Colloid and Interface,1998,(206):29-32.
    [34]张秀莲,徐志淮,李贺军,碳纤维表面处理对单向C/C复合材料强度的影响,机械科学与技术,2003,22(3):484-486
    [35]韩立军,李铁虎,郭恩明等,炭,炭复合材料抗氧化方法及发展趋势[J],航空制造技术,2003,12:26-30.
    [36]李龙,曾燮榕,李贺军等,微氧化对二维炭/炭复合材料组织结构及试样宏观尺度的影响[J],新型炭材料,2005,20(4):317-323.
    [37]D.L Chung D.L,Carbon fiber composites[M],London:Butter-worth Heineman.1995.
    [38]Hart K H,Rate of oxidation of carbon fiber/carbon matrix composites with an anti-oxidation at high temperature[J],J.Electrochem.Soc,1987,134(4):1003-1009.
    [39]Chang Hen-Won,R M Rusnak,Oxidation behavior of carbon-carbon composites[J],Carbon,1979,17(5):407-410.
    [40]孟广耀,化学气相淀积与无机新材料[M],.北京:科学出版社,1984.
    [41]E.Bruneton,B.Narcy and A.Oberlin,Carbon-carbon composites prepared by a rapid densification process Ⅰ:synthesis and physico-chemical data,Carbon,1999,35(10-11):1593-1598
    [42]李俊红,朱时珍,于晓东等,自加热化学气相法制备连续碳纤维增强碳化硅复合材料,材料工程,2002,(7):29-32.
    [43]Zhang Xiao-hu,Huo Xiao-xu,Ma Bo-xin,Carbon-carbon composites prepared by a rapid densification process-chemical liquid-vapor infiltration,新型炭材料,1999,14(3):1-6.
    [1]Byung Jun Oh,Young Jin Lee,et al,Fabrication of carbon/silicon carbide composites by isothermal chemical vapor infiltration,using the in situ whisker-growing and matrix-filling process,J.Am.Ceram.Soc,2001,84:245-247.
    [2]Deng Jingyi,Wei Yongliang,et al,Carbon-fiber-reinforced composites with graded carbon-silicon carbide matrix composition,J.Am.Ceram.Soc,1999,82:1629-1632.
    [3]Xu Yong dong,Zhang Li Tong,et ai,Microstructure and mechanical properties of three-dimensional carbon/silicon carbide composites fabricated by chemical vapor infiltration,Carbon,1998,36:1051-1056.
    [4]Donald L Schmidt,Kenneth E Dayidson,L Scott,Theibert,Evolution of carbon /carbon composites[J],SAMPE Journal,1996,32(4):44-50.
    [5]方海涛,朱景川,尹中大,碳/碳复合材料抗氧化陶瓷涂层研究进展[J],高技术通讯,1999,(8):54-58.
    [6]丁海英,炭/炭复合材料氧化及防护性能研究[硕士学位论文],北京:北京航空航天大学,2004.
    [7]王世驹,安红艳,陈渝眉,朱金华,碳/碳复合材料氧化行为的研究[J],兵器材料科学与工程,1999,22(4):36-40
    [8]Chen-Chi M Ma,Tai Nyan-Hwa,Chang Wen-Chi Chao,Huai-Te Microstructure and oxidation resistance of SiC coated carbon-composites via pressureless reaction sinitering[J],Journal of material science,1996,31(3):649-654.
    [9]H.Leite,U.Dambacher,et al,Microstructure and properties of multilayer coatings with covalent bonded hard materials[J],Surf.Coat.Tech.116-119,1999:313-320.
    [10]Z.Fan,Y.Song,et al,Oxidation behavior of fine-grained SiC-B4C/C composites up to 1400"C [J],Carbon,2003,41:429-436.
    [11]M.Aparicio,A.Duran et al,Yttrium silicate coatings for oxidation protection of carbon silicon carbide composites[J],J.Am.Ceram.Soc.2000,83:1351-1355.
    [12]J.D.Webster M.E.Westwood.et al,Oxidation protection coatings for C/SiC based on yttrium silicate[J],J.Eur.Ceram.Soc.1998,18:1345-2350.
    [13]Cheng Laifei,Xu Yongdong,et al,Effect of carbon interlayer on oxidation behavior of C/SiC composites with a coating from room temperature to 1500℃[J],Mater Sci.Eng.A.2001,300:219-225.
    [14]Cheng Laifei,Xu Yongdong,et al,Oxidation and defect control of CVD SiC coating on three-dimensiomal C/SiC composites[J],Carbon,2001,40:2229-2234.
    [15]Cheng,Laifei Xu Yongdong,et al,Effect of glass sealing on the oxidation behavior of three dimensional C/SiC composites in air[J],Carbon,2001,39:1127-1133.
    [16]J.D.Webster,F.H.Hayes,et al,Thermod yaamic modelling and experimental studies in the design of integrated oxidation protection systems for ceramic matrix composites[J],Key.Eng.Mater.127-131,1997:1225-1232.
    [17]M.E.Westwood,R.J.Day,et al,The use of finite element analysis in the design of integrated oxidation protection systems for ceramic matrix composites[J],Key.Eng.Mater.127-131,1997:1233-1240.
    [18]Cheng Laifei,Xu Yongdong,et al,Oxidation behavior of C-SiC composites with a Si-w coating from room temperaure to 1500℃[J],Carbon,2000,38:2133-2138.
    [19]刘荣军,周新贵等,CVD法制备SiC先进陶瓷材料研究进展[J],材料工程,2002(7):46-49.
    [20]S.Goujard,L.Vandenbulcke,et al,The oxidation behaviour of two -and three -dimensional C/SiC thermostructural materials protected by chemical-vapour -deposition polylayers coatings[J],J.Mater.Sci.1994,29:6212-6220.
    [21]L.D.Bentson,R.J.Price,et al,Moisture and oxidation resistant carbon/carbon composites[P],USA patent:5298311,1994-03-29.
    [22]H.Fritze,J.Jojic,et al,Mullite based oxidation protection for SiC-C/C composites in air at temperatures up to 1900 K[J],J.Eur.ceram.Soc.1998,18:2351-2364.
    [23]H.Fritze,J.Jojic,et al,Mullite based oxidation protection for SiC-C/C composites in air at temperatures up to 1900 K[J],Key.Eng.Mater.132-136,1997:1629-1632.
    [24]R.Naslain,R.Pailler,et al,Processing of ceramic matrix composites by pulsed -CVI and related techniques[J],Key.Eny.Mater.206-2 ! 3,2002:2189-2192.
    [25]F.Lamouroux,S.Bertrand,et al,Oxidation-resistant carbon-fiber -reinforced ceramic-matrix composites[J],Compos.Sci.Tech.1999,59:1073-1085.
    [26]J E Sheehan,K W Buesking,B J Sullivan,Carbon-carbon composites[J],Annu rev mater sci, 1994,24:19-44.
    [27]Zhu Yao-Can,S Ohtani,Y Sato,N Iwomoto,Formation of a functional gradient (Si3O4+SiC)/C layer for the oxidation protection carbon-carbon composites[J],carbon,1999,37(9):1417-1423.
    [28]A JOSHI J Slee,Coating with particulate dispersions for high temperature oxidation protection of carbon and C/Ccomposites[J],Composites(Part A),1997,28A(2) 181-189.
    [29]Guo Meil I Guo,Shen Kui Shen,Zheng Yudong Zheng,Multilayered coatings for protecting carbon-carbon composites from sxidation[J],Carbon,1995,33(4):449-453.
    [30]F J Buchanan,J A Ittle,Particulate-containing glass sealants for carbon-carbon composites[J],Carbon,1995,33(4):491-498.
    [31]F J Buchan,J A Lttle,Glass sealants for carbom-carbon composites[J],Journal of materialscience,1993,28:2324-2330.
    [32]K Koba Yashi,K Maeda,H Sano.Yuchiyama,Formation and oxidation resistance of the coating formed on carbon material composed of B4C-SiC powder[J],Car-bon,1995,33(4):397-403.
    [33]H T Tsou,W Kowbei,A multilayer plasma-assisted CVD coating for oxidation protection of carbon-carbon composites[J],Journal of advanced material,1996,27(3):9-13.
    [34]成来飞,张立同,高温长寿命C/C防氧化复合梯度涂层的研究[J],高技术通讯,1996,6(5):16-18.
    [35]Savage G,Caron-carbon complsites[M],Canbridge:Chapman &hall,1993:193.
    [36]T Morimoto,Y Ogura,M KOondo,T Ueda,Multilayer coating for carbon-carbon composites[J],Carbon,1995,33(4):351-357.
    [37]郭海明,舒武炳,乔生儒,白世鸿,孟国文,C/C复合材料防氧化复合涂层的制备及其性能{J},宇航材料工艺,1998,28(5):37-40.
    [38]Ruoding Wang,Yokota,Hideaki Sano,Yasuo Uchi Yama,Kazou Kob Yashi,Effects of lanthanum boride on oxidation of C/C composites[J],Carbon,1997,35(7)1035-1035.
    [39]李贺军,间燮榕,朱小旗,徐志淮,碳/碳复合材料抗氧化研究[J],碳素,1999(3):2-7.
    [40]成来飞,张立同,液相法制备C/C防氧止涂层的液相辅展研究[J],航空学报,1996,17(4):508-510.
    [41]成来飞,张立同,韩金探,液相法制备碳-碳Si-Mo防氧化涂层[J],高技术通讯,1996,6(4):17-20.
    [42]L M Manocha,Satish M Manocha,Studies on solution-derived ceramic coating for oxidation protection of carbon-carbon composites[J],Carbon,1995,33(4):435-440.
    [43]V K Parashar,V Raman,O P Bahl,Oxidation resistance material for carbon /carbon composites by the solgel process[J],Journal of material science letter,1997,16(6):479-481.
    [44]B Ernebutg,Phil Ipl(Potomac,MD).Kru Konls,VAal J(Lexington.MA),Processing of carbon/carbon composites using supercritical fluid techonlogy[P],United states patent 5 035921.
    [45]唐伟忠,薄膜材料制备原理、技术及应用,北京:冶金工业出版社,1998.
    [46]Kondo Masayuki,Oguray.Yuzuru et al,Journal of the Japan institute of metals,1999,63(5):661-668.
    [47]李彬,溶胶-凝胶法及其在无机材料合成中的应用,机械工程材料,1990,(2):26-30.
    [48]郭全贵,宋进人,刘朗,张碧江,碳材料高温氧化防护陶瓷涂层体系研究进展[J],宇航材料工艺,1998,28(2):11-16.
    [49]罗瑞盈,李东生,提高碳/碳复合材料抗氧化性能的一种新途径[J],宇航学报,1998,19(4):95-99.
    [50]J K Mun,Co Park,Bi Yoon,K SKim,H Jjoo,A study of the effect of various inhabitors in C/C composites[J].journal of material science,1995,30:1529-1534.
    [51]Paulr.Romine,Ozden O Ochoa,An assessment of the effect of inhabitor oxidation of the response of oxidation -resistant carbon/carbon composites[J],Composites science and technology,1996,56(5):569-579.
    [52]Carroll,Thomas J(Salem,NH),Connors Jr,Donald F(Tewsbury,MA),Supl lnskas,Ray-Mond J(Gaverhiil.MA),Thurston,Garrett S(Lowell,MA),Method of densifying porous billets[P],United states Patent,5 397 595.
    [53]Bruenton E Narcyb,Obedina,Carbon-carbon composites prepared by a rapid desification process[J],Carbon,1997,35(10-11):1593-1598.
    [54]V Raman,O P Bahl,Synthesis of silicon carbid incir-poratde carbon-carbon composited by the sol-gel process[J],Journal of material science letter,1995,14(16):1150-1152.
    [55]J.S.Fischedick,A.Zem,et al,The morphology of silicon carbide in C/C-SiC composites,Mater.Sci.& Eng.A,2002,332:146-152.
    [56]K.A.Appiah,Z.L.Wang,W.J.Lackey,Characterization of interfaces in C fiber-reinforced laminated C-SiC matrix composites,Carbon,2000,38:831-838
    [57]Ruiying Luo,Zheng Yang,Liefeng Li,Effect of additives on mechanical properties of oxidation-resistant carbon/carbon composite fabricated by rapid CVD method,Carbon,2000,38(15):2109-2115.
    [58]Zhang,W.G,Cheng,H.M,Sano,H,el al,The effects of nanoparticulate SiC upon the oxidation behavior of C-SiC-B_4C composites,Carbon,1998,36(11):1591 -1595.
    [59]Kowbel W,Huang Y,et ai,Effect of boron ion implantation on the oxidation behavior of three-dimensional carbon-carbon composite[J],Carbon,1993,31(2):355-363.
    [60]Guo Meili,Shen Kui,Zheng Yudong,Multilayered coatings for protecting carbon-carbon composites from oxidation[J],Carbon,1995,33(4):359-365.
    [61]成来飞,张立同,徐永东,李明军,碳-碳复合材料复合防氧化涂层材料及其制备方法[J],西北工业大学学报,1998,16(1):129-132.
    [62]曾燮榕,杨峥,李贺军,郑长卿,防止C/C复合材料氧化的MoSi_2/SiC双相涂层系统的研究[J],航空学报,1997,18(4):427-432.
    [63]成来飞,张立同,韩金探,碳-碳复合材料防氧化涂层制备新工艺--液相反应生成法[J],高技术通讯,1992,2(9):4.
    [64]H T Tsou,W Kowbei,A hybrid PACVD SiC/CVD Si_3N_4/SiC multilayer coating for oxidation protection of composites[J],Carbon,1995,33(9):1279-1288.
    [65]吉林工业大学,吉林工学院,物理化学,北京:机械工业出版社,1985.
    [66]罗瑞盈,炭/炭复合材料氧化及防护性能研究,材料工程,2000,(8):7-10.
    [67]邓景屹,刘文川,杜海峰等,C/C-SiC梯度基复合材料氧化行为研究,硅酸盐学报,1999,27(3):357-361.
    [68]Zhou sheng mai,Li qi cheng,Hu xiao kai,Influence of additives on oxidation resistance of bindedess C/C composite.Trans,Nonferrous Met.Sot.China,2003,13(1):162-164.
    [69]殷小玮,3D C/SiC复合材料的环境氧化行为[博士学位论文],西安:西北工业大学,2001.
    [70]A Joshi,J S Lee,Coating with particulate dispersions for high temperature oxidation protection of carbon and C/C composites, Composites (Part A), 1997,28A(2): 181-189.
    [71] H. T. Tsou, W Kowbel, A multilayer plasma-assisted CVD coating for oxidation protection of carbon-carbon composites, Journal of advanced material, 1996, 27(3): 9-13.
    [1]李贺军,曾燮榕,李克智等,我国炭/炭复合材料研究进展[J],炭素,2001,4:8-13.
    [2]张芬,耿浩然,陈广立等,快速化学液相沉积法制备C_f/C复合材料及材料性能[J],现代制造工程,2005,10:40-42.
    [3]陈茂爱,陈俊华,高进强,复合材料的焊接[M],北京:化学工业出版社,2005.
    [4]韩绍昌,万顺安,徐仲榆,用比接触面积法测定铜及其合金与炭石墨材料润湿性[J]炭素,1998(4):2-5.
    [5]邹僖,钎焊[M],北京:机械工业出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700