用户名: 密码: 验证码:
高压水环境旋转电弧焊接特性及其焊缝传感跟踪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源开发、船舶建造与维修、水上救助等许多海洋活动的展开,海洋钢结构大量涌现。水下焊接技术作为水下工程建设与维护必不可少的关键技术,急待提高与发展。旋转电弧传感器具有焊缝检测与焊接同时实现的优点,因此研究在高压水环境下采用旋转电弧进行焊缝跟踪,实现高压水环境焊接自动化具有现实的意义。目前国内外还未见这方面的研究报道。
     本文采用高压舱模拟深水水下环境,采用旋转电弧作为传感进行焊缝偏差检测与跟踪,实现高压水环境水下自动焊接。研究内容主要包括:高压下旋转电弧行为及仿真研究,高压水环境旋转电弧传感信息的电流信息预处理方法,高压水环境旋转电弧传感的数学模型,高压水环境旋转电弧焊接短路过渡模型及旋转电弧参数优化,高压水环境下采用旋转电弧进行焊缝跟踪。
     研究了高压旋转电弧传感焊接的电弧特征,对高压旋转电弧进行了模拟仿真计算。模拟得出的0.1MPa下的温度场与大多数文献模拟和拍摄的电弧外形是一致的,同时整个电弧由于旋转加速度的影响而偏向旋转中心轴线外侧。仿真结果表明随着气压由0.1MPa升高到1MPa,电弧温度也升高,符合随环境压力增加,电弧亮度增加的规律。随着压力升高,在施加同等电压的情况下,电流密度也增大。
     研究了高压湿法旋转电弧焊接的电弧稳定性,对高压干法和湿法的电弧稳定性做了一个比较,对湿法焊接电弧稳定性差的原因做了分析。同时对影响高压水下旋转电弧焊接稳定性的因素进行了分析。这些因素包括水深,保护气流量,电压大小等。
     为了消除在高压水环境下旋转电弧传感的噪声,采用了基于平面组合滤波的方法,仿真和实验表明在采用同等的组合滤波方法时,其效果比基于一维滤波效果更加好。
     研究了高压水下旋转电弧传感信息的偏差识别,改进了特征谐波检测方法,深入探讨了特征谐波中焊缝偏差、焊缝倾角和初始相位、跟踪调整的相位角的关系。仿真和实验结果表明,在倾角和跟踪角B同时存在的情况下,采用基于实部的特征谐波法检测偏差比基于幅角法的特征谐波法抗干扰能力更强。
     研究了高压水下旋转电弧焊接短路过渡模型及旋转电弧参数优化,对高压水下旋转电弧焊接熔滴和短路过渡状态的液桥所受到的力进行了总结分析,建立了高压水环境下旋转电弧传感焊接短路过程仿真模型。通过分析仿真结果,并与试验结果相对照,对高压水下旋转电弧焊接的旋转频率和旋转半径作了优化。
     对旋转电弧焊缝跟踪方法进行了总结,最后采用模糊滑模控制器实现了高压水下旋转电弧焊缝跟踪。
With the development of energy resources exploitation, ship construction and repair, water aid etc, the sea steel structure emerges massively.
     As a key technology in the underwater construction and its maintenance, the underwater welding technology needs improving and developing. The rotating arc sensor has the advantages of weld deviation detection and welding simultaneously. Therefore there is realistic meaning for the research applying the rotating arc sensor as the sensor to carry on the weld deviation detection and deep water welding automation. At present there is no such research report at home and abroad.
     In this article the high-pressure tank is used to simulate the deep water environment, the rotating arc sensor is used to carry on the weld deviation detection and tracking to realize the deep water automatic welding. The research content mainly includes: The research about the arc characteristics of the high-pressure rotating arc welding;The noise elimination and deviation detection in the high-pressure rotating arc welding; the short-circuit transition model research and parameter optimization of rotating arc in the high-pressure rotating arc welding; the seam tracking in the high-pressure rotating arc welding.
     To study the arc characteristics under the high-pressure rotating arc welding, the simulation calculation is carried out for the electric arc. The temperature field obtained under the 0.1MPa is consistent with the majority literature's simulations and photographys in the arc contour. At the same time the arc is influenced by rotary acceleration, so it biases towardbiases the lateral center of the rotation axis. The simulation results show that with increased pressure from 0.1MPa to 1MPa, the arc temperature rise, it is in line with the law that the arc brightness is increasing along with the pressure lifting. Along with the pressure lifting, under the circumstance of exerting the same level voltage, the current density also increases.
     To study the arc stability in the high-pressure rotating arc wet welding, the dry and wet welding arc stability is compared, and the reason of the bad stability of the wet welding arc is analyzed. Meanwile the factors affecting the welding current and welding voltage are analyzed which includes the water depth, the protection gas flow rate, voltage size etc.
     To study the noise elimination in the high-pressure rotating arc welding, the plane combination filtering method is used. The simulation and experimental results show that when using the equivalent filtering method, its effect is better than that of one-dimensional filtering.
     To study the deviation detection in the high-pressure rotating arc welding, the relationship between deviation、oblique angle、initial phase and tracing angle are discussed, and the characteristic harmonic method is improved. The simulation and experimental results show that when the oblique angleγand tracing angleβexist at the same time, the real and imaginary method has stronger anti-interference capability than the amplitude and angle method.
     To study the short circuit transition model in the high-pressure rotating arc welding and the optimization of the rotating arc parameters, the force of the melt drop in the high-pressure rotating arc welding and of fluid bridge in the short circuit transition stage is analyzed in summary, the simulation model in the high-pressure rotating arc welding is set up. The simulation results and experimental results is verified each other and the rotaing frequency and rotaing radius is optimized therefore.
     To realize weld seam tracking in the high-pressure rotating arc welding, the summary of the tracking methods is carried out, and at last the fuzzy-slide controller is designed to track the seam.
引文
[1]周灿丰,焦向东,陈家庆等.海洋工程深水焊接新技术[J].焊接,2006(4):11-15,28.
    [2]陈家庆,焦向东,周灿丰等.水下破损管道维修技术及其相关问题[J].石油矿场机械,2004,33(1):33-37.
    [3]张华,李志刚.水下焊接机器人技术发展现状及趋势[J].机器人技术与应用,2008(6):11-14.
    [4]朱加雷,俞建荣,焦向东等.水下焊接技术研究和应用的进展[J].焊接技术,2005,34(4):1-3.
    [5]陈锦鸿,肖志平.水下干式高压焊接在海(河)底管线维修中的应用[J].焊接技术,1998(6):25-26.
    [6]S.Ibarra,S.Liu and D.L.Olson.Underwater Wet Welding of Steel[J].WRCBulletin.1995(401):1-39.
    [7]Mike Cooper,W.Lucas.Underwater wet welding and cutting using the FCA process[C].The International Conference on Exploiting Advances in Arc Welding Technology,1998(3):75-85.
    [8]J.H.NIXON,I.M.RICHARDSON.Deepwater welding and Intervention technology[J].Underwater Technology,1996,21(3):3-7.
    [9]R.Scott.Lyons.Underwater orbital TIG welding[J].Metal Construction,1995(8):504-507.
    [10]Hutt.G et al.,Trends in diverless/remotely controlled hyperbaric pipeline tie-ins[C].Proc of the third international offshore and polar engineering conference,1993:226-234.
    [11]Stephen Liu,Mark Rowe.Progress in underwater Wet welding:The Quintessential SMA Consumables[C],Trends in Welding Research,2003:536-541.
    [12]M.Rowe,S.Liu.Recent developments in underwater wet welding[J].Science and Technology of Welding Joining,2001,6(6):387-396.
    [13]刘桑,钟继光,王国荣.水下焊接技术研究与应用的新进展[J].中国修船,2000(3):10-12.
    [14]梅福欣,俞尚知.水下焊接与切割译文集[M].北京:机械工业出版社,1982.
    [15]张彤,钟继光,王国荣.药芯焊丝微型排水罩局部干法水下焊接的研究[C].第九次全国焊接会议论文集(第2册).1999,354-357.
    [16]刘桑,钟继光,张彤.药芯焊丝水下焊接方法的研究[J].南昌大学学报(工科版),2000,22(2):11-15.
    [17]张彤.药芯焊丝微型排水罩局部干法水下焊接的研究[D].广州:华南理工大学,1999.
    [18]江显群.深水药芯焊丝水下焊接的研究[D].广州:华南理工大学,2003.
    [19]王中辉,蒋力培,焦向东.水下高压干式焊接电弧的研究现状[J].焊接技术,2004,33(4):30-32.
    [20]王中辉,蒋力培,焦向东等.高压干法水下焊接装备与技术的发展[J].电焊机,2005, 35(10):9-11,61.
    [21]周灿丰,焦向东,房晓明.高压TIG焊接技术及其应用研究[J].焊接技术,2004,33(5):34-35.
    [22]王中辉,齐铂金,蒋力培.高压干法水下焊接技术发展现状[J].焊接,2005(10):5-9.
    [23]薛龙,焦向东,周灿丰.水下干式高压焊接试验系统研究[J].中国机械工程,2006,17(9):881-884.
    [24]朱加雷,焦向东,周灿丰等.304不绣钢局部干法自动水下焊接[J].焊接学报,2009,30(1):29-32.
    [25]H.Trevor,L.Trevor.ARM and Rovsim:Extending Our Reach[J].Industrial Robot,1999,26(3):202-208.
    [26]王中辉,蒋力培,齐铂金.水下管道焊接技术研究现状及发展趋势[J].焊管,2003,26(5):6-11.
    [27]俞建荣,张奕林,蒋力培.水下焊接技术及其进展[J].焊接技术,2001,30(4):2-4.
    [28]T.G..Gooch,Properties of Underwater Welds.Part 1-Procedural Trials[J],Metal Contruction,1983(15),164-206.
    [29]A.Sanchez-Osio,S.Liu,S.Ibarra,Designing Shieded Metal Arc Consumables for Underwater Wet Welding in Offshore Applications[J].Journal of Offshore Mechanics and Arctic Engineering,1995,117(3):212-20.
    [30]M.D.Rowe,S.Liu,T.J.Reynolds.Effect of Ferro-Alloy Additions and Depth on the Quality of Underwater WetWelds[J],Welding journal,2002,8(81):156-166.
    [31]I.K.Pokhodnya,V.N.Gorpenyuk,et al.Some Features of Arcing and Metal Transfer in Underwater Self-Shielded Flux-Cored Wire Welding[J],Avtomaticheskaya Svarka,1990,9(9):1-4.
    [32]S.Liu,D.L.Olson et al.Underwater Welding[M],DIALOG OnDisc Books,ASM HANDBOOK,Welding,Brazing,and oldering,2001(6):1-9.
    [33]Alexandre M.Pope,Jose Claudio G,et al.Influnence of power supply dynamic response on underwater wet welding arc stability[C].The 17th International Conference on Offshore Mechanics and ArcticEngineering,Lisbon,Portugal,1998(7):5-9.
    [34]杜华.GTAW电弧的数值模拟[D].兰州:兰州理工大学.2004.
    [35]J J Lowke,M Tanaka,M Ushio,Predictions of weld depth in TIG arcs from unified arc-electrode calculations,Australian Welding J.,2002,47(2):33-37.
    [36]C.S.Wu,M.Ushio,M.Tanaka,Analysis of the TIG welding arc behavior.Computational Material Science,1997,7(3):308-314.
    [37]C.S.Wu,J.Q.Gao,Analysis of the heat flux distribution at the anode of a TIG welding arc,Computational Material Science,2002,24(3):323-327.
    [38]G.Y.Zhao,M.Dassanayake,K.Etamedi.Plasma Chemistry and Plasma.Processing,1990,10(1):87-91.
    [39]J.J.Gonzalez,A.Gleizes.Mathematical modeling of a free burning arc in the presence of metal vapor,J.Appl.Phys.,1993,74(5):3065-3070.
    [40]H G Fan,R Kovacevic.A unified model of transport phenomena in gas metal arc welding including electrode,arc plasma and molten pool.Journal of Physics D:Applied Physics,2004,37(18),2531-2544.
    [41]Szelagowski,S.Ibarra et al.The Application of"In Situ"Post Weld Heat Treatment to Wet Welds[C].Proc.Conf.'OMAE'92',American Society of Mechanical Engineers,1992:142-151.
    [42]Alan J Brown.Report on fundamental research on underwater welding[M].Massachusetts Institute of Technology,1974.
    [43]杨乾铭.水下焊接电弧温度的光谱诊断研究[D].广州:华南理工大学,1996.
    [44]Yoji Ogawa.Effect of ambient pressure on Arc-Electrode Behavior[C].France:Proceedings of the 14th International Offshore and Polar Engineering Conference(ISOPE),2004.
    [45]Yoji Ogawa,Takao Morita,Jun Matsuda et al.Arc behavior under extreme condition[J].Materials Science Forum,2003,3:426-432.
    [46]Hans-Peter Schmidt,Gunter Speckhofer.Experimental and theoretical investigation of high-pressure arcs—Part Ⅰ:The cylindrical arc column(two-dimensional modeling)[J].IEEE transactions on plasma science,1996(4):1178-1186.
    [47]Suga Y.On the arc welding under high pressure argon and helium atmosphere[M].Welding Under Extreme Conditions,Oxford:Pergamon Press,1989:207-214.
    [48]Nixon J H.Underwater repair technology[M].Britain:Cambridge England,2004:41-43.
    [49]Departamento de Fisica,Universidade da Mdeira,Largo do Municipio.Heating of refractory cathodes by high-pressure arc plasmas:Ⅱ[J].Applied physics,2002(4):603-614.
    [50]李健,焦向东.高压钨极氩弧焊电弧行为数值模拟的研究现状与发展[J].北京石油化工学院学报,2004,13(2):31-35.
    [51]Alexandre M.Pope,Jose Claudio G.Teixeira,Carlos I.Baixo.Influence of power supply dynamic response on underwater wet welding arc stability[C].The 17th International Conference on Offshore Mechanics and ArcticEngineering,Lisbon,Portugal,July 5-9,1998.
    [52]P.Hart,I.M.Richardson,J.H.Nixon.The effects of pressure on electrical performance and weld bead geometry in high pressure GMA welding[J].Welding Research Abroad,2003(49):29-37.
    [53]S.Ghorui,A.K.Das.Theory of dynamic behavior in atmospheric pressure arc plasma devices:part Ⅰ:Theory and system behavior[J].IEEE transactions on plasma science,2004,32(1):296-307.
    [54]S.Ghorui,S.N.Sahasrabudhe,P.S.S.Murty.et al.Theory of dynamic behavior in atmospheric pressure arc plasma devices:part Ⅱ:Validation of theory with experimental data[J].IEEE transactions on plasma science,2004,32(1):296-307.
    [55]潘际銮.现代弧焊控制[M].北京:机械工业出版社,2000.6.
    [56]贾剑平,张华,潘际銮.用于弧焊机器人的新型高速旋转电弧传感器的研制[J].南昌大学学报(工科版),2000,22(3):1-4.
    [57]朱江.弧焊机器人焊缝跟踪[J].电焊机,2008,38(6):41-43.
    [58]曾松盛,石永华,王国荣.基于电弧传感器的焊缝跟踪技术现状与展望[J].焊接技术,2008,37(2):1-6.
    [59]费跃农.电弧传感器焊缝自动跟踪系统及电弧传感基础理论研究[D].北京:清华大学,1990.
    [60]廖宝剑.以电弧为传感器的多自由度智能焊接系统研究[D].北京:清华大学,1993.
    [61]K.Eguchi,S.Yamane,H.Sugi,et al.Application of neural network to arc sensor[J].Science and Technology of Welding & Joining.1999,4(6):327-334.
    [62]叶建雄,张发云,任华.基于神经网络的焊枪倾角检测[J].焊接,2008(8):36-39.
    [63]K.Ohshima,S.Yamane,,M.Yabe,et al.Controlling of torch attitude and seam tracking using neuro arcsensor.Industrial Electronics[C],Control,and Instrumentation,1995.,Proceedings of the 1995 IEEE IECON 21st International Conference.1995(2):1185-1189.
    [64]Kim C.-H,Yoo W-S,Na S.-J,Development of an arc sensor with mechanized rotation of Electrode[J].Materials Science Forum,2003,426/432(5);4135-4140.
    [65]Kim Yongjae,Sehun Rhee.Arc sensor model using multiple-regression analysis and a neural network[J].Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2005,219(6):431-445.
    [66]RJ.Ducharme,JM.Dowden,Richardson IM.Et al.A mathematical model of short-circuiting transfer in the high-speed oscillating MAG process -development of automatic mag welding machine with arc sensor and its application to field welding of gas pipelines[J].Journal of Physics.D,Applied Physics,1996,29(10):0022-3727.
    [67]Sang-Kwun Jeong,Gun-You Lee,Won-Ki Lee et al.Development of high speed rotating arc sensor and seam tracking controller for welding robots[C].Industrial Electronics,2001.Proceedings,IEEE International Symposium on 2001,2001(2):845-850.
    [68]C.-H.Kim,S.-J.Na.Development of rotating GMA welding system and its application to arc sensors[C].Eleventh International Conference on Computer Technology in Welding,Dec 5-6,2001,2002:47-54.
    [69]MAO Wenjie,SADEK Alber Alphonse,USHIO Masao,Measurement of dynamic characteristics of arc sensor in GMA welding in dip transfer mode[J].Transactions of JWRI.1997,26(1):9-19.
    [70]熊震宇.旋转电弧传感弧焊机器人焊缝纠偏智能控制系统[D].南昌:南昌大学,2002.
    [71]叶建雄.旋转电弧传感焊枪倾角检测及水下焊缝跟踪技术研究[D].南昌:南昌大学,2007.
    [72]高延峰.移动机器人旋转电弧传感焊枪偏差与倾角检测及角焊缝跟踪[D].南昌:南昌大学,2008.
    [73]包晔峰,周昀,吴毅雄.熔化极气体保护焊熔滴过渡研究[J].电焊机,2006,36(3):55-58.
    [74]Allum C J.Metal Transfer in Arc Welding as A Varicose Instability(Ⅰ)-Varicose Instabilities in a Current-carrying Liquid Cylinder with Surface Charge[J].Journal of Physics D:Applied Physics,1985,18(7):1431-1468.
    [75]Ⅱ.Development of Model for Are Welding[J].Journal of Physics D:Applied Physics,1985,18(7):1447-1468.
    [76]Rhee S,Kannatey A.Analysis of Arc Pressure Effect on Metal Transfer in Gas Metal Arc Welding[J].Journal of Applied Physics,1991,70(9):5068-5075.
    [77]Jones L A,Eagar T W.A Dynamic Model of Drops Detaching from a Gas Metal Arc Welding Electrode[J].Journal of Physics D:Applied Physics,1998,31(1):107-123.
    [78]栗卓新,张征,刘海云.GMAW焊接熔滴过渡模型的研究进展[J].中国机械工程,2007,18(12):1501-1504.
    [79]Waszink J H,Graat H J.Experimental Investigation of the Forces Acting on A Drop of Weld Metal[J].Welding Journal,1983,62(4):108-116.
    [80]Choi J H,Jihye Lee.Dynamic Force Balance Model for Metal Transfer Analysis in Arc Welding[J].Journal of Physics D:Applied Physics,2001,34(17):2658-2664.
    [81]Wang Y,Tsai H L.Impingement of Filler Droplets and Weld Pool Dynamics During Gas Metal Arc Welding Process[J].International Journal of Heat and Mass Transfer,2001,44(11):2067-2080.
    [82]王方,侯文考,胡仕新.熔化极气体保护焊仿真系统的研究[C].高效化焊接国际论坛论文集.2002.
    [83]何建萍,焦馥杰,华学明.短路过渡GMAW系统动态过程参数的研究[J].焊接,2006(3):21-24.
    [84]BY J.H.CHOI,J.Y.LEE,C.D YOO.Simulation of dynamic behavior in a GMAW system[J].Weld.Res.Suppl.2001,239s-245s.
    [85]Chol,S.K.,Ko,S.H.,Yoo,C.D.,and Kim,Y.-S.1998.Dynamic simulation of metal transfer in GMAW-Part2;short circuiting transfer mode[J].Welding Journal 77(1):45-s to 52-s.
    [86]冯曰海,卢振洋,刘嘉等.基于Matlab的短路过渡动态行为建模与仿真[J].北京工业大学学报,2006,32(1).
    [87]冯曰海,卢振洋,刘嘉等.全数字控制CO_2焊Matlab/Simulink建模与仿真[J].焊接学报,2005,26(7):27-32.
    [88]何建萍,吴毅雄,焦馥杰.基于能量最小原理的熔化极气体保护电弧焊短路过渡液桥形状动态模型[J].机械工程学报,2008,44(2):230-233.
    [89]何建萍,华学明,吴毅雄等.GMAW短路过渡动态模型的建立[J].焊接学报,2006.27(9):77-80.
    [90]陈善本,娄亚军,赵冬斌等.脉冲E8G7熔池动态过程模糊神经网络建模与控制[J].自动化学报,2002,28(1):74-82.
    [91]黄石生,贺剑锋.TIG焊熔宽的参数自调整模糊与积分的混合控制[J].1995,控制理论与应用.12(4):465-470.
    [92]高向东,黄石生,余英林.GTAW熔深神经网络——模糊控制技术的研究[J].焊接技术,1999,(6):2-4.
    [93]赵熹华,王宸煜.基于专家系统和人工神经网络的点焊工艺参数选择[J].焊接学报, 1998,19(4):203-207.
    [94]Naso David,Turchiano Biagio,Pantaleo Paolo.A fuzzy-logic based optical sensor for online weld defect-detection[C].IEEE transactions on industrial informatics,Orlando,Florida,USA,2005,1(4):259-273.
    [95]赵华夏.干式高压TIG焊接电弧物理特性的研究[D].北京:北京化工大学,2007.5.
    [96]高莹波.水下高压干法旋流式双层气流保护TIG焊研究(A).第六次全国焊接学术会议论文集[C].北京:机械工业出版社,1990.6.300-304.
    [97]Vladimir Aubrecht and Milada Bartlova.Radiation Transfer In Arc Plasmas[J].AIP Conf.Proc,2006.11.876:338-345.
    [98]A.D'Angola,G.Colonna,C.Gorse.etc.Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and termperature range[J].Eur.Phys.J.D,2008,46:129-150.
    [99]Westermoen,Andreas.Modelling of Dynamic Arc Behaviour in a Plasma Reactor[D].Norwegian University of Science and Technology,2007.3.
    [100]Y Cressault,R Harmachi,Ph Teulet et al.Influence of metallic vapours on the properties of air thermal plasmas[J].Plasma Sources Science and Technology,2008(17):035016.1-035016.9.
    [101]Fluent Inc.Fluent help 6.3[M].
    [102]HUJ,TSAI H.L.Heat and mass transfer in gas metal arc welding.Part Ⅰ:The arc.International journal of heat and mass transfer[J].2007,50:833-846.
    [103]赫列诺夫著.骆鼎昌等译.金属焊接、切割与钎焊[M].北京:机械工业出版社,1958.
    [104]廖宝剑,吴世德,潘际銮.电弧传感器理论模型及信息处理[J].焊接学报,1996,17(4):263-271.
    [105]李月华.旋转电弧传感器焊枪位姿识别方法研究[D].南昌:南昌大学,2007.
    [106]张波,李健君,李鸿超.基于Morlet小波带通滤波特性的振动系统频率识别[J].空军工程大学学报(自然科学版).2005,6(5):73-75.
    [107]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2001.
    [108]飞思科技产品研发中心小波分析理论与Matlab7实现[M].北京:电子工业出版社,2005.
    [109]杨立军,李桓,李俊岳等.CO_2焊短路液桥的力学分析[J].电焊机,2004(3),4-7.
    [110]王震徵,郝廷玺.气体保护焊工艺和设备[M].北京:国防工业出版社,1982.
    [111]洪波.电弧传感移动式焊接机器人的数学建模及仿真[D].湘潭:湘潭大学,2006.
    [112]Lancaster J.F.The physics of Welding Arc[M].New York:Pergamon press.1986.
    [113]宋天虎,霍维国.高压CO_2气体中焊接的研究[J].焊接,1983(11),1-8.
    [114]敖俊卿.模糊滑模控制应用方法研究[D].保定:华北电力大学,2007.
    [115]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    [116]王丰尧.滑模变结果控制[M].北京:机械工业出版社.1995.
    [117]王立新.模糊系统与模糊控制教程[M].北京:清华大学出版社,2003.
    [118]Palm R.Robust Control by Fuzzy Sliding Mode[J],Automatica,1994,30(9):1429-1437.
    [119]刘凯.移动机械臂模糊滑模控制研究[D].天津:中国民航大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700