用户名: 密码: 验证码:
海参微波—冻干联合干燥工艺与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海参(Stichopus japonicus)具有极高的营养和商品价值,是最为昂贵的海产珍品之一。由于海参离开海水很快会自溶,因此必须尽快加工,世界上约80%的海参都被加工成干参。海参体壁的主要成分是胶原蛋白,干燥过程中很容易腐败变质,且高温脱水后会发生硬化,食用前的复水过程经常需2-3天。目前市场流行的海参主要是传统的盐干海参和冻干海参。盐干海参整个过程需要3天以上的时间,质量很差;冻干海参虽然质量很好,但干燥时间长达20 h以上,能耗也很高。因此,本文引入了基于冻干的联合干燥手段加工海参,来代替传统的冷冻干燥技术,实现高品质、低能耗的干燥。
     为了缩短传统冷冻干燥的时间,采用了冻干-真空微波分段联合干燥技术。发现联合干燥的海参在产品品质方面接近冷冻干燥产品,同时可缩短冷冻干燥时间约40%;发现转换含水率对分段联合干燥过程的影响最大;通过响应面分析方法给出了联合干燥的具体操作工艺参数;联合干燥方式是一种可以替代传统冷冻干燥来加工海参的新技术,这项技术也非常适合现有冷冻干燥生产线的升级改装,值得进一步推广。
     为了缩短传统冷冻干燥的时间,并进一步提高产品质量,采用了微波作为加热源的微波辅助冻干同步联合干燥技术。对干燥室的电场分布进行了有限元模拟,从而使电场分布均匀;通过研究击穿功率密度和干燥压力的关系,发现了干燥过程中低压气体放电的规律;提出了干燥过程的微波加载方案,以获得较快的干燥速度和较好的产品质量;发现了微波冻干过程的杀菌特性,提出了纳米银涂膜结合微波冻干生产活性海参的新工艺;采用微波冷冻干燥保质新工艺生产的海参与传统冻干海参质量没有差别,但干燥时间缩短了近一倍。
     为了进一步缩短微波冷冻干燥的时间,对海参的介电特性进行了研究。发现海参的介电常数和介电损耗因子随温度和含水率变化的规律,特别是海参冻结后其介电损耗因子急剧下降,造成微波吸收能力下降;在保证干燥速率的前提下提出了避免热失速的方法,从而使产品不会出现焦糊现象;在不影响产品外观和食品安全的前提下提出了通过纳米钙真空浸渍处理和盐水浸渍处理来改善海参的介电特性的方法,发现纳米钙真空浸渍处理后可显著提高升华速率,而盐水浸渍处理对常压微波干燥较为适用。
     为了进一步降低微波冷冻干燥能耗,对海参的冻干前处理技术进行了研究。将渗透脱水技术引入干燥前处理,考虑海参的传统加工工艺,将盐水作为渗透剂,来对海参进行预脱水以降低后期干燥负荷;发现超声波辅助渗透处理可明显提高渗透过程的传质速率,使失水率增加,同时对固形物增加率的提高效果则并不明显,有利于控制海参的含盐量,从而保持海参品质;通过后期的微波冷冻干燥试验,发现超声波辅助渗透预处理可有效降低干燥能耗近20%;通过响应面分析方法给出了海参盐水渗透工艺的具体参数,获得了较高的失水率和较低的固形物增加率。
Sea cucumber (Stichopus japonicus) is always looked on as a delicious and expense dish for its high nutrition and tonic function, and has very high commercial value. It is one of the most expensive marine products. Since the sea cucumber can autolyze after leaving sea water, it is difficult to preserve and transport. As a result, more than 80% of the fresh sea cucumber all over the world is processed to dehydrated product. Because the main component of the body wall of sea cucumber is collagen, dehydration is difficult and deterioration can occur during process. Besides, the dried product rehydration needs about 3 days for incrustation of body wall during drying process.Up to now, most of sea cucumbers are dehydrated by traditional techniques called salt-dehydration which need to add salt, boil again and again and expose to solar radiation for 2-3 days, and the product quality is poor. Another used technique is freeze drying which can ensure very well product quality, but needs more than 20 hours and the energy consumption was very high. As a resut, a new hybrid drying technology based on freeze drying was introduced to replace the traditional freeze drying. The new drying technology need not only ensure good product quality but also cost much lower energy consumption.
     In order to reduce drying time of freeze drying, a two-stage combined drying technology,freeze drying-vaccum microwave dyring was used. It was found that the new technology could reduce about 40% of drying time of traditional freeze drying and its product quality was close to freeze drying. Conversion moisture content of sea cucumber was the most important parameter of the combined drying process, and the optimal drying parameters were gotten by a reponse surface analysis method. So the combined drying technology can replace traditional freeze drying, and it also can be used to upgrade the exixting freeze drying productline.
     In order to reduce drying time of freeze drying and improve product quality, microwave was used as heating source of freeze drying, which could be called one-stage microwave freeze drying. Electric field distribution of the drying cavity was simulated by finite element method, and thus uniform heating could be ensured. Relationship between discharge power density and drying pressure was investigated, and the rule of low air pressure discharge was found. The rules of microwave loading were brought forward, which could lead to good product quality and short drying time. Sterilization characteristic of microwave freeze drying was found, and nanoscale silver coating combined with microwave freeze drying method was introduced to manufacture active sea cucumber. There was no significant difference between product quality of microwave freze drying and that of traditional freeze drying, wherease microwave frreze drying could reduce almost half of freeze drying time.
     In order to reduce more drying time of microwave freeze drying process, dielectric properties of sea cucumber were studied. The change rules of dielectric properties of sea cucumber as a function of temperature and moisture content was investigated, and it was found that the loss factor of frozen sea cucumber rapidly decreasing led to low microwave absorption capability. Some methods were brought forward to avoid thermal run away and material burning. In addion, nanoscale calcium vaccum impregnation and slat impregnation treatments were introduced to improve the dielectric properties of sea cucumber, and the product qulity also could be ensured. In fact, nanoscale calcium vaccum impregnation treatment could improve sublimation rate, and slat impregnation treatment could improve atmospheric microwave drying rate.
     In order to reduce more energy consumption, the osmotic pretreatment technology of microwave freeze drying sea cucumber was studied. Considering traditional sea cucumber processing, salt was used as osmotic agent to pre-dehydrate sea cucumber. It was found that ultrasound assisting osmotic pretreatment could lead to relative high water loss rate and solute gain rate increase was not very signifficalt. So ultrasound assisting osmotic pretreatment could had no significant affect on product quality, wherease it could reduce about 20% of microwave freeze drying energy consunmption. The optimal osmotic parameters also were worked out by a response surface analysis method.
引文
[1]房英春,张慧,陈曦.海参资源及生物学特征[J].北京水产,2007, (2): 25-28.
    [2]郭文场,于艳,王守本,周淑荣.中国的海参[J].特种经济动植物, 2007, (4): 23-25.
    [3]崔桂友,赵廉.食用海参的名称与种类鉴别[J].扬州大学烹饪学报,2000,(3): 13-18.
    [4]樊绘曾.海参:海中人参[J ] .中国海洋药物杂志, 2001, (5): 37-39.
    [5]李熙灿.海参及海参中的化学成分综述[J].辽宁中医学院学报, 2004, 6: 341-346.
    [6]许钟.刺参煮熟冻干品及其加工工艺[J].中国水产, 2004, (10): 67-68.
    [7]农业部渔业局.中国渔业年鉴(2006)[M].北京:中国农业出版社, 2006.
    [8]聂竹兰,李霞,辛涛.仿刺参体壁的组织学和组织化学[J].大连水产学院学报, 2007, 22(3): 184-187.
    [9]杨宝灵,姜健等.海参生物活性物质的研究[J].云南大学学报, 2004, 26(6): 96–99.
    [10]宋迪,吉爱国等.刺参生物活性物质的研究进展[J].中国生化药物杂志, 2006, 27(5): 316–320.
    [11]栾静.烟台参PK进口参[N].烟台日报, 2008-4-26.
    [12] Matsllno T, Tsushima M. Comparative biochemical studies of caretenoids in sea cucumbers [J]. Comp. Biochem. Physiol., 1995, 13lB (4): 597-605.
    [13] Fredalina B D, Ridzwan B H, Abidi A Z. 2.Fatty acidc compositions in local sea cucumber, stichopus chlormotus, for wound healing [J]. General pharmacology, 1999, 33, 337–340.
    [14] Kariya Y, Mulloy B, Imai K. Isolationand and partial characterizaion of fucan sulfates from the body wall of seacucumber stichopus japonicus and their ability to inhibit osteoclastogenesis [J]. Carbohydrate research, 2004, 339: 1339-1346.
    [15]吴萍茹等.二色桌片参的化学成分研究,二色桌片参多糖-1,一种新的岩藻聚糖[J].中国海洋药物, 2004, 74(2): 4-10.
    [16] Avilov S A, koreoside A et al. A new nonholostane triterpene glycoside from the sea cucumber Cucumber Koraiensis[J]. J Nat. Prid., 1997, 60(8): 808-818.
    [17] Tovar A M et al. Structure of fucose branches in the glucosaminoglycan from the body wall of the sea cucumber [J]. Atherosclerosis, 1996, 126(2): 1185-1279.
    [18]段君等.海刺参粘多糖提取分离的最佳工艺条件[J].大连轻工业学院学报, 2003, 22(2): 107-112.
    [19]巫军.黑乳海参皂苷nobilisideA的体外抗真菌及抗肿瘤活性[J].中国药理学通报, 2007, 23(1): 139-140.
    [20] Pedro G, Santiago-Cardona C A, Francisco R. Lipopolysaccharides induce intestinal serum amyloid A expression in the sea cucumber Holothuria glaberrima [J]. Developmental & Comparative Immunology, 2003, 27(2): 105-110.
    [21]袁文鹏,丛日山,杨秀霞.水溶性海参皂苷的分离纯化及其抗真菌活性研究[J].山东大学学报(理学版), 2007, 42(5): 70-74.
    [22] Greta M,Peter C,Norhcote V. Structure of the major triterpene glycoside from the sea cucumber Stichopus mollis and evidence to reclassify this species into the new genus Australostichopus [J]. Biochemical Systematics and Ecology, 2004, 32(7): 637-650.
    [23] Rajesh K, Ashok K C, Praveen K S. Antifungal activity in triterpene glycosides from the sea cucumber Actinopyga lecanora [J]. Bioorganic & Medicinal Chemistry Letters, 2007, 17(15): 4387-4391.
    [24] Pettit G R, Herald C L et al. Antineoplastic agents:sea cucumber cytototic saponin [J]. J. Pharm. Sci., 1976, 65(10): 1558-1560.
    [25]周清凯,杨惠英,蔡云见.玉足海参素的抗真菌作用及其临床应用[J].海洋药物, 1985, (4): 43-44.
    [26] Birenhenide R et al. Peptides controlling stiffness of connective tissue in sea cucumbers. Biol. Bull., 1998, 194(3): 253-259.
    [27]王洪涛,尹花仙,金海珠.海参肽对小鼠抗疲劳作用的研究[J].食品与机械, 2007, 23(3): 89-91.
    [28] Saito M, Kunisaki N, Urano N. Collagen as the major edible component of sea cucumber (Stichopus japonicus) [J]. Food chemistry and toxicology, 2002, 67(4): 1319-1322.
    [29] Fu X Y, Xue C H, Miao B C. Study of a highly alkaline protease extracted from digestive tract of sea cucumber (Stichopus japonicus) [J]. Food Research International, 2005, 38(3): 323-329.
    [30] Zhao Y H, Li B F, Liu Z Y. Antihypertensive effect and purification of an ACE inhibitory peptide from sea cucumber gelatin hydrolysate [J]. Process Biochemistry, 2007, 42(12): 1586-1591.
    [31]谭国福,梁陈长生,刘佳仟.海参的加工及产品质量[J].食品与药品, 2007, 10: 69-71.
    [32]肖枫,曾名勇.海参软罐头加工工艺的研究[J].科学养鱼, 2004, (3): 11-12.
    [33]陈良.海参软罐头的加工工艺[J].中国水产, 1995, 11: 37-38.
    [34]王彩理,滕瑜,朱伯清.海参的发制和加工[J].齐鲁渔业, 2006, 23(8): 38-40.
    [35]孙显武.刺参的加工技术[J].中国水产, 2002, (6): 71-72.
    [36]毕琳,李八方.海参的加工现状[J].科学养鱼, 2005, (8): 69-70.
    [37]许学柏.干海参的食用与鉴别[J].山东食品科技, 2003, (12): 20-22.
    [38]谭国福,梁陈长生等.海参的加工及产品质量[J].食品与药品, 2007, 9(10): 69-71.
    [39]冷福臻.海参的加工方法[P].中国专利: 1559295, 2005-01-05.
    [40]徐万学.无营养流失的海参干品及其加工方法[P].中国专利: 1494914, 2004-12-2.
    [41]李兆杰,薛长湖,董平.一种干海参的加工方法[P].中国专利: 1559296, 2005-01-05.
    [42] Mujumdar A S. Drying of Fish and Seafood. Handbook of industrial drying, third edition, Pp. 552-554[M]. Boca Raton: CRC Press, 2006.
    [43] Mujumdar A S. Research and Development in Drying: Recent Trends and Future Prospects [J]. Drying Technology, 2004, 22 (1): 1-26.
    [44]李志平,傅璞,杨伟元,许钟.刺参冻干加工技术研究[J].海洋渔业, 2004, 26(1): 52-56.
    [45]云霞,韩学宏,农绍庄,杨红.海参真空冷冻干燥工艺[J].中国水产科学, 2006, 13(4): 662-667.
    [46] Mujumdar A S. Guide to Industrial Drying. Pp. 28-46 [M]. Mumbai: Colour Publications PvtLtd, 2004.
    [47] Prachayawarakorn S,Soponronnarit S,Wetchacama S. Desorption isotherms and drying characteristics of shrimp in superheated steam and hot air [J]. Drying Technology, 2002, 20 (3): 670-675.
    [48]张国琛,毛志怀.水产品干燥技术的研究进展[J].农业工程学报, 2004, 20(4): 297-233.
    [49] Ratti C. Hot air and freeze-drying of high-value foods: a review. Journal of Food Engineering [J], 2001, 49(4): 311-319.
    [50] Bellagha S,Amami E,Farht A.Drying kinetics and characteristic drying curve of lightly salted sardine [J]. Drying Technology,2002,20(7):1527-1538.
    [51] Sankat C K, Mujaffar S. Modelling the drying behavior of salted shark fillets [C]. ASAE Annual International Meeting, 2003, USA.
    [52] Prachayawarakorn S , Soponronnarit S , Wetchacama S. Isotherms and drying characteristics of shrimp in superheat steam and hot air [J].Drying Technology, 2001,20(3):669-684.
    [53]娄永江.龙头鱼热风干燥的数学模型及优化参数组合[J].食品科技, 2000. (1):30-31.
    [54]孙妍,薛长湖等.海参最佳对流干燥温度的研究[J].农业工程学报, 2007, 23(5): 205-209.
    [55]张国琛,牟晨晓,潘澜澜,徐振方.热风干燥参数对扇贝柱干燥速度及品质的影响.大连水产学院学报, 2004, 19(1): 35-39.
    [56]张亚琦,高昕.鲍鱼热风、晾晒干燥的比较试验.农业工程学报, 2008, 24(1): 296-230.
    [57] Chua K J, Chou S K et al. Heat pump drying: recent developments and future trends [J]. Drying Technology, 2002, 20 (8): 1579-1610.
    [58]洪国伟.热泵干燥器在水产品加工中的应用[J].渔业现代化, 2001(3):28-29.
    [59]陈忠忍.水产品热泵干燥装置的研究[J].制冷学报, 1992, (1): 23-25.
    [60]郑春明.热泵在农副产品干燥中的应用[J].农机与食品机械, 1997(2):26-28.
    [61] Prasertsan S. Saen-saby P. Heat pump drying of agricultural materials [J]. Drying Technology, 1998, 16 (2): 235-250.
    [62]刘海新,叶玫.调味海带脆片生产工艺[J].福建水产,2002,93(6):71-73.
    [63] Zhang M, Tang J M, Mujumdar A S. Trends in microwave-related drying of fruits and vegetables [J]. Trends in Food Science & Technology, 2006, 17(10): 524-534.
    [64] Zhang J, Zhang M, Shan L. Microwave-Vacuum Heating Conditions for Processing Savory Crisp Bighead Carp Slices [J]. Journal of Food Engineering 2007, 79(3): 885–891.
    [65] Kardum J P, Sander A, Skansi D. Comparison of convective, vacuum, and microwave drying chlorpropamide [J]. Drying Technology, 2001, 19(1): 137-143.
    [66]汤大卫.微波真空干燥技术[J].中国食品工业, 2001, 8(11):30-31.
    [67] Lin T M,Timothy D D,Scaman C H.Physical and sensory properties of vacuum microwave dehydrated shrimp [J].Journal of Aquatic Food Product Technology, 1999, 8(4):41-53.
    [68] Duan Z H, Zhang M, Hu Q G. Characteristics of microwave drying of bighead carp [J]. Drying Technology, 2005, 23 (3): 637-643.
    [69]张国琛,毛志怀,牟晨晓,潘澜澜.微波真空干燥扇贝柱的物理和感观特性研究[J].农业工程学报, 2004, 20(3): 141-146.
    [70] Nijhuis H H, Torringa H M, Muresan S, Yuksel D. Approaches to improving the qualityof dried fruit and vegetables [J]. Trends in Food Science & Technology, 1998, 9 (1): 13-20.
    [71] Vega-Mercado H, Marcela M. Advances in dehydration of foods [J]. Journal of Food Engineering, 2001, 49 (4): 271-289.
    [72]高福成,刘志胜,李修渠.冻干食品[M].北京:中国轻工业出版社, 1998,105-107.
    [73]张晋陆.蚬肉冻干工艺及干燥模型研究[J].水产科学, 1998, 17(6):30-33.
    [74]谢国山,王立业.海蛎子真空冷冻干燥的工艺探讨[J].食品科技, 2002, 12:46-47.
    [75]陈朝银.几种速食面调料升华干燥及其品质的研究[J].云南工业大学学报, 1997,13(1):83-85.
    [76] Sablani S S, Myhara R M M. Water sorption isotherms of freeze fish sardines [J]. Drying Technology,2001, 19(3&4):673-680.
    [77] Menshutina N V, Gordienko M G., Voynovskiy A A, Kudra T. Dynamic Analysis of Drying Energy Consumption [J]. Drying Technology,2004, 22(10):2281-2290.
    [78] Mujumdar A S. Drying Technology in Agriculture and Food Science [J]. Drying Technology, 2001, 19 (6): 1217-1218.
    [79]张慜,王瑞.果蔬微波联合干燥技术研究进展[J].干燥技术与设备, 2005, 3(3): 107-112.
    [80] Rahman M S. A Theoretical Model to Predict the Formation of Pores in Foods During Drying [J]. International Journal of Food Properties, 2003, 6(1): 61-72.
    [81] Rahman M S. Toward prediction of porosity in foods during drying: a brief review. Drying technology, 2001, 19(1): 1-13.
    [82] Rahman M S, Perera C O. Handbook of Food Preservation, Pp.173–216. [M]. New York: Marcel Dekker, 1999.
    [83] Sanchez G Y. Instrumental texture attributes of Abalones, Haliotis Fulgens and Cracherodii [J]. Food Science, 2002, 67(3): 1233-1239.
    [84] Strumillo C, Adamiec J. Energy and Quality Aspects of Food Drying [J]. Drying technology, 1996, 14(2): 423-448.
    [85] Chou S K, Chua K J. New hybrid drying technologies for heat sensitive foodstuffs [J]. Trends in Food Science & Technology, 2001, 12(10): 359-359.
    [86]何学连,袁信华,过世东.冷冻与微波真空联合干燥白对虾的研究[J].食品工业科技, 2008, (6): 205-208.
    [87]邹兴华.太湖银鱼的真空冷冻和真空微波联合干燥[D]: [硕士学位论文].无锡:江南大学食品学院, 2006.
    [88] Xu Y Y, Zhang M, Tu D Y. A two-stage convective air and vacuum freeze-dryingtechnique for bamboo shoots [J]. International Journal of Food Science and Technology, 2005, 40 (6): 589-595.
    [89] Hu Q G, Zhang M, Mujumdar A S. Drying of Edamames by hot air and vacuum microwave combination [J]. Journal of Food Engineering, 2006, 77(4): 977-982.
    [90] Litvin S, Mannheim C H, Miltz J. Dehydration of carrots by a combination of freeze drying, microwave heating and air or vacuum drying [J]. Journal of Food Engineering, 1998, 36(1): 103-111.
    [91]李艳聪,李书环.真空冷冻干燥技术及其在食品加工中的应用[J].天津农学院学报, 2003, (01): 42-44.
    [92]王绍林.微波加热原理及其应用[J].西北农业学报, 1999, 4 (8): 232-237.
    [93] Ohlsson T, Bengtsson N. Microwave technology and foods. Advances in Food and Nutrition Research, Pp. 65-140. [M]. Academic Press, 2001.
    [94] Schleged W. Commcrical Pasteurization and Sterilization of Food Products Using Microwave Technology [J]. Food Technology, 1992, 12: 62-63.
    [95] Decareau R V. The Microwave Sterilization Process [J]. Microwave World, 1994, 15 (2): 12-16.
    [96] Cohen J S, Yang T C S. Progress in food dehydration [J]. Trends in Food Science & Technology, 1995, 6 (1): 20-25.
    [97]施明恒,祝涛等.微波冷冻干燥过程中光纤测温技术的研究[J].上海交通大学学报, 1999, (8): 1039-1041.
    [98] Copson D A. Microwave sublimation of foods [J]. Food Technology, 1958, 12: 270-272.
    [99] Ma Y H, Peltre P R. Freeze dehydration by microwave energy-1. theoretical investigation [J]. AIChE Journal, 1975, 21 (2): 335-344.
    [100] Peltre R P, Arsen H B, Ma Y H. Applications of microwave heating to freeze drying: perspective [J]. AIChE Symposium Series, 1975, 73 (163): 131-133.
    [101] Ang T K., Pei D C T, Ford J D. Microwave freeze drying: An experimental investigation [J]. Chemical Engineering Science, 1977, 32 (12): 1477-1489.
    [102] Ang T K., Pei D C T, Ford J D. Microwave freeze-drying of food: a theoretical investigation [J]. International Journal of Heat and Mass Transfer, 1977, 20 (5): 517-526.
    [103] Wang Z H, Shi M H. Numerical study on sublimation-condensation phenomena during microwave freeze drying [J]. Chemical Engineering Science, 1998, 53 (18): 3189-3197.
    [104] Wu H W, Tao Z, Chen G H. Conjugate heat and mass transfer process within porousmedia with dielectric cores in microwave freeze drying [J]. Chemical Engineering Science, 2004, 59 (14): 2921-2928.
    [105] Tao Z, Wu H W, Chen G H, Deng H. Numerical simulation of conjugate heat and mass transfer process within cylindrical porous media with cylindrical dielectric cores in microwave freeze-drying [J]. International Journal of Heat and Mass Transfer, 2005, 48 (3-4): 561-572.
    [106]孙恒,朱鸿梅.微波加热冷冻干燥过程中热电耦合的研究[J].真空与低温, 2004, (04): 221-224.
    [107] Hammond L H. Economic evaluation of uhf dielectric vs radiant heating for freeze-drying [J]. Food Technology, 1967, 21: 735-738.
    [108] Tetenbaum S J, Weiss J A. Microwave-aided freeze-drying of foods [J]. Proceedings of Southeastcon Region 3 Conference, 1981: 816-819.
    [109] Dolan J P, Scott E P. Microwave Freeze-Drying of Aqueous Solutions,Advances in Heat and Mass Transfer in Biological Systems [J]. ASME, 1994,HTD-Vol, 288: 91-98.
    [110]王朝晖,施明恒.初始饱和度对微波冷冻干燥过程传热传质的影响[J].化工学报, 1997, (3): 294-297.
    [111]王朝晖,施明恒.牛肉的微波冷冻干燥特性[J].南京林业大学学报(自然科学版), 1997, (S1): 139-142.
    [112] Wang Z H, Shi M H. Microwave freeze drying characteristics of beef [J]. Drying Technology, 1999, 17 (3): 433-447.
    [113]施明恒,祝涛,王朝晖.蜂王浆微波冷冻干燥特性的实验研究[J].东南大学学报(自然科学版), 1998, (S1): 1-5.
    [114] Lombrana J I, Zuaso I, Ikara J. Moisture diffusivity behavior during freeze drying under microwave heating power application [J]. Drying Technology, 2001, 19 (8): 1613-1627.
    [115] Wang W, Chen G H. Numerical investigation on dielectric material assisted microwave freeze-drying of aqueous mannitol solution [J]. Drying Technology, 2003, 21 (6): 995-1017.
    [116] Wang W, Chen G H. Theoretical study on microwave freeze-drying of an aqueous pharmaceutical excipient with the aid of dielectric material [J]. Drying Technology, 2005, 23 (9-11): 2147-2168.
    [117] Wang W, Chen G H, Gao F. Effect of dielectric material on microwave freeze drying of skim milk [J]. Drying Technology, 2005, 23(1-2 SPEC. ISS.): 317-340.
    [118] Nastaj J, Witkiewicz K. Theoretical analysis of vacuum freeze drying of biomaterials at contact-radiant-microwave heating [J]. Inzynieria Chemicznai Procesowa, 2004, 25 (2): 505-525.
    [119] Wu H W, Tao Z, Gao P, Chen G H. Ice crystal sizes and their impact on microwave assisted freeze drying [J]. Chinese Journal of Chemical Engineering, 2004, 12 (6): 831-835.
    [120]孙恒,张洁等.微波冷冻干燥技术的发展和有待解决的问题[J].食品科学, 2005, (5): 256-259.
    [121] Venkatesh M S, Raghavan G S V. An Overview of Microwave Processing and Dielectric Properties of Agri-food Materials [J]. Biosystems Engineering, 2004, 88 (1): 1–18.
    [122] Gould J W, Kenyon E M. Gas discharge and electric field strength in microwave freeze- drying [J]. Journal of Microwave Power, 1971, 6(2): 151-167.
    [123] To E C, Mudgett R E, Wang D I C, Goldblith S A. Dielectric properties of food materials [J]. Journal of Microwave Power, 9: 303–315.
    [124]程裕东.微波加热过程中圆柱型包装食品的温度分布研究[J].中国食品学报, 2002, 2(4): 6-10.
    [125] Venkatachalapathy K, Raghavan G S V. Combined osmotic and microwave drying of strawberries [J]. Drying Technology, 1999, 17 (4-5): 837-853.
    [126] Reppa A, Mandala J. Influence of solute temperature and concentration on the combined osmotic and air drying [J]. Drying Technology, 1999, 17(7-8): 1449-1458.
    [127] Donsi G. A combined technology for the production of dried vegetables: osmotic dehydration/freeze drying [J]. Italian Food and Beverage Technology, 1999, 15: 11-17.
    [1] Ratti C. Hot air and freeze-drying of high-value foods: a review. Journal of Food Engineering [J], 2001, 49(4): 311-319.
    [2] Irzyniec Z, Klimezak J, Michalowski S. Freeze-drying of the black currant juice [J]. Drying Technology, 1995 (13): 417-424.
    [3] Boss E A, Filho R M, Coselli E. Freeze drying process: real time model and optimization [J]. Chemical Engineering and Processing, 2004, 43: 1475-1485.
    [4] Enrico M, Paolo D N. Preparation of freeze-dried yoghurt as a space food [J]. Journal of Food Engineering, 2007, 80: 402-407.
    [5] Jiang S, Steven L N. Effect of process conditions on recovery of protein activity after freezing and freeze-drying [J]. European Journal of Pharmaceutics and Biopharmaceutics, 1998, 45: 249-257.
    [6]云霞,韩学宏,农绍庄,杨红.海参真空冷冻干燥工艺[J].中国水产科学, 2006, 13(4): 662-667.
    [7]李志平,傅璞,杨伟元,许钟.刺参冻干加工技术研究[J].海洋渔业, 2004, 26(1): 52-56.
    [8]张晋陆.蚬肉冻干工艺及干燥模型研究[J].水产科学, 1998, 17(6):30-33.
    [9]谢国山,王立业.海蛎子真空冷冻干燥的工艺探讨[J].食品科技, 2002, 12:46-47.
    [10]陈朝银.几种速食面调料升华干燥及其品质的研究[J].云南工业大学学报, 1997,13(1):83-85.
    [11] Sablani S S, Myhara R M M. Water sorption isotherms of freeze fish sardines [J]. Drying Technology,2001, 19(3&4):673-680.
    [12] Lorentzen J. Freeze drying of foodstuffs:Quality and economics in freeze drying [J]. Chemistry and Industry, 1979.14: 465-468.
    [13] George J P, Datta A K. Development and validation of heat and mass transfer models for freeze-drying of vegetable slices [J]. Journal of Food Engineering, 2002, 52(1): 89—93.
    [14] Zhang J, Zhang M, Shan L. Microwave-Vacuum Heating Conditions for Processing Savory Crisp Bighead Carp Slices [J]. Journal of Food Engineering 2007, 79(3): 885–891.
    [15] Kardum J P, Sander A, Skansi D. Comparison of convective, vacuum, and microwave drying chlorpropamide [J]. Drying Technology, 2001, 19(1): 137-143.
    [16]汤大卫.微波真空干燥技术[J].中国食品工业, 2001, 8(11):30-31.
    [17] Lin T M,Timothy D D,Scaman C H.Physical and sensory properties of vacuum microwave dehydrated shrimp [J].Journal of Aquatic Food Product Technology, 1999, 8(4):41-53.
    [18] Duan Z H, Zhang M, Hu Q G. Characteristics of microwave drying of bighead carp [J]. Drying Technology, 2005, 23 (3): 637-643.
    [19]张国琛,毛志怀,牟晨晓,潘澜澜.微波真空干燥扇贝柱的物理和感观特性研究[J].农业工程学报, 2004, 20(3): 141-146.
    [20] Bogdan S. Effect of vacuum-microwave drying on selected mechanical and theological properties of carrot [J]. Biosystems Engineering. 2008, (99)2: 234-238.
    [21]李瑜,许时婴.大蒜片的微波真空干燥动力学研究[J].无锡轻工大学学报, 2005, 24(1): 114-120.
    [22] Joanna B, Marek M, Wioletta B. Effect of drying conditions on the quality of vacuum-microwave dried potato cubes [J]. Journal of Food Engineering, 2007, 81(2): 306-312.
    [23] Xu Y Y, Zhang M, Mujumdar AS. Studies on hot air and microwave vacuum drying of wild cabbage [J]. Drying Technology, 2004, 22 (9): 2201-2209.
    [24] Xu Y Y, Zhang M, Tu D Y. A two-stage convective air and vacuum freeze-drying technique for bamboo shoots [J]. International Journal of Food Science and Technology, 2005, 40(6): 589-595.
    [25] Xu Y Y, Zhang M. A two-stage vacuum freeze and convective air -drying technique for strawberries [J]. Drying Technology, 2006, 24: 1019–1023.
    [26] Shishehgarha F, Makhlouf J, Ratti C. Freeze-drying characteristics of strawberries [J]. Drying Technology, 2002, 20(1): 131—145.
    [27] Chou S K, Chua K J. New hybrid drying technologies for heat sensitive foodstuffs [J]. Trends in Food Science & Technology, 2001, 12(10): 359-359.
    [28]邹兴华.太湖银鱼的真空冷冻和真空微波联合干燥[D]: [硕士学位论文].无锡:江南大学食品学院, 2006.
    [29]徐艳阳.毛竹笋真空冷冻与热风联合干燥研究[D]: [博士学位论文].无锡:江南大学食品学院, 2004.
    [30]胡庆国.毛豆热风与真空微波联合干燥过程研究[D]: [博士学位论文].无锡:江南大学食品学院, 2005.
    [31]谭国福,梁陈长生,刘佳仟.海参的加工及产品质量[J].食品与药品, 2007, 10: 69-71.
    [32]孙显武.刺参的加工技术[J].中国水产, 2002, (6): 71-72.
    [33]孙妍.海参干燥动力学的研究[D]: [硕士学位论文].青岛:中国海洋大学, 2007.
    [34]段君,云霞,朱蓓薇,丁鸣.海刺参粘多糖提取分离的最佳工艺条件[J].大连轻工业学院学报, 2003, 22(2): 107-111.
    [35]王远红,吕志华,姜廷福,刘畅,郭少媛.梅花参中多糖提取工艺及含量测定的研究[J].中国海洋大学学报, 2005, 35(6): 987-990.
    [36]刘桂敏,赵秀梅,陈菊娣,胡人杰.刺参酸性粘多糖质控分析方法的研究[J].解放军预防医学杂, 2004, 22(2): 107-111.
    [37] Mujumdar A S. Guide to Industrial Drying [M]. Mumbai: Colour Publications PvtLtd,2004.
    [38] Cui Z W. Dehydration of garlic slices by combined microwave-vacuum and air drying [J]. Drying Technology, 2003, 21(7): 1173-1184.
    [39] Mujumdar A S. Drying of Fish and Seafood. Handbook of industrial drying, third edition, Pp. 552-554[M]. Boca Raton: CRC Press, 2006.
    [40] Claussen I C, Ustad T S. Atmospheric Freeze Drying - A Review [J]. Drying Technology, 2007, 25(6): 947-957.
    [41] Maskan M. Microwave/air and microwave finish drying of banana [J]. Journal of Food Engineering, 2000, 44: 71-78.
    [42] Durance T D, Wang J H. Energy consumption, density, and rehydration rate of vacuum microwave and hot-air convection- dehydrated tomatoes [J]. Journal of Food Science, 2002, 67(6): 2212-2216.
    [43] Kim, S S, Bhowmik, S R. Effective moisture diffusivity of plain yogurt undergoing microwave vacuum drying [J]. Journal of Food Engineering, 1995, 24(1): 137-148.
    [1]王绍林.微波加热原理及其应用[J].西北农业学报, 1999, 4 (8): 232-237.
    [2] Ohlsson T, Bengtsson N. Microwave technology and foods. Advances in Food and Nutrition Research, Pp. 65-140. [M]. Academic Press, 2001.
    [3] Schleged W. Commcrical Pasteurization and Sterilization of Food Products Using Microwave Technology [J]. Food Technology, 1992, 12: 62-63.
    [4] Decareau R V. The Microwave Sterilization Process [J]. Microwave World, 1994, 15 (2): 12-16.
    [5] Copson D A. Microwave sublimation of foods [J]. Food Technology, 1958, 12: 270-272.
    [6] Ma Y H, Peltre P R. Freeze dehydration by microwave energy-1. theoretical investigation [J]. AIChE Journal, 1975, 21 (2): 335-344.
    [7] Peltre R P, Arsen H B, Ma Y H. Applications of microwave heating to freeze drying: perspective [J]. AIChE Symposium Series, 1975, 73 (163): 131-133.
    [8] Ang T K., Pei D C T, Ford J D. Microwave freeze drying: An experimental investigation [J]. Chemical Engineering Science, 1977, 32 (12): 1477-1489.
    [9] Ang T K., Pei D C T, Ford J D. Microwave freeze-drying of food: a theoretical investigation [J]. International Journal of Heat and Mass Transfer, 1977, 20 (5): 517-526.
    [10] Wang Z H, Shi M H. Numerical study on sublimation-condensation phenomena during microwave freeze drying [J]. Chemical Engineering Science, 1998, 53 (18): 3189-3197.
    [11] Wu H W, Tao Z, Chen G H. Conjugate heat and mass transfer process within porous media with dielectric cores in microwave freeze drying [J]. Chemical Engineering Science, 2004, 59 (14): 2921-2928.
    [12] Tao Z, Wu H W, Chen G H, Deng H. Numerical simulation of conjugate heat and mass transfer process within cylindrical porous media with cylindrical dielectric cores in microwave freeze-drying [J]. International Journal of Heat and Mass Transfer, 2005, 48 (3-4): 561-572.
    [13]孙恒,朱鸿梅.微波加热冷冻干燥过程中热电耦合的研究[J].真空与低温, 2004, (04): 221-224.
    [14] Hammond L H. Economic evaluation of uhf dielectric vs radiant heating for freeze-drying [J]. Food Technology, 1967, 21: 735-738.
    [15] Tetenbaum S J, Weiss J A. Microwave-aided freeze-drying of foods [J]. Proceedings of Southeastcon Region 3 Conference, 1981: 816-819.
    [16] Dolan J P, Scott E P. Microwave Freeze-Drying of Aqueous Solutions,Advances in Heat and Mass Transfer in Biological Systems [J]. ASME, 1994,HTD-Vol, 288: 91-98.
    [17]张兆锉,钟若青.微波加热技术基础[M].北京:电子工业出版社,1988.
    [18]王绍林.微波加热技术的应用:干燥和杀菌[M].北京:机械工业出版社,2004.
    [19]毛钧杰,刘荧,朱建清.电磁场与微波工程基础[M].北京:电子工业出版社, 2004.
    [20]陈秉钧,郭树旭,张振国.微波原理与技术[M].长春,吉林大学出版社, 1995.
    [21]李志平,傅璞,杨伟元,许钟.刺参冻干加工技术研究[J].海洋渔业, 2004, 26(1): 52-56.
    [22]王晓凑,徐水凌.纳米银抗菌织物的研究进展[J].棉纺织技术, 2008, 36(2): 126-128.
    [23] Dibrov P, Dzioba J. Chemiosmotic Mechanism of Antimicrobial Activity of Ag+ in Vibrio cholerae [J]. Antimicrobial Agents and Chemotherapy, 2002, 46(8): 2668-2670.
    [24]王小健,乔学亮,陈建国.无机抗菌剂的研究现状及发展趋势[J].陶瓷学报, 2003, 24(4): 239-244.
    [25]张慜,段振华,单薇.准纳米银对蔬菜汁保鲜的效果[J].无锡轻工大学学报, 2003, 22(2): 63-66.
    [26]李喜宏,陈国祥. PE/纳米银防霉保鲜膜研制[J].食品科学, 2002, 23(2): 129-132.
    [27]李新林.纳米银涂膜液制备及其在海参低温干制品中的应用[D]: [硕士学位论文].无锡:江南大学食品学院, 2008.
    [28]陈盂尧.电磁场与微波技术[M].北京:高等教育出版社, 1989.
    [29]朱天竹.空气净化器谐振腔微波场的有限元方法模拟[D]. [硕士学位论文].吉林:吉林大学, 2006.
    [30]宋燎原.微波加热系统设计及谐振腔内电磁场分布研究[D]. [硕士学位论文].东营:中国石油大学, 2004.
    [31]康莲娣.生物电子显微技术[M].合肥:中国科学技术大学出版社, 2003.
    [32] Zhang, H, Datta, A K. Microwave Power Absorption in Single-and multiple-item Foods [J]. Transactions of the Institution of Chemical Engineers, 2003, 81: 257-266.
    [33]徐艳阳,张慜等.真空冷冻干燥工艺中物料共晶共融点的测定[J].食品工业科技, 2005,(5): 56-58.
    [34]孙恒,张洁等.微波冷冻干燥技术的发展和有待解决的问题[J].食品科学, 2005, (5): 256-259.
    [35] Venkatesh M S, Raghavan G S V. An Overview of Microwave Processing and Dielectric Properties of Agri-food Materials [J]. Biosystems Engineering, 2004, 88 (1): 1–18.
    [36] Xu Y Y, Zhang M, Tu D Y. A two-stage convective air and vacuum freeze-drying technique for bamboo shoots [J]. International Journal of Food Science and Technology, 2005, 40(6): 589-595.
    [1] Liao X J, Raghavan G S V, Dai J M, Yaylayan V A. Dielectric properties ofα-D-glucose aqueous solutions at 2450 MHz [J]. Food Research International, 2003, 36: 485-490.
    [2] Zhang H, Datta A K. Microwave Power Absorption in Single-and multiple-item Foods [J]. Transactions of the Institution of Chemical Engineers, 2003, 81: 257-266.
    [3] Nelson S O. Electrical properties of agricultural products——A critical review [J]. Transactions of the ASA E, 1973, 16 (2): 384- 400.
    [4] Nelson S O. Dielectric spectro scopy in agriculture [J]. Journal of Non-crystalline Solids, 2005, (351): 2940 -2944.
    [5] Nelson S O, Forbus W J, Lawrence K. Permittivities of fresh fruits and vegetables at 0.2 to 20 GHz [J]. Journal of Microwave Power and Electromagnetic Energy, 1994, 29(2): 81- 93.
    [6] Kraszewski A W, Nelson S O. Microwave permittivity determination in agricultural products [J]. Journal of Microwave Power and Electromagnetic Energy, 2004, 39(1): 41- 52.
    [7] Mudgett R E. Electrical Properties of Foods [M]. In Rao M A, Rizvi S S H (Eds.), Eng. Properties of Foods (pp. 389–455). New York: Marcel Dekker, 1994.
    [8] Wang Y F, Wig T D, Tang J M, Hallberg L M. Dielectric properties of foods relevant to RF and microwave pasteurization and sterilization [J]. Journal of food engineering, 2003, 57: 257-268.
    [9] Sharma G P, Prasad S. Dielectric properties of garlic (Allium sativum L.) at 2450 MHz as function of temperature and moisture content [J]. Journal of Food Engineering, 2002, 52: 343-348.
    [10] Hu X P, Mallikarjunan P. Thermal and dielectric properties of shucked oysters [J]. LWT-Food Science Technology, 2005, 38: 489-494. Journal of Food Engineering, 2007, 78: 1111-1116.
    [11] Everard C D, Faga C C. Dielectric properties of process cheese from 0.3 to 3 GHz [J]. Journal of Food Engineering, 2006, 75: 415-422.
    [12] Wang S, Tang J, Johnson J A. Dielectric Properties of Fruits and Insect Pests as related to Radio Frequency and Microwave Treatments [J]. Biosystems Engineering, 2003, 85(2): 201-212.
    [13] Marti′n-Esparza M E, Mart?′nez-Navarrete N, Chiralt A, Fito P. Dielectric behavior of apple (var. Granny Smith) at different moisture contents Effect of vacuum impregnation [J]. Journal of Food Engineering, 2006, 77: 51-56.
    [14] Tanmay B, Meenakshi A. A theoretical analysis on microwave heating of food slabs attached with ceramic plates: Role of distributed microwave incidence [J]. Food Research International 2006, 39: 932-944.
    [15] Wang W, Chen G H. Numerical investigation on dielectric material assisted microwave freeze-drying of aqueous mannitol solution [J]. Drying Technology, 2003, 21(6): 995-1017.
    [16] Wang W, Chen G H, Gao F. Effect of dielectric material on microwave freeze drying of skim milk. Drying Technology, 2005, 23 (1-2 SPEC. ISS.): 317-340.
    [17]程裕东,酒井升,半泽保. 2450MHz下含盐凝胶琼脂的介电特性[J].上海水产大学学报, 1999, 8(4): 337-341.
    [18]黄永峰,李谦,黄金亮,龙永强.高介电常数微波介质陶瓷的发展及研究现状[J].硅酸盐通报, 2006, 25(4): 185-188.
    [19]张兆春,邹陆军,崔得良.纳米GaP材料的介电特性[J].稀有金属, 2003, 27(6): 688-272.
    [20]刘学忠,徐传骧.纳米无机粉末填充电磁线漆的介电特性研究[J].中国电机工程学报, 2004, 24(10): 143-148.
    [21]卫志贤,郑岚,刘荣杰.超细碳酸钙的制备[J].化工进展,1998,(5): 50-53.
    [22]徐学波.超细碳酸钙的生产及反应[J].化工新型材料,1997(1): 23-26.
    [23] ASTM D2520-90. Test methods for complex permittivity (Dielectric Constant) of solid electrical insulating materials at microwave frequencies and temperatures to 1650℃, Philadelphia, PA: American Society for Testing Materials, 1990.
    [24]张羽,张弘,何蓉.生物介质复介电常数的微扰法测量[J].中国测试技术, 2005, 31(2): 1-5.
    [25]孙恒,朱鸿梅.微波加热冷冻干燥过程中热电耦合的研究[J].真空与低温, 2004, (04): 221-224.
    [26] Farag K W, Lyng J G, Morgan D J, Cronin D A. Dielectric and thermophysical properties of different beef meat blends over a temperature range of -18 to +10°C [J]. Meat science, 79 (4): 740-747.
    [1] Mujumdar A S. Guide to Industrial Drying [M]. Mumbai: Colour Publications PvtLtd,2004.
    [2] Shi J, Le M M. Osmotic dehydration of foods: mass transfer and modeling aspect [J]. Foods Reviews Inter., 2002, 18(4): 305-335.
    [3] Danila T. Osmotic dehydration in fruit and vegetable processing [J]. Food Research International, 1993, 26: 59-69.
    [4]谭国福,梁陈长生,刘佳仟.海参的加工及产品质量[J].食品与药品, 2007, 10: 69-71.
    [5]毕琳,李八方.海参的加工现状[J].科学养鱼, 2005, (8): 69-70.
    [6] Raoult A L. Recent advances in the osmotic dehydration of foods [J]. Trends in Food Science and Technology, 1994, 5(8): 255-260.
    [7]张慜,曹晖.食品渗透脱水研究进展[J].干燥技术与设备, 2004, 2(4) : 3-9.
    [8] Delvallf F R, Nickerson J T R. Studies on salting and drying fishII: Dynamic aspects of the salting of fish [J]. Journal of Food Science, 1967, 32: 218- 224.
    [9] Collignan A, Bohuon P, Deumier F. Osmotic treatment of fish and meat products [J]. Journal of Food Engineering, 2001, 49: 153- 162.
    [10] Park K J, Bin A, Brod F P R. Drying of Peard with and without osmotic dehydration [J]. Joumal of Food Engineering,2002,56: 97-103.
    [11] Prothon F, Abrne L M. Effeets of Combined Osmotic and Microwave Dehydration of Apple on Texture, Microstrueture and Rehydartion Charaeteristics [J]. LWT-Food Science Technology,2001, 34(2): 95-101.
    [12]董全.蓝莓渗透脱水和流化床干燥的研究[D].重庆:西南农业大学,2005.
    [13] Donsi G. A combined technology for the Production of dried vegetables: osmotic dehydration/freezedrying [J]. Italian Food and Beverage Teehnology,1999, 15: 9-11.
    [14] Deumier F, Mens F et al. Control of immersion processes: a novel system for monitoring mass transfers tested with herring brining [J]. Journal of Food Engineering, 1997, 32: 293- 311.
    [15] Djelveh G, Gros J B, Emam D Z. Osmotic dehydration of foods in a multicomponent solution part II:Water loss and solute up take in agar gels and meat [J]. LWT-Food Science Technology, 2001, 34: 319-323.
    [16] Poligne C I, Trystram A G. Processing smoked pork belly by immersion in a complex solution at high temperature [J]. Journal of Food Engineering, 2005, 66: 155-169.
    [17] Corzo O, Bracho N. Effects of brine concentration and temperature on equilibrium distribution coefficients during osmotic dehydration of sardine sheets [J]. LWT-Food Science Technology, 2004, 37: 475-479.
    [18] Corzo O, Bracho N. Equilibrium water and salt contents of sardine sheets during osmotic dehydration [J]. LWT-Food Science Technology, 2006, 39: 357- 363.
    [19] Reppa A, Mandala J et al. Influence of solute temperature and concentration on the combined osmotic and air drying [J]. Drying Technology, 1999, 17(7-8): 1449-1458.
    [20] Fito P. Modeling of vacuum osmotic dehydration of food [J]. Journal of Food Engineering, 1994, 22: 313-528.
    [21] Rastogi N K, Angersbach A. Synergistic effect of high hydrostatic Pressure Pretreatment and osmotic stress on mass transfer during osmotic dehydration [J]. Journal of Food Engineering, 2000, 45: 25-31.
    [22] Simal S, Benedito J, Sanchez E S. Use of ultrasound to increase mass transport rates during osmotic dehydration [J]. Journal of Food Engineering, 1998, 36: 323-336.
    [23] Gennaro D, Cavella S et al. The use of ultrasound in food technology I: inactivation of peroxidase by thermosonication [J]. Journal of Food Engineering, 1999, 39: 401–407.
    [24] Cao H, Zhang M et al. Optimization of Osmotic Dehydration of Kiwifruit [J]. Drying Technology, 2006, 24 (1): 89-94.
    [25]李保国,申家龙.超声技术在农产品加工中的应用[J].农机与食品机械, 1998, (2): 37-39.
    [26]李正英,陈锦屏,陈忠军,杨俊峰.羊肉超声波嫩化技术的研究[J].食品科学, 2006, 27(12): 413-418.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700