用户名: 密码: 验证码:
向量随机积分与资产定价基本定理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以向量随机积分为主线,首先较为系统地研究了向量随机积分,给出了在金融数学中使用向量随机积分较之使用按分量的随机积分更合理的经济学解释.其次作为向量随机积分的应用,研究了在金融数学中具有基础性地位的资产定价基本定理.在这两个方面都获得了一些新结果,并改进了许多已有的结论.所有这些工作不仅对于随机分析的理论,而且对于随机积分在金融数学中的应用都具有积极的意义.
     本文的主要创新点如下:
     1.给出了多维函数形式的单调类定理,它是一维函数形式单调类定理的推广,也是处理多维可测函数、多维随机过程的有力工具.将其用于向量随机积分的研究,改进了多个结论的证明,新证明较之原证明简洁清晰,易于掌握.
     2.得到了向量随机积分一些新的性质,改进了一些已有结果.特别是利用局部绝对连续测度的密度过程、鞅空间H1与半鞅空间的性质以及泛函分析中的闭图像定理(见定理2.4.5与定理2.4.10的证明)获得了一般形式的半鞅向量随机积分的Girsa-nov定理,它对于随机分析的理论与随机积分的应用都具有重要价值.正是由于该定理,使得能够在第三章中获得新结果.
     3.利用鞅空间H1的泛函表示定理、泛函延拓定理、半鞅向量随机积分的Girsanov定理(定理2.4.10)以及随机分析中许多技巧得到了半鞅的可料表示性(定理3.4.5),这一结果同样具有很好的理论与应用价值.运用它扩展了市场完备特征.
     4.小结了几种不同意义下向量随机积分之间的关系,给出了一些最常用的特殊结果.还给出了等价鞅测度、等价局部鞅测度、局部绝对连续的局部鞅测度、等价鞅变换测度、等价局部鞅变换测度、局部绝对连续的局部鞅变换测度之间的关系.特别是利用本文给出的半鞅向量随机积分的Girsanov定理,得到了两个更深刻的结果(定理3.2.1与定理3.2.7) .
     5.给出了怎样由一个d维可料过程获得一个d + 1维的自筹资策略的严谨证明(定理3.1.5).透彻地分析了原市场与折准市场之间、原市场的自筹资策略与折准市场的可取策略之间的关系.从数学与经济学的角度,讨论了不同形式的资产定价第一基本定理之间以及它们之间的关系.
This dissertation focuses on the vector stochastic integral (VSI) and its applicationsto mathematical finance. We first conduct a comprehensive study on VSI and provide aneconomical justification on the question of why VSI is more suitable than the component-wise stochastic integral for mathematical finance. Then as an application of VSI, we studythe fundamental theorems of asset pricing (FPAP), one of the theoretical foundations formathematical finance. Both studies generate interesting new results and improvements ofmany existing results. The work in this dissertation not only has significant contribution tothe theory of stochastic analysis, it also has very important practical value in mathematicalfinance.
     The key contributions of this dissertation are summarized as follows:
     1. The monotone class theorem of multiple dimension functional format.This is the generalization from the one dimension monotone class theorem. It is also apowerful tool for the study of multi-dimension measurable functions and multi-dimensionstochastic process. We apply it to the study of VSI and improve the proof of manytheorems. Comparing to the original proofs, the new proofs are significantly simplifiedand easy to understand.
     2. New properties and improvements on VSI. Combining the density processof local absolute continuous measure, properties of the martingale space H1 and semi-martingale space, and the closed image theorem of functional analysis (see the proofs ofTheorem 2.4.5 and Theorem 2.4.10), we obtain the general form of Girsanov Theorem forsemi-martingale vector stochastic integral(SMVSI) . This result is of particular value tothe theory of stochastic analysis and the application of stochastic integral. It also providesthe theoretical foundation for our study in mathematical finance.
     3. The semi-martingale predictable representation theorem (Theorem3.4.5). This theorem is derived from the functional representation theorem in martin-gale space H1 , the expansion theorem in functional analysis, and the Girsanov Theoremfor SMVSI (Theorem 2.4.10). Many techniques in stochastic analysis are used to obtainthis result, which also has high theoretical and practical value. Using this result, we areable to extend the characteristics of the market completeness.
     4. Summary of important existing results. We give the relationships of VSI un-der several di?erent meanings and list the most commonly used special cases. More specif- ically, this includes equivalent martingale measure, equivalent local martingale measure,local absolutely continuous local martingale measure, equivalent martingale transformmeasure, equivalent local martingale transform measure, and local absolutely continuouslocal martingale transform measure. Two deeper theorems (Theorem 3.2.1 and Theorem3.2.7) are obtained from our Girsanov Theorem for SMVSI.
     5. Proof of theorem on how to derive the d+1 dimension self-financingstrategy from a d-dimension predictable process (Theorem 3.1.5). After a carefulstudy of relationships between the original market and the deflated market, and theircorresponding strategies (self-financing strategy and admissible strategy, respectively),we discuss, from both mathematics and economics point of view, the first fundamentaltheorem of asset pricing in different forms and their relationship.
引文
[1] Acedo F, Benito F, FalcóA, Rubia A and Torres J. A computational approach tothe fundamental theorem of asset pricing in a single-period market. ComputationalEconomics, 2001, 18: 233-249.
    [2] Alvarez-Samaniego B and Orrillo J. The fundamental theorem of asset pricing underdefault and collateral in finite discrete time. Journal of mathematical analysis andapplications, 2006, 320(1): 425-438.
    [3] Ansel J P and Stricker C. Couverture des actifs contingents, Preprint, 1992.
    [4] Ansel J P and Stricker C. Couverture des actifs contingents et prix maximum.Ann.Inst.Henri Poincaré, 1994, 30: 303-315.
    [5] Astic F and Touzi N. No arbitrage conditions and liquidity. Journal of mathematicaleconomics, 2007, 43(6): 692-708.
    [6] Balbas A and Downarowicz A. Infinitely many securities and the fundamental the-orem of asset pricing. Mediterranean Journal of mathematics, 2007, 4(3): 321-341.
    [7] Bj¨ork T. Arbitrage theory in continuous time. Oxford University Press, 1998.
    [8] Back K and Pliska S. On the fundamental theorem of asset pricing with an infinitestate space. J.Math.Econ., 1991, 20: 1-18.
    [9] Black F and Scholes M. The pricing of options and corporate liabilities. J. of PoliticalEconomy, 1973, 81: 635-654.
    [10] Courtault J M, Delbaen F, Kabanov Y and Stricker C. On the law of one price.Finance and Stochastics, 2004, 8(4): 525-530.
    [11] Cherny A S. Vector stochastic integrals in the first fundamental theorem of assetpricing. Proceedings of the workshop on Mathematical Finance, INRIA, 1998: 149-163.
    [12] Cherny A S. Pricing and hedging European opotions with discrete-time coherentrisk. Finance and Stochastics, 2007, 11(4): 537-569.
    [13] Chou C S, Meyer P A and Stricker C. Sur les integrals stochastiques de processusprévisibles non bornés. Lecture Notes in Mathematics, 1980, 784: 128-139.
    [14] Chou C S. Caractérisation d’une classe de semimartingales. Lecture Notes in Math-ematics, 1979, 721: 250-252.
    [15] Cox J C and Ross S A. The valuation of options for alternative stochastic processes.Journalof Financial Economics, 1976, 3: 145-166.
    [16] Cherny A and Shiryaev A. On stochastic integrals up to infinity and predictablecriteria for integrability. Seminaire de probabilities xxxVIII, 2005, 1857: 165-185.
    [17] Du?e D and Huang C F. Multiperiod security markets with di?erential information;martingales and resolution times. J.Math.Econom. 1986, 15: 283-303.
    [18] Delbaen F. Representing martingale measures when asset prices are continuous andbounded. Math. Finance, 1992, 2(2): 107-130.
    [19] Doléans-Dade C and Meyer P A. Intégrales stochasiques par rapport aux martingaleslocales. Lecture Notes in Mathematics, 1970, 124: 77-107.
    [20] Delbaen F, Monat P, Schachermayer W, Schweizer M and Stricker C. Weighted norminequalities and hedging in incomplete markets. Finance and Stochastics, 1997, 1(3):181-227.
    [21] Dalang R C, Morton A and Willinger W. Equivalent martingale measures and no-arbitrage in stochastic securities market models. Stoch. And Stoch. Reports, 1990,29(2): 185-202.
    [22] Dothan M. Prices in financial markets. New York: Oxford University Press, 1990.
    [23] Dupire B. Model art, risk. 1993,6(9).
    [24] Dybvig P and Ross S. Arbitrage.In:Eatwell,J.,Milgate,M.,Newman,P.(eds.)The newPalgrave dictionary of economics, 1987, 1: 100-106, London: Macmillan.
    [25] Delbaen F and Schachermayer W. The no-arbitrage property under a change ofnumeraire. In Springer Finance, pp.217-230, 2006.
    [26] Delbaen F and Schachermayer W. Arbitrage and free lunch with bounded risk forunbounded continuous processes. Mathematical Finance, 1994, 4(4): 343-348.
    [27] Delvaen F and Schachermayer W. A general version of the fundamental theorem ofasset pricing. Mathematische Annalen, 1994, 300(3): 463-520.
    [28] Delbaen F and Schachermayer W. The no-Arbitrage property under a change ofnuméraire. Stochastics and Stochastic Reports, 1995, 53: 213-226.
    [29] Delbaen F and Schachermayer W. The Existence of Absolutely Continuous LocalMartingale Measures. Annals of Applied Probability, 1995, 5(4): 926-945.
    [30] Delbaen F and Schachermayer W. Arbitrage possibilities in Bessel processes andtheir relation to local martingales. Probability Theory and Related Fields, 1995,102: 357-366.
    [31] Delbaen F and Schachermayer W. The fundamental theorem of asset pricing forunbounded stochastic processes. Mathematical Annalen, 1998, 312: 215-250.
    [32] Delbaen F and Schachermayer W. A simple counterexample to several problems inthe theory of asset pricing. Mathematical Finance, 1998, 8: 1-12.
    [33] Delbaen F and Schachermayer W. Applications to mathematical finance. In Hand-book of the Geometrie of Banach Spaces, North Holland, 2001, 1: 367-391.
    [34] E′mery M. Compensation de processusàvariation finie non localement intégrables.Sém. de ProbabilitéXIV, LNM, 1978/79, 784: 152-160.
    [35] E′mery M. Une topologie sur l’espace des semimartingales. Lecture Notes in Mathe-matics, 1979, 721: 260-280.
    [36] E′mery M. Compensation de processus a variation finie non localement integrables.Lecture Notes in mathematics, 1980, 784: 152-160.
    [37] Evstigneev I V, Schurger K and Taksar M I. On the fundamental theorem of as-set pricing: Random constraints and bang-bang no-arbitrage criteria. MathematicalFinance, 2004, 14(2): 201-221.
    [38] F¨ollmer H and Kabanov Y M. Optional decomposition theorem and Lagrange mul-tipliers. Finance and Stochastics, 1998, 2(1): 69-81.
    [39] Frittelli M and Lakner P. Almost sure characterization of martingales. Stochasticsand Stochastic Report, 1994, 49: 181-190.
    [40] F¨ollmer H and Sondermann D. Hedging of non-redundan contingent claims. In: Con-tributions to Mathematical Economics in Honor of Gérard Debreu, W. Hildenbrandand A.Mas-Colell,eds.North Holland, Amsterdam, 1986: 205-223.
    [41] F¨ollmer H and Schweizer M. Hedging of contingent claims under incomplete infor-mation. In: Applied Stochastic Analysis, M.H.A.Davis and R.J.Elliott,eds. Gordonand Breach, London New York, 1991: 389-414.
    [42] Galtchouk L. The structure of a class of martingales. Proceedings of a school-Seminar(Druskininkai), Vilnius, part I, 1975: 7-32.
    [43] Grandits P and Krawczyk L. Closedness of some spaces of stochastic integrals. Sem-inaire de Probabilities XXXII, 1998: 73-85.
    [44] Geman M, Karoui N E and Rochet J. Change of numeraire, change of probabilitymeasure and option pricing. J.Appl.Probab., 1995, 32: 443-458.
    [45] Harrison J M and Kreps D. Martingales and arbitrage in multiperiod securitiesmarkets. Journal of Economic Theory, 1979, 20: 381-408.
    [46] Harrison J M and Pliska S. Martingales and stochastic integrals in the theory ofcontinuous trading. Stoch.Proc. and their Appl., 1981, 11: 215-260.
    [47]何声武,汪嘉冈,严加安.半鞅与随机分析.北京,科学出版社,1995.
    [48] It?o K. Stochastic integrals.Proc.Imp.Acad.Tokyo, 1944, 20:519-524.
    [49] Jacod J. Calcul stochastique et problèmes de martingales, Lecture Notes in Mathe-matics. 1979, 714: 1-539.
    [50] Jacod J. Intégrales stochastiques par rapportàune semimartingale vectorielle etchangement de filtration. Lecture Notes in Mathematics, 1980, 784: 161-172.
    [51]金治明.随机分析基础及其应用.北京,科学出版社,2003.
    [52]金治明.数学金融学基础.北京,科学出版社,2006.
    [53] Jacka S D. A martingale representation result and an application to incompletefinancial markets. Mathmatical Finance, 1992, 2: 239-250.
    [54] Jouini E, Napp C and Schachermayer W. Arbitrage and state price de?ators ina general intertemporal framework. Journal of Mathematical Economics, 2005, 41:722-734.
    [55] Jacod J and Shiryaev A N. Limit theorems for stochastic processes. Springer, 1987.
    [56] Jacod J and Shiryaev A N. Local martingales and the fundamental asset pricingtheorems in the discrete-time case. Finance Stochast. 1998, 2: 259-273.
    [57] Karatzas I. Lectures on the mathematics of finance. CRM Monographs 8, AmericanMathematical Society, 1996.
    [58] Kabanov Y. The fundamental theorem of asset pricing of Kreps- Delbaen-Schachermayer. Universitéde Franche Comté, Besancon, preprint, 1997.
    [59] Kabanov Y and Kramkov D. No arbitrage and equivalent martingale measures: Anelementary proof of the Harrison-Pliska theorem. Theory Prob. Appl., 1994, 39(3):523-527.
    [60] Klein I. A comment on market free lunch and free lunch. Mathematical finance,2006, 16(3): 583-588.
    [61] Klein I. Market free lunch and large financial markets. Annals of applied probability,2006, 16(4): 2055-2077.
    [62] Karatzas I, Lehoczky J P, Shreve S E and Xu G L. Martingale and duality methodsfor utility maximization in an incomplete market. SIAM J.Control Optimization,1991, 29: 702-730.
    [63] Kramkov D O. Optional decomposition of supermartingales and hedging contingentclaims in incomplete security markets. Probability Theory and Related Fields, 1996,105: 459-479.
    [64] Karoui El N and Quenez M C, Dynamic programming and pricing of contingentclaims in an incomplete market. SIAM J. Control Optim., 1995, 33: 29-66.
    [65] Kreps D M. Arbitrage and equilibrium in economics with infinitely many commodi-ties. Journal of Mathematical Economics, 1981, 8: 15-35.
    [66] Karatzas I, Shreve S E. Methods of mathematical finance. Springer, 1997.
    [67] Kusuoka S. A remark on arbitrage and martingale measure. Publ. RIMS, KyotoUniv., 1993, 29: 833-840.
    [68] Kunita H and Watanabe S. On square integrable martingales. Nagoya MathematicalJournal, 1967, 30: 209-245.
    [69] Levental S and Skorohod A S. A necessary and su?cient condition for absence ofarbitrage with tame portfolios. Ann.Appl.Probab., 1995, 5: 906-925.
    [70] Liptser R S and Shiryaev A N. Theory of martingales. Kluwer Acad.Publ., Dortrecht,1989.
    [71] Lamberton D and Lapeyre B. Introduction to stochastic calculus applied to finance.Chapman & Hall, 1996.
    [72] Mcbeth D W. On the existence of equivalent local martingale measures. Thesis atCornell University ,1991.
    [73] Merton R C. Theory of rational option pricing. Bell J. Econ. and Manag. Sci. 1973,4: 141-183.
    [74] Margrabe W. The value of an option to exchange one asset for another. J.Finance,1978, 33: 177-186.
    [75] Memin J. Espaces de semi-martingales et changement de probabilité. Zeitschrift fürWahrscheinlichkeitstheorie und verwandte Gebiete, 1980, 52: 9-39.
    [76] Musiela M and Rutkowski M. Martingale methods in financial modelling. Springer-Verlag, 1997.
    [77] Meyer P A. Un cours sur les integrals stochastiques. Lecture Notes in Mathematics,1976, 511: 245-400.
    [78] Protter P. Stochastic integration and di?erential equations. Springer, Berlin Heidel-berg New York, 1990.
    [79] Platen E, Arbitrage in continuous complete markets, Advances in applied probabil-ity, 2002, 34(3): 540-558.
    [80] Rogers L C G. Equivalent martingale measures and no-arbitrage. Stochastics andStochastic Reports, 1994, 51: 41-49.
    [81] Rokhin D B. Martingale selection problem and asset pricing in finite discrete time.Electronic communications in probability, 2007, 12: 1-8.
    [82] Revuz D and Yor M. Continuous martingales and Brownian motion. Springer, BerlinHeidelberg New York, 1991.
    [83] Shiryaev A N and Cherny A S. Vector stochastic integrals and fundamental theoremsof asset pricing. Tr.Mian, 2002, 237: 12-56.
    [84] Schachermayer W. Introduction to the mathematics of financial markets. In Lectureson probability theory and statistics (Saint-Flour, 2000), volume 1816 of LectureNotes in Math., pages 107-179. Springer, Berlin, 2003.
    [85] Schachermayer W. The fundamental theorem of asset pricing under proportionaltransaction costs in finite discrete time. mathematical Finance, 2004, 14(1): 19-48.
    [86] Schachermayer W. A note on arbitrage and closed convex cones. Mathematical Fi-nance, 2005, 15(1): 183-189.
    [87] Schachermayer W. A Hillbert space proof of the fundamental theorem of asset pricingin finite discrete time. Insur.Math.Econ., 1992, 11: 1-9.
    [88] Schachermayer W. A Counter-Example to several Problems in the Theory of AssetPricing. Mathematical Finance 3, 1993: 217-229.
    [89] Schachermayer W. Martingale measures for discrete-time processes with infinite hori-zon. Mathematical Finance, 1994, 4: 25-56.
    [90] Stricker C. Arbitrage et Lois de Martingale. Annales de l’Institut Henri Poincaré,1990, 26: 451-460.
    [91]史树中.金融中的数学.北京,高等教育出版社, 2006.
    [92] Staum J. Fundamental theorems of asset pricing for good deal bounds. MathematicalFinance, 2004, 14(2): 141-161.
    [93] Shiryaev A N. Essentials of stochastic finance. World Scientific, 1998.
    [94] Stricker C and Yan J A. Some remarks on the optional decomposition theorem.Séminaire de Probab. XXXII,LN in Math, 1998, 1686: 56-66.
    [95] Shiryaev A N. On arbitrage and replication for fractal models. Proceedings of theworkshop on Mathematical Finance, INRIA, 1998: 1-7.
    [96] Wianskyn A. Mordern methods in topological vector spaces. Mc Graw-hills Inc.,1978.
    [97] Xia J M and Yan J A. Clarfying some basic concepts and results in arbitrage pricingtheory. http://www.qfrc.uts.edu.au/conferences/qmf2001/YanPaper.pdf.
    [98] Yan J A. Caracterisation d’une classe d’ensembles convexes de L1 ou H1 . Seminairede Probabilites XIV, Lect.Notes Mathematics, 1980, 784: 220-222.
    [99] Yan J A. Introduction to martingale methods in option pricing. LN in Math.4, LiuBie Ju Centre for Mathematical Sciences, City University of Hong Kong, 1998.
    [100] Yan J A. A new look at the fundamental theorem of asset pricing. J. Korean Math.Soc., 1998, 35(3): 659-673.
    [101]严加安.测度论讲义(第二版).北京,科学出版社, 2004
    [102] Yor M. Inégalités entre processus minces et applications. C.R.Acad. Sci., Paris,Ser.A, 1978, 286: 799-801.
    [103] Yor M. Sous-espaces denses dans L1 ou H1 et representation des martingales.In:Dellacherie,C.et al.(eds.) Seminaire de Probabilites XII,(Lect.Notes Mathemat-ics, 1978, 649: 265-309)Berlin Heidelberg New York: Springer.
    [104] Yoshida K. Functional analysis, Springer, 1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700