用户名: 密码: 验证码:
香烟烟雾与氡染毒致大鼠肺损伤的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:从蛋白质组学角度研究香烟烟雾和氡吸入染毒引起的大鼠肺组织蛋白质表达谱的改变,寻找香烟烟雾和氡吸入引起肺损伤的分子标志物,为吸烟和氡暴露健康危害的评价提供实验资料。
     方法:(1)采用动式烟雾染毒装置对Wistar大鼠进行香烟烟雾染毒,装置内烟雾浓度控制在(20±5)%,氧气浓度控制在21%,每天染毒2次,每次30min,分别染毒1、2、4个月作为低、中、高剂量组,每组5只动物。(2)采用HD-3型多功能移动式氡室对Wistar大鼠动态吸入氡染毒,通过计算机控制装置内氡浓度,使其剂量率恒定保持在1×105Bq/m3,每天染毒16h。氡及其子体累积染毒剂量分别达100、200、400工作水平月(working level month,WLM)作为低、中、高剂量组,对照组室内氡本底浓度80Bq/m3,每组5只动物。(3)采用上述方法对Wistar大鼠进行香烟烟雾和氡联合交替染毒,使香烟烟雾和氡染毒分别达2个月和200WLM作为联合染毒组。(4)观察染毒模型大鼠肺组织的病理学改变和测定氡染毒大鼠模型体内氡子体210Po的分布。(5)建立双向电泳(2-DE)分离大鼠肺组织总蛋白的技术,提高方法的灵敏度、分离度和重现性。(6)染毒后分别提取大鼠肺组织的总蛋白,采用2-DE分离,考马斯亮蓝染色,差异表达点进行MALDI-TOF或MALDI-TOF-TOF质谱分析,NCBInr数据库搜索鉴定分析结果。(7)免疫组化方法分别验证质谱鉴定出的差异表达蛋白晚期糖基化终产物受体(RAGE)和硫氧还蛋白(Trx)。以GAPDH为内参,运用Western blot法分别验证RAGE、Trx和S100A6蛋白在不同染毒组大鼠肺组织中的表达,以Bandscan4.3软件进行灰度分析并进行统计学检验。(8)测定氡染毒大鼠肺组织中细胞色素C氧化酶(CcO)的活性。
     结果:(1)建立了香烟烟雾、氡单独和联合染毒Wistar大鼠模型。HE和Masson染色结果提示各染毒组大鼠肺组织出现了支气管炎症、炎症细胞浸润、肺气肿、胶原纤维化等病变,病变程度随香烟烟雾、氡染毒剂量的加大而加重。染氡组大鼠体内组织器官中氡子体210Po的含量随氡暴露剂量加大而增加。(2)建立了大鼠肺组织总蛋白的2-DE分离技术。银染法中,pH3~10,11cm的胶条分离到约450个蛋白质点,pH3~10,24cm的胶条分离到约625个蛋白质点,pH4~7,24cm的胶条分离到约1248个蛋白质点。确定肺组织蛋白2-DE实验采用pH4~7,24cm的胶条进行分离,并获得较好的分离效果和重复性。(3)各染毒组大鼠肺组织总蛋白经2-DE分离、MS分析,香烟烟雾染毒组共鉴定出18种差异表达蛋白,包括10个上调和8个下调的蛋白;氡染毒组共鉴定出15种差异表达蛋白,包括9个上调和6个下调的蛋白;香烟烟雾与氡联合染毒组共鉴定出20种差异表达蛋白,包括12个上调和8个下调的蛋白。差异蛋白多数与机体代谢、细胞存活与增殖、氧化还原、信号传导、细胞骨架等功能有关。(4)免疫组化结果表明RAGE、Trx和S100A6在不同染毒各剂量组大鼠肺组织中表达随染毒剂量增加而升高;Western blot分析进一步验证了免疫组化结果;氡染毒大鼠肺组织中CcO的活性随染氡剂量的增加而降低,验证结果均与2-DE检测吻合。
     结论:(1)通过病理组织学和大鼠体内氡子体210Po的测定,成功建立了香烟烟雾与氡单独和联合吸入染毒的大鼠模型。在优化和发展传统双向凝胶电泳技术、比较蛋白质组方法的基础上,建立了蛋白质组提取-双向凝胶电泳分离-半自动胶内酶解-质谱鉴定的高通量技术分析平台。(2)获得了香烟烟雾与氡染毒大鼠肺组织的蛋白质表达谱及两者单独和联合染毒相关的差异表达蛋白质,初步鉴定出的差异蛋白质数为:香烟烟雾染毒18个,氡染毒组15个,联合染毒组20个。这些蛋白分别与代谢、细胞存活与增殖、氧化还原、信号传导、细胞骨架等功能相关,提示香烟烟雾与氡染毒致肺损伤是多种机制共同作用的结果。(3)应用免疫组化和Western blot等方法对香烟烟雾与氡染毒大鼠肺组织中差异表达蛋白Trx、RAGE、S100A6和CcO的表达水平进行了验证,结果与蛋白质组学检测一致,提示这些蛋白可作为香烟烟雾和氡致肺损伤的蛋白分子标志物。
Objective: Proteomic analysis of the rat lung tissues was conducted upon exposure to cigarette smoke and radon to provide experimental data for evaluating health risks and exploring potential molecular markers.
     Methods: (1) Wistar rats were exposed to cigarette smoke in a gas inhalation chamber with the smoke concentration controlled at the range of (20±5)% and oxygen concentration at 21%, twice a day, 30min each at low, middle and high dose for 1, 2 and 4 months with 5 per group. (2) Wistar rats were exposed to radon with a multifunction ecological radon room at a constant level of 1×105Bq/m3. The low, middle and high dose groups were exposed up to a cumulative dose of 100, 200 and 400WLM (working level months) respectively. The control rats were housed in a room with a background concentration of radon at 80 Bq/m3. (3) Wistar rats were exposed to radon for up to cumulative dose of 200 WLM and cigarette smoke for 2 months in the same conditions as (1) and (2) as the joint group. (4) Pathological changes in lung tissue of the rats were observed and the contents of the radon daughter - 210Po in rats were determined. (5) Two-dimensional electrophoresis (2-DE) was used to separate proteins from rats. (6) The differential expression proteins were identified by MALDI-TOF MS or MALDI-TOF-TOF MS. The results were searched in NCBInr database. (7) The differential expression proteins of RAGE, Trx and S100A6 were verified by immunohistochemistry and western blot.
     Results: (1) Pathological changes in the lung tissues were observed with findings of inflammatory cell penetrated into mucous membrane, pulmonary edema, hyperaemia in the alveolus interval, fibrosis and so on. The contents of 210Po in rats exposed to radon increased with the exposure dose. (2) 2-DE technique resulted in 450 proteins at condition of pH3~10, 11cm IPG strip, 625 proteins at pH3~10, 24cm IPG strip and 1248 proteins at pH4~7, 24cm IPG strip which was chosen for later experiment. (3) 18 differential expression proteins were found in the lung of rats exposed to cigarette smoke, with 10 up and 8 down-regulated expression proteins. 15 differential expression proteins were identified in the lung of rats exposed to radon, with 9 up and 6 down-regulated expression proteins. 20 differential expression proteins were identified in the lung of rats exposed to cigarette smoke and radon, with 12 up and 8 down-regulated expression proteins. These proteins were functioned in energy metabolism, proliferation, antioxidant, signal transduction, cytoskeleton, and so on. (4) The proteins of RAGE, Trx and S100A6 were confirmed by immunohistochemistry and western blot, which were consistent with the 2-DE results.
     Conclusions: (1) The animal models of cigarette smoke and radon exposure were set up and a 2-DE proteomic approach was established. (2) Differential expression proteins were identified with functions involved in energy metabolism, proliferation, antioxidant, signal transduction and cytoskeleton, indicating a multistep process in response to cigarette smoke and radon exposure. (3) Proteins of RAGE, Trx and S100A6 could be applied as potential molecular markers in evaluating adverse effects induced by cigarette smoke and radon exposure.
引文
1. Leanderson P, Tagesson C. Cigarette smoke-induced DNA damage in cultured human lung cells: role of hydroxyl radicals and endonuclease activation. Chem Biol Interact. 1992; 81(1-2):197-208.
    2. Xie Z, Braithwaite E, Guo D, et al. Mutagenesis of benzo[a]pyrene diol epoxide in yeast: requirement for DNA polymerase zeta and involvement of DNA polymerase eta. Biochemistry. 2003; 42(38):11253-11262.
    3.丘寿康.有关氡危害与评价的问题.辐射防护通讯,2001(6):3-7.
    4. Cross FT. A review of experimental radon health effects data. Radiation Research. 1992(2): 476-481.
    5. Chorostowska-Wynimko J, Szpechcinski A. The impact of genetic markers on the diagnosis of lung cancer: a current perspective. J Thorac Oncol. 2007; 2 (11):1044-1051.
    6. Chanin TD, Merrick DT, Franklin WA, et al. Recent developments in biomarkers for the early detection of lung cancer: perspectives based on publications 2003 to present. Curr Opin Pulm Med. 2004; 10(4):242-247.
    7. Stieber p, Aronsson AC, Bialk P, et al. Tumour markers in lung cancer: EGTM recommendations. European Group on Tumour Markers. Anticancer Res. 1999; 19(4A): 2817-2819.
    8. Ostrowski LE, Blackburn K, Radde KM, et al. A proteomic analysis of human cilia: identification of novel components. Proteomics. 2002; 1(6):451-465.
    9. Durr E, Yu J, Krasinska KM, et al. Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat Biotechnol. 2004; 22(8):985-992.
    10. Roh GS, Shin Y, Seo SW, et al. Proteome analysis of differential protein expression in allergen-induced asthmatic mice lung after dexamethasone treatment. Proteomics. 2004; 4(11): 3318-3327.
    11. Li SQ, Qi HW, Wu CG, et al. Comparative proteomic study of acute pulmonary embolism in a rat model. Proteomics. 2007; 7(13):2287-2299.
    12. Laudi S, Steudel W, Jonscher K, et al. Comparison of lung proteome profiles in two rodent models of pulmonary arterial hypertension. Proteomics. 2007; 7(14):2469-2478.
    13. Alfonso P, CataláM, Rico-Morales ML, et al. Proteomic analysis of lung biopsies: Differential protein expression profile between peritumoral and tumoral tissue. Proteomics. 2004;4(2):442-447.
    14. Li C, Chen ZC, Xiao ZQ, et al. Differential analysis of two-dimension gel electrophoresis profiles of human lung squamous carcinoma and tumor-adjacent tissue. Ai Zheng. 2004; 23(1):28-35.
    15. Fietta A, Bardoni A, Salvini R, et al. Analysis of bronchoalveolar lavage fluid proteome from systemic sclerosis patients with or without functional, clinical and radiological signs of lungfibrosis. Arthritis Res Ther. 2006; 8(6):R160.
    16. GB/T 16141-1995,放射性核素的α能谱分析方法.
    17. GB 14883.5-94,食品中放射性物质检验210Po的测定.
    18. Krupski WC. The peripheral vascular consequences of smoking. Ann Vasc Surg. 1991; 5(3):291-304.
    19.尚兵,唐莉,曾力等.北京市地下铁道环境放射性水平及其工作人员受照射剂量评价.中华放射医学与防护杂志,1994,14(6):401-404.
    20.施敏,倪静安,张墨英.氡—居室中的隐蔽杀手.化学教育,1998(9):1-3.
    21.仲恒高,苗超,臧黎慧,等.氡及其子体吸入对大鼠肺与血细胞的氧化应激损伤.苏州大学学报(医学版),2005,25(5):765-767.
    22. Lehnert BE, Dethloff LA, Finkelstein JN, et al. Temporal sequence of early alterations in rat lung following thoracic X-irradiation. Int J Radiat Biol. 1991; 60(4):657-675.
    23. Parfenov YuD. Polonium-210 in the environment and in the human organism. At Energy Rev.1974; 12: 75-143.
    24. Fellman A,Ralston L, Hickman D,et al. Polonium metabolism in adult female baboons. Radiat Res.1994; 137(2):238-250.
    25. Schirmer EC, Florens L, Guan T, et al. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science. 2003; 301(5638):1380-1382.
    26. Wilkins MR, Williams KL, Appel RD, et al. Proteome Research: New Frontiers in Functional Genomics. New York: Springer-Verlag Berlin Heidelburg. 1997.
    27. Roepstorff P. Mass spectrometry in protein studies from genome to function. Curr Opin Biotechnol. 1997; 8:6-13.
    28. Jenkins RE, Pennington SR. Arrays for protein expression profiling: towards a viable alternative to two-dimensional gel electrophoresis? Proteomics. 2001; 1(1):13-29.
    29. Berkelman T, Stenstedt T. 2-D Electrophoresis using immobilized pH gradients: Principles and Methods. USA: Amersham Biosciences. 2001; 17-71.
    30. G?rg A, Obermaier C, Boguth G, Harder A, et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 2000; 21(6):1037-1053.
    31. Quadroni M, James P. Proteomics and automation. Electrophresis. 1999; 20(4-5):664-667.
    32. Lawrie LC, Fothergill JE, Murray GI. Spot the differences: proteomics in cancer research. Lancet Oncol. 2001; 2(5):270-277.
    33. Rabilloud T. Detecting proteins separated by 2-D gel electrophoresis. Anal Chem. 2000; 72(1):48A-55A.
    34. G?rg A, Weiss W. Two-dimensional electrophoresis with immobilized pH gradients. Protein research: Two-dimensional gel electrophoresis and identification methods. New York: Springer. 2000; 65-68.
    35. Yan JX, Sanchez JC, Tonella L, et al. Studies of quantitative analysis of protein expression inSaccharomyces cerevisiae. Electrophoresis. 1999; 20(4-5): 738-742.
    36. Blackstock WP, Weir MP. Proteomics: quantitative and physical mapping of cellular proteins.Trends Biotechnol. 1999; 17(3):121-127.
    37. Herbert B. Advances in protein solubilisation for two-dimensional electrophoresis. Electrophoresis. 1999; 20(4-5):660-663.
    38. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988; 60(20):2299-2301.
    39. Fenn JB, Mann M, Meng CK, et al. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989; 246(4926):64-71.
    40. Steel LF, Haab BB, Hanash SM. Methods of comparative proteomic profiling for disease diagnostics. J Chromatogr B Analyt Technol Biomed Life Sci. 2005; 815(1-2): 275-284.
    41. Prokopczyk B, Cox JE, Upadhyaya P, et al. Effects of dietary 1,4-phenylenebis (methylene) selenocyanate on 4-(methylnitrosamino) -1-(3-pyridyl)-1- butanone-induced DNA adduct formation in lung and liver of A/J mice and F344 rats. Carcinogenesis. 1996; 17(4):749-753.
    42. Raynal P, Pollard HB. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta. 1994; 1197(1):63-93.
    43.葛晓娜,熊密,郝春荣.肌动蛋白和转化生长因子β在大鼠试验性肺气肿发生中的作用.中华病理学杂志,2003,32(2):142-146.
    44. Teresa CP, Isabel TZ, Juan BL, et al. Tumor markers in lung cancer: does the method of obtaining the cut-off point and reference population influence diagnostic yield? Clinical biochemistry. 1999; 32: 467-472.
    45. Villena V, Echave-Sustaca J, Lopez Encuentra A, et al. Determination of tissue polypeptide specific antigen in pleural fluid and serum from patients with pleural effusion. Int J Biol Markers. 1995; 10: 161-165.
    46. Minamiya Y, Nakagawa T, Saito H, et al. Increased expression of myosin light chain kinase mRNA is related to metastasis in non-small cell lung cancer. Tumour Biol. 2005; 26(3):153-157.
    47. Alldridge LC, Harris HJ, Plevin R, et al. The annexin protein lipocortin 1 regulates the MAPK/ERK pathway. J Biol Chem. 1999; 274(53):37620-37628.
    48. Gerke V, Moss SE. Annexins and membrane dynamics. Biochim Biophys Acta. 1997; 1357(2):129-154.
    49. Schlaepfer DD, Haigler HT. Expression of annexins as a function of cellular growth state. J Cell Biol. 1990; 111(1):229-238.
    50. Ghafouri B, St?hlbom B, Tagesson C, et al. Newly identified proteins in human nasal lavage fluid from non-smokers and smokers using two-dimensional gel electrophoresis and peptide mass fingerprinting. Proteomics. 2002; 2(1):112-120.
    51.彭少华,吴德昌,李刚,等.AnnexinI在α粒子转化细胞及肺癌组织中高表达.癌症,2000,19(6):507-511.
    52. Huang Q, Zu Y, Fu X, et al. Expression of heat shock protein 70 and 27 in non-small cell lung cancer and its clinical significance. J Huazhong Univ Sci Technolog Med Sci. 2005;25(6):693-695.
    53. Anbarasi K, Kathirvel G, Vani G, et al. Cigarette smoking induced heat shock protein 70 kD expression and apoptosis in rat brain: Modulation by bacoside A. Neuroscience. 2006; 138(4):1127-1135.
    54. Suzuki K, Ito Y, Wakai K, et al. Serum heat shock protein 70 levels and lung cancer risk: a case-control study nested in a large cohort study. Cancer Epidemiol Biomarkers Prev. 2006; 15(9):1733-1737.
    55. Kawanishi K, Shiozaki H, Doki Y, et al. Prognostic significance of heat shock proteins 27 and
    70 in patients with squamous cell carcinoma of the esophagus. Cancer. 1999; 85(8):1649-1657.
    56. Nanbu K, Konishi I, Komatsu T, et al. Expression of heat shock proteins HSP70 and HSP90 in endometrial carcinomas. Correlation with clinicopathology, sex steroid receptor status, and p53 protein expression.Cancer. 1996; 77(2):330-338.
    57. Lubin JH, Boice JD Jr, Edling C, et al. Lung cancer in radon-exposed miners and estimation of risk from indoor exposure. J Natl Cancer Inst. 1995; 87(11):817-827.
    58. Nikezic D, Yu KN. Distributions of specific energy in sensitive layers of the human respiratory tract. Radiat Res. 2002; 157(1):92-98.
    59.姬峻芳.S100蛋白家族与肿瘤.国外医学肿瘤学分册,2002,29(4):261-263.
    60. Russo-Marie F. Annexin V and phospholipid metabolism.Clin Chem Lab Med. 1999; 37(3):287-291.
    61. Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles.Int J Biochem Cell Biol. 2001; 33(7):637-668.
    62. Matsumoto T, Murao S, Kito K, et al. Modulation of S-100 genes response to growth conditions in human epithelial tumor cells. Pathol Int. 1997; 47(6):339-346.
    63. Hsieh HL, Sch?fer BW, Sasaki N, et al. Expression analysis of S100 proteins and RAGE in human tumors using tissue microarrays. Biochem Biophys Res Commun. 2003; 307(2):375-381.
    64. Rescher U, Gerke V. Annexins--unique membrane binding proteins with diverse functions. J Cell Sci. 2004; 117(Pt 13):2631-2639.
    65. Chiang Y, Rizzino A, Sibenaller ZA, et al. Specific down-regulation of annexin II expression in human cells interferes with cell proliferation.Mol Cell Biochem. 1999; 199(1-2):139-147.
    66.黄昀傅,松滨.AnnexinⅡ的遗传学研究.国外医学:遗传学分册,2004,27(6):330-333.
    67. Brichory FM, Misek DE, Yim AM, et al. An immune response manifested by the common occurrence of annexinsⅠand II autoantibodies and high circulating levels of IL-6 in lungcancer. Proc Natl Acad Sci USA. 2001; 98(17):9824-9829.
    68. Emoto K, Yamada Y, Sawada H, et al. Annexin II overexpression correlates with stromal tenascin-C overexpression: a prognostic marker in colorectal carcinoma. Cancer. 2001; 92(6):1419-1426.
    69. Kirshner J, Schumann D, Shively JE. CEACAM1, a cell-cell adhesion molecule, directly associates with annexin II in a three-dimensional model of mammary morphogenesis. J Biol Chem. 2003; 278(50): 50338-50345.
    70. Waisman DM. Annexin II tetramer: structure and function. Mol Cell Biochem. 1995; 149-150:301-322.
    71. Hansen RK, Parra I, Hilsenbeck SG, et al. Hsp27 induced MMP9 expression is influenced by the Scr tyrosine protein kinaseyes. Biochem Biophys Res Commun. 2001; 282(1):186-193.
    72. Mosser DD, Morimoto RI. Molecular chaperones and the stress of oncogenesis.Oncogene. 2004; 23(16):2907-2918.
    73.高志华,金静华,杨军,等.苯并[a]芘诱导的FL细胞锌指蛋白等表达的改变.浙江大学学报(医学版),2003,32(5):380-384.
    74. Bruey JM, Ducasse C, Bonniaud P, et al. Hsp27 negatively regulates cell death by interacting with cytochrome c.Nat Cell Biol. 2000; 2(9):645-652.
    75.张永幸,贺涵贞,邬堂春,等.职业性肺癌中HSP70,HSP27与p53表达的相关性研究.中华劳动卫生职业病杂志,1998,16:78-80.
    76. Rhee SG, Kang SW, Chang TS, et al. Peroxiredoxin, a novel family of peroxidases. IUBMB Life. 2001; 52(1-2):35-41.
    77. Kang SW, Chae HZ, Seo MS, et al. Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha.J Biol Chem. 1998; 273(11):6297-6302.
    78. Lee TH, Kim SU, Yu SL, et al. Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood. 2003; 101(12):5033-5038.
    79. Lee K, Park JS, Kim YJ, et al. Differential expression of Prx I and II in mouse testis and their up-regulation by radiation. Biochem Biophys Res Commun. 2002; 296(2):337-342.
    80. Dierick JF, Wenders F, Chainiaux F, et al. Retrovirally mediated overexpression of peroxiredoxin VI increases the survival of WI-38 human diploid fibroblasts exposed to cytotoxic doses of tert-butylhydroperoxide and UVB. Biogerontology. 2003; 4(3):125-131.
    81. Choi JH, Kim TN, Kim S, et al. Overexpression of mitochondrial thioredoxin reductase and peroxiredoxin III in hepatocellular carcinomas. Anticancer Res. 2002; 22(6A):3331-3335.
    82. M?gert HJ, Dr?gemüller K, Raghunath M. Serine proteinase inhibitors in the skin: role in homeostasis and disease.Curr Protein Pept Sci. 2005; 6(3):241-254.
    83. Dubin G. Proteinaceous cysteine protease inhibitors. Cell Mol Life Sci. 2005; 62(6):653-669.
    84.谢玲,应万涛,李邦印,等.蛋白质组学技术识别Maspin在支气管上皮永生化细胞和恶性转化细胞中的差异表达.癌症,2003,22(5):463-466.
    85. Stieber P, Dienemann H, Schalhorn A, et al. Pro-gastrin-releasing peptide (ProGRP)--a useful marker in small cell lung carcinomas. Anticancer Res. 1999; 19(4A):2673-2678.
    86. Chen G, Gharib TG, Huang CC, et al. Proteomic analysis of lung adenocarcinoma: identification of a highly expressed set of proteins in tumors. Clin Cancer Res. 2002; 8(7):2298-2305.
    87. Ying H, Yu Y, Xu Y. Antisense of ATP synthase subunit e inhibits the growth of human hepatocellular carcinoma cells. Oncol Res. 2001; 12(11-12):485-490.
    88. Capuano F, Guerrieri F, Papa S. Oxidative phosphorylation enzymes in normal and neoplastic cell growth. J Bioenerg Biomembr. 1997; 29(4):379-384.
    89. Celis JE, Celis P, Ostergaard M, et al. Proteomics and immunohistochemistry define some of the steps involved in the squamous differentiation of the bladder transitional epithelium: a novel strategy for identifying metaplastic lesions. Cancer Res. 1999; 59(12):3003-3009.
    90. O'Shaughnessy RF, Seery JP, Celis JE, et al. PA-FABP, a novel marker of human epidermal transit amplifying cells revealed by 2D protein gel electrophoresis and cDNA array hybridisation. FEBS Lett. 2000; 486(2):149-154.
    91. Westermeier R, Marouga R. Protein detection methods in proteomics research. Biosci Rep. 2005; 25(1-2):19-32.
    92. Kurien BT, Scofield RH. Western blotting.Methods. 2006; 38(4): 283-293.
    93. Neeper M, Schmidt AM, Brett J, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem. 1992; 267(21):14998-5004.
    94. Sorci G, Riuzzi F, Arcuri C, et al. Amphoterin stimulates myogenesis and counteracts the antimyogenic factors basic fibroblast growth factor and S100B via RAGE binding. Mol Cell Biol. 2004; 24(11):4880-4894.
    95. Nicholl ID, Stitt AW, Moore JE, et al. Increased levels of advanced glycation endproducts in the lenses and blood vessels of cigarette smokers.Molecular Medicine. 1998; 4(9):594-601.
    96. Morbini P, Villa C, Campo I, et al. The receptor for advanced glycation end products and its ligands: a new inflammatory pathway in lung disease? Mod Pathol. 2006; 19(11):1437-1445.
    97. Das KC, Guo XL, White CW. Hyperoxia induces thioredoxin and thioredoxin reductase gene expression in lungs of premature baboons with respiratory distress and bronchopulmonary dysplasia.Chest. 1999; 116:101S.
    98. Soini Y, Kahlos K, N?p?nkangas U, et al. Widespread expression of thioredoxin and thioredoxin reductase in non-small cell lung carcinoma. Clin Cancer Res. 2001; 7(6):1750-1757.
    99. Hani Atamna, William H. Frey II. Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer’s disease. Mitochondrion. 2007, 7(5):297-310.
    100.郭鹞,王克为,王子灿,等.放射损伤病理学.人民卫生出版社,1987:239-243.
    1. Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis. 1995; 16(7):1090-1094.
    2. Blackstock WP, Weir MP. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol. 1999; 17(3):121-127.
    3. Herman B, Krishnan RV, Centonze VE. Microscopic analysis of fluorescence resonance energy transfer (FRET). Methods Mol Biol. 2004; 261: 351-370.
    4. Millea KM, Krull IS, Cohen SA, et al. Integration of multidimensional chromatographic protein separations with a combined "top-down" and "bottom-up" proteomic strategy.J Proteome Res. 2006; 5(1): 135-146.
    5. Nemeth-Cawley JF, Tangarone BS, Rouse JC. "Top Down" characterization is a complementary technique to peptide sequencing for identifying protein species in complex mixtures. J Proteome Res. 2003; 2(5):495-505.
    6. McLafferty FW, Breuker K, Jin M, et al. Top-down MS, a powerful complement to the high capabilities of proteolysis proteomics.FEBS J. 2007; 274(24):6256-6268.
    7. Wysocki VH, Resing KA, Zhang Q, et al. Mass spectrometry of peptides and proteins.Methods. 2005; 35(3):211-222.
    8. Peng J, Gygi SP. Proteomics: the move to mixtures. J Mass Spectrom. 2001; 36(10): 1083-1091.
    9. Jensen ON, Wilm M, Shevchenko A, et al. Peptide sequencing of 2-DE gel-isolated proteins by nanoelectrospray tandem mass spectrometry. Methods Mol Biol. 1999; 112: 571-588.
    10. Yates JR 3rd, Carmack E, Hays L, et al. Automated protein identification using microcolumn liquid chromatography-tandem mass spectrometry. Methods Mol Biol. 1999; 112:553-569.
    11. Macri J, McGee B, Thomas JN, et al. Cardiac sarcoplasmic reticulum and sarcolemmal proteins separated by two- dimensional electrophoresis: surfactant effects on membrane solubilization. Electrophoresis. 2000; 21(9):1685-1693.
    12. Molloy MP. Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients. Anal Biochem. 2000; 280(1):1-10.
    13. Molloy MP, Herbert BR, Walsh BJ, et al. Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis.Electrophoresis. 1998; 19(5):837-844.
    14. O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 25; 250(10):4007-4021.
    15. Rabilloud T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics. 2002; 2(1):3-10.
    16. Wildgruber R, Harder A, Obermaier C, et al. Towards higher resolution: two-dimensional electrophoresis of Saccharomyces cerevisiae proteins using overlapping narrow immobilized pH gradients. Electrophoresis. 2000; 21(13):2610-2616.
    17. Rabilloud T, Blisnick T, Heller M, et al. Analysis of membrane proteins by two-dimensional electrophoresis: comparison of the proteins extracted from normal or Plasmodium falciparum-infected erythrocyte ghosts. Electrophoresis. 1999; 20(18):3603-3610.
    18. Wissing J, Heim S, FlohéL, et al. Enrichment of hydrophobic proteins via Triton X-114 phase partitioning and hydroxyapatite column chromatography for mass spectrometry. Electrophoresis. 2000; 21(13):2589-2593.
    19. Zhang Z, Smith DL, Smith JB. Multiple separations facilitate identification of protein variants by mass spectrometry. Proteomics. 2001; 1(8):1001-1009.
    20. Goshe MB, Conrads TP, Panisko EA, et al. Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. Anal Chem. 2001; 73(11):2578-2586.
    21. Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 2001; 19(3):242-247.
    22. Fenn JB, Mann M, Meng CK, et al. Electrospray ionization for mass spectrometry of largebiomolecules. Science. 1989; 246(4926):64-71.
    23. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988; 60(20):2299-2301.
    24. Gygi SP, Corthals GL, Zhang Y, et al. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA. 2000; 97(17):9390-9395.
    25. Hillenkamp F, Karas M, Beavis RC, et al. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem. 1991; 63(24): 1193A-1203A.
    26. Wise MJ, Littlejohn TG, Humphery-Smith I. Peptide-mass fingerprint and the ideal covering set for protein characterization. Electrophoresis. 1997; 18(8):1399-1409.
    27. Al-Saad KA, Siems WF, Hill HH, et al. Structural analysis of phosphatidylcholines by post-source decay matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Am Soc Mass Spectrom. 2003; 14(4):373-382.
    28. Williams TL, Andrzejewski D, Lay JO, et al. Experimental factors affecting the quality and reproducibility of MALDI TOF mass spectra obtained from whole bacteria cells. J Am Soc Mass Spectrom. 2003; 14(4):342-351.
    29. Merchant M, Weinberger SR. Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis. 2000; 21(6): 1164-1177.
    30. Xiong S, Ding Q, Zhao Z, et al. A new method to improve sensitivity and resolution in matrix-assisted laser desorption/ionization time of flight mass spectrometry. Proteomics. 2003; 3(3):265-272.
    31. Ciphergen Biosystems. Ciphergen Proteinchip System USERS Guide. 2000; Chapter 6.
    32. Issaq HJ, Veenstra TD, Conrads TP, et al. The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochem Biophys Res Commun. 2002; 292(3):587-592.
    33. Wellmann A, Wollscheid V, Lu H, et al. Analysis of microdissected prostate tissue with ProteinChip arrays--a way to new insights into carcinogenesis and to diagnostic tools. Int J Mol Med. 2002; 9(4):341-347.
    34. Michael Kinter, Nicholas E, Sherman. Protein Sequencing and Identification Using Tandem Mass Spectrometry. Wiley Interscience. 2000; 166-290.
    35. Knappik A, Ge L, Honegger A, et al. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol. 2000; 296(1):57-86.
    36. Gill I, Ballesteros A. Bioencapsulation within synthetic polymers (Part1): sol-gel encapsulatedbiologicals. Trends Biotechnol 2000; 18(7):282-296.
    37. Schaeferling M, Schiller S, Paul H, et al. Application of self-assembly techniques in the design of biocompatible protein microarray surfaces. Electrophoresis. 2002; 23(18): 3097-3105.
    38. Smolka MB, Zhou H, Purkayastha S, et al. Optimization of the isotope-coded affinity tag-labeling procedure for quantitative proteome analysis. Anal Biochem. 2001; 297(1):25-31.
    39. Related Articles, LinksShiio Y, Aebersold R. Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry.Nat Protoc. 2006; 1(1):139-145.
    40. Gygi SP, Corthals GL, Zhang Y, et al. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA. 2000; 97(17):9390-9395.
    41. Palagi PM, Hernandez P, Walther D, et al. Proteome informatics I: bioinformatics tools for processing experimental data. Proteomics. 2006; 6(20): 5435-5444.
    42. Neubauer G, King A, Rappsilber J, et al. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat Genet. 1998; 20(1):46-50.
    43. Hochstrasser DF, Appel RD, Golaz O, et al. Sharing of worldwide spread knowledge using hypermedia facilities & fast communication protocols (Mosaic and World Wide Web): the example of ExPASy. Methods Inf Med. 1995; 34(1-2):75-78.
    44. Boeckmann B, Bairoch A, Apweiler R, et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 2003; 31(1):365-370.
    45. Mann M, Pandey A. Use of mass spectrometry-derived data to annotate nucleotide and protein sequence database. Trends Biochem Sc. 2001; 26(1):54-61.
    46. Shevchenko A, Sunyaev S, Loboda A, et al. Charting the proteomes of organisms with unsequenced genomes by MALDI- quadrupole time-of-flight mass spectrometry and BLAST homology searching. Anal Chem. 2001; 73(9):1917-1926.
    47. Kahn P. From genome to proteome: looking at a cell’s proteins. Science, 1995: 270: 369-370.
    48. Williams KL. Genomes and proteomes: towards a multidimensional view of biology. Electrophoresis. 1999: 678-688.
    49. Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis. 1998; 19(11):1853-1861.
    50. Kort EJ, Campbell B, Resau JH. A human tissue and data resource: an overview of opportunities, challenges, and development of a provider/researcher partnership model. Comput Methods Programs Biomed. 2003; 70(2):137-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700