用户名: 密码: 验证码:
马立克氏病病毒野毒株GX0101及其基因敲除株BAC克隆生物学活性的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马立克氏病病毒(Marek’s disease virus,MDV)是α类疱疹病毒,其基因组为174kb的双股DNA。对于未经免疫的鸡群,有很高的传染性和致肿瘤性。鸡在感染MDV后除了造成死亡外,耐过鸡可终身带毒并长期排毒。因而,在鸡场里和周围环境中该病毒长期存在。禽网状内皮增生症病毒(Reticuloendotheliosis,REV)是一类C型反转录病毒,基因组是8kb的单股正链RNA,其基因组结构类似于一个完整的转座子,这是鸡的另一种致肿瘤病毒。
     张志等(2004)等首次从患鸡的抗凝血中分离到整合进REV-LTR片段的天然MDV野毒株GX0101和GD0202,这表明在自然感染的条件下,REV除了能与MDV共感染同一只家禽外,还能整合到MDV的基因组中,本研究将进一步阐明MDV这种重组野毒株致病性是否发生变化,特别是这种重组作用是否会增强MDV的传染性或在体内的复制能力,外源片段的的插入对病毒的致病性,特别是其生物学特性产生了怎样的影响。在以上背景下,本研究比较了天然重组野毒株GX0101对鸡的致病性,并将其构建成感染性细菌人工染色体。在此基础上将插入片段REV-LTR敲除再进一步研究其生物学特性。同时,对MDV的两个致瘤基因1.8kb mRNA及ICP4基因进行了相关研究。不仅积累了大量的数据而且提出并验证了新的观点。
     1天然重组野毒株GX0101的致病性研究
     分别选用海蓝褐公鸡和SPF鸡进行GX0101毒株的致病性测定。1日龄免疫HVT疫苗后于5日龄分别接种野毒株GX0101及超强毒株rMd5,每天观察记录死亡并逐只剖检记录发生肿瘤情况。试验结果显示,GX0101株病毒对海蓝褐公鸡的生长抑制作用要比rMd5株弱。而且GX0101株病毒对已经有HVT疫苗免疫的海蓝褐公鸡的致死率只有44%要显著低于rMd5株的70%(P<0.01),而且它的致肿瘤率只有16%显著低于rMd5株的36%(P<0.05), GX0101株病毒对已免有HVT疫苗的SPF鸡的致死率只有28.24%要显著低于rMd5株的64.63%(P<0.01),而且它的致肿瘤率只有7.06%显著低于rMd5株的19.51%(P<0.05),该结果表明GX0101株病毒的致病性要低于强毒株rMd5株。张志(2004)和庄国庆(2006)分别在SPF鸡中做了人工感染试验,结果显示GX0101毒株的致病性要强于强毒株GA株。因此,GX0101株的致病性应是介于强毒GA与超强毒rMd5间的一株病毒。由此看来,GX0101的致病性并不是使其成为流行毒株的竞争优势。
     2带有REV-LTR片段的MDV野毒株GX0101的BAC感染性克隆的构建及其致病性比较
     2.1带有MDV基因组US2片段作为同源臂的转基因BAC载体的构建
     MDV的US2区两侧的同源臂用于同源重组时将BAC载体插入MDV基因组,其中
     2.1kb的同源臂来自质粒pDS-pHAI,4.0kb同源臂来自质粒pUS2-Partial-F,通过限制性内切酶HindⅢ和XhoⅠ的双酶切作用,及T4DNA Ligation连接,成功构建重组转基因载体质粒pDS-pHAI-US2。
     2.2 GX0101 BAC感染性克隆的构建及其拯救
     利用磷酸钙或脂质体转染技术,将转移载体pDSpHAI-US2与MDV GX0101感染CEF细胞的总DNA共感染鸡胚成纤维细胞。待出现细胞病变时,将其传至已加有霉酚酸-黄嘌呤-次黄嘌呤选择培养基的原代CEF上,经四轮筛选、富集重组病毒后,提取重组病毒感染CEF细胞的总DNA,电转化大肠杆菌DH10B。次日,挑取阳性克隆。经酶切及PCR鉴定后,提取BAC DNA转染CEF细胞,再次启动了病毒感染,产生了MDV特异性病毒蚀斑,拯救出了重组病毒;进一步研究表明重组病毒bac-GX0101与亲本毒GX0101在体外CEF单层上的生物学特性相似。
     2.3 GX0101感染性克隆的致病性比较
     将BAC克隆毒bac-GX0101与亲本毒GX0101接种1日龄SPF鸡,动物实验结果表明bac-GX0101毒株与亲本GX0101毒株对机体的生长性能等方面的影响没有差异,而且bac-GX0101毒株仍然保留着很好的免疫抑制功能及致肿瘤能力。该感染性克隆bac-GX0101为研究该重组野毒株中REV-LTR插入片段及其他基因的生物学功能提供了有用的技术平台。
     3敲除REV-LTR的感染性克隆的构建及其生物学特性比较
     3. 1 MDV天然重组野毒株GX0101中LTR序列的敲除
     MDV和REV间的自然重组的机率是很低的,在我们近几年分离到的十多个野毒株中,却有两个是重组病毒,说明这一重组过程一定有某种选择竞争性优势。
     为了阐明天然重组插入的REV-LTR究竟能给原始的MDV带来什么生物学特性变化,对基因组做相应的突变是必经的步骤。将GX0101构建成感染性细菌人工染色体,由于我们可以比较方便地对感染性克隆质粒GX0101-BAC基因组进行修饰,如定点敲除重组野毒株中某个基因或基因片段。这就可以用其作为研究该株MDV的特定基因或基因片段与致病性或其他生物学活性关系的一个新的技术平台。
     本研究利用Red/ET介导的突变技术,用卡那霉素抗性基因代替要敲除的LTR序列。设计引物,以质粒PKD13为模板,扩增卡那霉素抗性基因。这对引物3’端20个碱基来源于卡那霉素抗性基因,用来扩增该抗性基因,5’端50个碱基来源于MDV,用来同源重组,上下游引物5’端的这50个碱基来源于MDV基因组,分别位于要敲除的LTR序列的两端。卡那霉素抗性基因两端FRT位点是重组酶Flpe的识别位点。卡那霉素抗性基因取代LTR序列后,用0.1%的阿拉伯糖诱导表达Flpe重组酶,从而将卡那霉素抗性基因去除。利用脂质体转染技术,拯出重组病毒,命名为bac-GX0101△LTR。
     3.2整合进GX0101基因组中的REV-LTR序列的生物学特性研究
     在5日龄时,分别接种bac-GX0101及bac-GX0101△LTR于1日龄免疫HVT疫苗的SPF鸡,无论是bac-GX0101还是bac-GX0101△LTR,感染SPF鸡后,对生长性能和对NDV、AIV(H9-)灭活疫苗免疫后HI抗体反应均呈现出不同程度的抑制作用。相对而言,bac-GX0101△LTR对SPF鸡的致病作用低于bac-GX0101;斑点杂交检测羽毛囊中的MDV基因组DNA说明,与接种bac-GX0101毒株的同笼饲养的未攻毒鸡的MDV基因组的检出时间和接种bac-GX0101△LTR毒株的同笼饲养的未攻毒鸡的MDV基因组的检出时间相比要早一周,并且检出率也要高。接种bac-GX0101毒株和bac-GX0101△LTR毒株的鸡群在100天内的死亡率分别是28.13%和43.75%;出现肿瘤的比率是9.3%和12.5%。这充分说明REV-LTR的插入不是增强GX0101毒株的致病性和致肿瘤能力而是增强了GX0101毒株的横向传播能力,从而使GX0101毒株具有一定的竞争优势,成为流行毒株。
     4 MDV中1.8-kb mRNA基因的潜在阅读框A和C的敲除及其功能研究
     为了研究马立克氏病毒(MDV)1.8kb mRNA中潜在阅读框的功能,利用Red/ET技术将1.8kb mRNA中潜在阅读框(A+C)敲除,并成功转染出病毒bac-GX0101△(A+C),同时将bac-GX0101△(A+C)与bac-GX0101分别感染CEF后,转染包含MDV上游双向启动子的质粒pP(pp38)-CAT和pP(1.8-kb)-CAT,48h后,通过测定转染细胞裂解液中氯霉素乙酰转移酶(CAT)的活性确定MDV 1.8-kb mRNA中潜在阅读框对双向启动子活性的影响。结果显示,1.8kb mRNA中潜在阅读框(A+C)的缺失可以使其上游双向启动子两个方向的活性均显著下降(P<0.01)。本研究结果证明了1.8-kb mRNA对其上游双向启动子活性具有增强作用。
     将bac-GX0101△(A+C)和bac-GX0101毒株感染SPF鸡,动物试验结果表明,GX0101毒株缺失1.8kbmRNA后,对鸡群的增重影响较轻。且对NDV和AIV灭活疫苗免疫后HI抗体滴度均高于bac-GX0101感染组, bac-GX0101△(A+C)感染的鸡只肿瘤出现时间比bac-GX0101晚22d,说明仅仅敲掉开放阅读框A和C并不能消除其致瘤性。
     5 MDV中ICP4基因的敲除及其致病性比较
     本文利用Red/ET介导的突变技术,将ICP4基因敲除,拯救出重组病毒bac-GX0101△ICP4。分别将bac-GX0101△ICP4和bac-GX0101接种SPF鸡,动物试验结果表明,GX0101毒株缺失ICP4基因后,对NDV和AIV灭活疫苗免疫后HI抗体滴度低于对照组,且与bac-GX0101的差异不显著(P>0.05),且鸡群在感染bac-GX0101△ICP4毒株后58d检测到内脏肿瘤,说明ICP4基因并不直接参与肿瘤的形成。
Marek’s disease virus (MDV) is a member of the Alphaherpesvirinae subfamily of the Herpesviridae, and the genome of MDV(174kb) is double-stranded DNA, MDV can induce highly infectiousness and oncogenicity on non-vaccine chickens. The chickens infected with MDV can cause to death and the survival birds can releasing virus long term, so the virus exsited permantly in the surrounding environment. Reticuloendotheliosis virus(REV) is a“C”retrovirus and the genome of REV (8kb)is single-stranded RNA, the structure of the genome is analogous to a integrity transposon. REV is another tumor virus of chicken.
     Zhang et al(2004) first isolated the MDV strain integrated with REV-LTR from anticoagulated blood of tumor chickens naturally infected with MDV, named GX0101,GD0202, which demonstrated besides it can infected the same poultry with MDV simultaneously, REV can integrated into the MDV genome. This study further clarified the pathogenicity of the MDV recombination virus, particularly if the transmissibility or replication capacity in vivo can be enhanced due to the recombination. Based on above backgrounds, we Comparatived pathogenicity of the recombinant strain GX0101 and cloned it as an infectious bacterial artificial chromosome, on the base of it, we deleted the REV-LTR insertion to study the bionomics. Simultaneous, correlated investagation were carried out on two tumorigenesis gene (1.8kb mRNA、ICP4). Not only accumulated a large amount of data and make and verify a new point of view.
     1 To determination virulence of recombination field strain GX0101 on different species chickens
     The determination pathogenicity of recombination field strain GX0101 were carried on Hy-line brown layer and SPF chickens. At 1 day of age these birds were vaccined with HVT and at 5 days of age these chickens were infected with either field strain GX0101 virus or vv vorulent rMd5 virus. The chickens were inspected daily and all the chickens that died during the experiment were evaluated for gross and histological lesions by necropsy. Experimental results show rMd5 infection more strongly inhibited growth rates of infected Hy-line brown layer than GX0101. There were 44.0% and 70.0% of mortality in Hy-line brown layer groups inoculated with GX0101 and rMd5(P<0.01). Also, 16.0% and 36.0% of birds demonstrated tumors in different tissues or organs in groups infected with GX0101 and rMd5(P<0.05). Both the mortality and oncogenicity of GX0101 strain were lower than the vvMDV strain rMd5. There were 28.24% and 64.63% of mortality in SPF chickens groups inoculated with GX0101 and rMd5(P<0.01). Also, 7.06% and 19.51% of SPF chickens demonstrated tumors in different tissues or organs in groups infected with GX0101 and rMd5(P<0.05). This thoroughly demonstrated that the virulence of GX0101 strain is lower than rMd5 strain. Zhang(2004) and Zhuang(2006) carried out artificial challenge experiment on SPF chickens, found that virulence of GX0101 strain is higher than GA strain. So the pathogenicity of GX0101 is between GA and rMd5. In view of this, the pathogenicity of GX0101 is not the competitive advantage to make it become a popular strain.
     2 Cloning of Marek’s Disease Virus field strain With REV-LTR integration as an infectious BAC Clone and the Comparasion of pathogenicity
     2.1 Construction of Transfer Plasmid pDS-pHAI-US2
     For constructing the BAC transfer vector, two fragments (2.1 kb and 4.0 kb) on either side of the MDV US2 gene were used as the left- and right-sided homology arms. The left 2.1 kb homology arm was obtained from the plasmid pDS-pHAI by digesting with HindⅢand XhoⅠ. The right 4.0 kb homology arms came from plasmid pUS2-Partial-F by digesting with HindⅢand XhoⅠ. The transfer plasmid pDS-pHAI-US2 was constructed by ligating the two fragments.
     2.2 Cloning of GX0101 as an infectious BAC Clone and rescuing the recombinant virus
     Transfer vector pDSpHAI-US2 and GX0101 Total-DNA were cotransfected into CEF by LipfectamineTM2000 or calcium phosphate. Virus-containing cells were passaged four rounds in selection medium containing xanthine﹑hypoxanthine and mycophenolic acid to obtain puried recombinant viruses when the cells showed the CPE. Recombinant viral genomes was extracted and electroporated into E.coli DH10B. The second days, single colonies were picked and verified by digested with BamHI restriction enzyme or PCR ,recombinant virus were reconstituted from GX0101 BAC successfully. Further experiments indicated BAC-derived viruses had similar growth kinetics on CEF to the parental virus GX0101 in vitro.
     2.3 Comparison of the Pathogenicity of the GX0101 infectious BAC Clone
     Animal experiments were carried out in 1-day-old specific-pathogen-free chicken.Further experiments indicated that there was no difference in growth ability and pathogenicity to chickens between the BAC derived virus and its parental virus. The BAC derived virus also maintained its oncogenicity and immunosuppressive effects. With the powerful BAC manipulation system, the infectious clone will provide a useful tool for further understanding the functional roles of the inserted REV-LTR sequence in the GX0101 strain of MDV.
     3 The Construction of infectious cloning of deleting REV-LTR and Comparisons of biological properties
     3.1 Deletion REV-LTR inserts from recombinant MDV strain GX0101
     In order to illustrate the change of biological properties caused by REV-LTR, gene mutation is a must procedure. Cloned GX0101 as infectious bacterial artificial chromosome. All the manipulations including DNA fragment deletion or insertion and point mutations can be carried out accurately in E. coli conveniently, and the mutated DNA can be used directly to reconstitute mutant viruses in transfected host cells. It would accelerate the understanding of the MDV gene functions and the relationships with pathogenesis and other biology properties.
     In this study, we constructed an identical REV-LTR deletion mutant of GX0101 BAC by Red/ET mutagenesis (Yu et al., 2000; Lee et al., 2001) .Using KanR cassette to instead of the REV-LTR inserts. KanR cassette flanked by FRT sites was amplified using primers LTR-kanaR-a and LTR-kanaR-b from the plasmid pKD13. KanaR selectable marker can be removed by using flanking Flpe target recognition sites(FRT). The recombinant virus was successfully rescued by transfection of the recombinant BAC DNA into primary chicken embryo fibroblast (CEF) by LipfectamineTM2000,named bac-GX0101△LTR.
     3.2 Characterization of Marek’s Disease Virus GX0101 that lack REV-LTR inserts: REV-LTR inserts can increased horizontal transmission ability of MDV
     On days 5 of age, SPF chickens vaccined HVT on day 1 of age were infected intra-abdominally with 1000 p.f.u. either bac-GX0101△LTR virus or bac-GX0101 virus. When SPF chickens were infected with bac-GX0101△LTR virus or bac-GX0101 virus, HI antibody titers against NDV, H5-AIV or H9-AIV after vaccination or growth ability were decreased at different levels compared to the control,relatively speaking, the pathogenicity of bac-GX0101△LTR was less than bac-GX0101.
     The result of detected MDV genome from feather tips by Dot-blot demonstrated, the time of detection MDV genome from non-inoculated chickens breeded with chickens inoculated bac-GX0101 in one cage was one week earlier than the time of detection MDV genome from non-inoculated chickens breeded with chickens inoculated bac-GX0101△LTR in one cage, and also with a higher detection ration.
     During 100 days after challenged at 1d of age with two MDVs, there were 28.13% and 43.75% of mortality in groups inoculated with bac-GX0101 and bac-GX0101△LTR respectively while no mortality in the control group. Also, 9.3% and 12.5% of chickens demonstrated tumors in different tissues or organs in groups infected with GX0101 and bac-GX0101.The result of animal experiment demonstrated the insertion of REV-LTR enhanced the horizontal transmission of GX0101 strain but not the virulence and the oncogenicity which made the GX0101 strain have some advantages in competitive selection and become an epidemic strain.
     4 The Deletion ORF A and C of MDV 1.8kbmRNA and Study of gene function
     In order to study the ORF’s function of 1.8kbmRNA, we deleted the ORF(A+C) by Red/ET, and got the recovered virus bac-GX0101△(A+C) successfully.`Plasmid pP(pp38)-CAT and pP(1.8-kb)-CAT contained MDV upstream’s bidirectional promoter were transfected after bac-GX0101△(A+C) and bac-GX0101 infected CEF respectly.48 hours later, in order to ascertain the influence to bidirectional promoter active of MDV 1.8-kb mRNA’s ORF, we measured the CAT active in CEF lysate. The result demonstrated that the active of bidirectional promoter from two direction backdown significantly (P<0.01)because of the deleting of ORF A and C. The result certificated that 1.8kb mRNA could enhance the active of bidirectional promoter.
     SPF chickens were infected with bac-GX0101△(A+C) and bac-GX0101 strain respectively. The result of animal experiment demonstrated that the influence to weight was slight when deleteing ORF A and C of 1.8kbmRNA and the HI titre to NDV and AIV was higher than the group infected bac-GX0101. The time of tumor occurred on the chickens infected with bac-GX0101△(A+C) was 22 days later than infected with bac-GX0101,demonstrated the oncogenicity couldn’t disappear only deleted the ORF A and C.
     5 The Deletion of MDV ICP4 gene and the Comparison of the Pathogenicity
     In this article,ICP4 gene were deleted and the recombinant virus bac-GX0101△ICP4 recovered sucessfully. SPF chickens were infected with bac-GX0101△ICP4 and bac-GX0101 respectively. The result of animal experiment demonstrated that the HI titre to NDV and AIV after deleting ICP4 gene was lower than control group, but there were no difference between bac-GX0101△ICP4 and bac-GX0101(P>0.05). The chickens infected with bac-GX0101△ICP4 can be detected with tumors 58 days after challenged which demonstrated ICP4 gene didn’t participated in the forming tumor. But cell multiplication experiment demonstrated that ICP4 gene was correlation with the replication of viruses.
引文
陈鸿军,宋翠萍,秦爱建. MDV-1 VP22羧基端在大肠杆菌中高效可溶性表达.中国病毒学.2006,22(2): 284-286
    陈鸿军,秦爱建,丁铲. MDV CVI988/Rispens弱毒株VP22基因克隆和序列分析.扬州大学学报(农业和生命科学版).2003,24(4): 5-8
    崔治中.禽反转录病毒与DNA病毒间的基因重组及其流行病学意义.病毒学报,2006, 22:150-154
    崔治中.免疫抑制性病毒多重感染在鸡群疫病发生和流行中的作用.畜牧兽医学报, 2003,34:417-421
    崔治中.我国鸡群中免疫抑制性病毒多重感染的诊断和对策.动物科学与动物医学, 2001,18(4):19-22
    崔治中.用非放射性DNA探针从感染鸡羽毛囊中检出Ⅰ型马立克氏病病毒.中国兽医科技,1992,22(9):20-21.
    崔治中,Lee L F.用非放射性的Digoxigenin标记的DNA探针检出马立克氏病病毒DNA.江苏农学院学报,1991,12(1):1-6
    崔治中,何良梅.特超强毒型马立克氏病病毒囊膜糖蛋白I基因序列及与其它致病型毒株的比较[J].中国病毒学,2000,15(2):180-187
    崔红玉.2007.鸡马立克氏病病毒细菌人工染色体的构建.中国农业科学院硕士论文
    丁家波.2005.马立克氏病病毒pp38基因及其上游双向启动子的生物学特性.山东农业大学博士论文
    丁家波,崔治中,孙淑红,等.马立克氏病病毒pp38基因上游的一个双向启动子研究.微生物学报,2004,44(2):162-166
    丁家波,崔治中,姜世金,等.马立克氏病病毒pp38基因和1.8kb转录子之间双向启动子的特性研究.微生物学报,2005,45(3):363-367
    丁家波,崔治中,王建新.细菌人工染色体及其在分子克隆化病毒中的应用.中国预防兽医学报,2003,25(4):318-321
    付本懂,王鲁,韦旭斌.马立克氏病病毒致瘤相关基因的研究进展.中国兽医科学.2006,36(7):592-596 韩聪,张惟材,游松.Red同源重组技术研究进展.中国生物工程杂志.2003,23(12):17-21
    姜世金,孟珊珊,崔治中等.我国自然发病鸡群中MDV、REV和CAV共感染的检测.中国病毒学, 2005, 20:164-167
    姜世金,田夫林,崔治中.传染性腺胃炎病鸡中MDV、REV、CAV共感染的检测.中国兽医杂志,2004, 40:10-12
    吉荣,崔治中,丁家波等.I型马立克氏病病毒特异性核酸探针试剂盒的制备和应用.中国预防兽医学报,2002,24(4):263-265
    金文杰,崔治中,刘岳龙等.传染性法氏囊病病料中MDV、CAV、REV的共感染检测.中国兽医学报, 2001,1:6-9
    刘岳龙,崔治中,何良梅等.特超强毒648A株马立克氏病病毒的囊膜糖蛋白gE基因的克隆和序列分析[J].微生物学报,2001,41(2):155-161
    柠晓檬,赵晓岩,刘长军等.马立克氏病病毒(MDV)814株B抗原的克隆及部分序列分析[J].病毒学报,1996,12(4):355-359
    孙淑红,崔治中,孙爱军.母源抗体对同源及异源网状内皮增生病病毒感染诱发免疫抑制的预防作用.畜牧兽医学报,2007,38(5): 488-492
    王军平,张友明,粟永萍. Red/ET同源重组介导细菌人工染色体的快速修饰.生物化学及生物物理进展,2005,32(5):468-473
    许晓云,孙爱军,崔言顺,崔治中.带有REV-LTR片段的MDV重组野毒株与超强毒株致病性和横向.传播性的比较.微生物学报,2009,49(4):540-543
    姚瑞英,盘宝进,白安斌等.核酸探针杂交检测马立克氏病病毒与琼脂扩散试验比较.广西畜牧兽医,1997,13(1):9-10
    殷俊,崔治中. 2001.接种不同毒力的马立克氏病病毒后鸡病毒血症的动态比较,中国病毒学,16(1):59-63
    张纪元,丁家波,崔治中等.不同致病型马立克氏病病毒1.8kb基因家族序列比较.中国病毒学,2005,20(3):277-282
    张志.2004.我国近年来马立克氏病病毒野毒株分子流行病学和生物学特性的研究.山东农业大学博士论文
    张志,崔治中.整合进禽反转录病毒基因组片段的鸡马立克氏病病毒重组野毒株的发现.中国科学C辑.生命科学,2005,34:317-324
    张志,崔治中,姜世金.从J亚群禽白血病肿瘤中检测出禽网状内皮组织增生征病毒. 中国兽医学报,2004,24(1) :10-13
    张志,崔治中,姜世金.从J亚群禽白血病肿瘤中检测出禽网状内皮组织增生症病毒.中国兽医学报,2004,01:10-13
    张志,崔治中,姜世金等.鸡肿瘤病料中马立克氏病病毒和禽网状内皮组织增生症病毒共感染的研究.中国预防兽医学报,2003,4: 274-278
    张志,王锡乐,庄国庆等.商品代肉鸡群中禽网状内皮组织增生病病毒和马立克氏病病毒的混合感染.中国预防兽医学报,2005,27(1):39-41
    张志,庄国庆,孙淑红等.禽网状内皮组织增生病病毒和马立克氏病病毒共感染对鸡的致肿瘤作用.畜牧兽医学报,2005,36: 62-65
    周祥,韦平,等.整合进禽反转录病毒长末端重复序列的马立克氏病病毒的分离鉴定.畜牧与兽医.2007,39(8):22-25
    左天荣,赵子轶,韦平.一株具有急性致瘤特性的马立克氏病病毒的分离与鉴定.病毒学报2007,23(3):218-223
    庄国庆,孙淑红,崔治中.禽网状内皮增生病病毒和马立克氏病病毒共感染对鸡的致肿瘤作用.中国病毒学, 2006, 21:157-162
    Adler H., Messerle M., Koszinowski U. H. Cloning of herpesviral genomes as bacterial artificial chromosomes. Rev. Med. Virol. 2003. 13,111–121
    Anobile J M., Arumugaswami V., Downs D., et al. Nuclear localization and dynamic properties of the Marek's disease virus oncogene products Meq and Meq/vIL8. J Virol, 2006. 80(3):1160-1166
    Becker Y., Asher Y., Tabor E., Davidson I., Malkinson M. and Weisman Y. Polymerase chain reaction for differentiation between pathogenic and non-pathogenic serotype I Marek’s disease viruses (MDV) and vaccine viruses of MDV-serotypes 2 and 3. J Virol Meth, 1992.40: 307-322
    Bacon L. D., Witter R. L., Fadly A. M., Augmentation of retrovirus-induced lymphoid leukosis by Marek’s disease herpesviruses in white leghorn chickens. J.Virol. 1989. 63, 504–512
    Baigent S. J., Petherbridge L. J., Howes K., Smith L. P., Currie R. J.& Nair V. K. Absolute quantitation of Marek’s disease virus genome copy number in chicken feather and lymphocyte samples using real-time PCR. J Virol Methods .2005.123, 53–64
    Baigent S. J., Petherbridge L., Smith L. P., et al. Herpesvirus of turkey reconstituted from bacterial artificial chromosome clones induces protection against Marek’s disease. J Gen Virol,2006. 87(4): 769-776
    Baogemt S. J., Petherbridge L. J., Smith L. P., et al. Herpesvirus of turkey reconstituted from bacterial artificial chromosome clones induces protection against Marek’s disease[ J] . J Gen Virol, 2006. 87: 769- 776
    Bradley G., Hayashi M., Lancz G., et al.Structure of the Marek’s disease virus BamHI-H gene family:genes of putative importance for tumor induction. J Virol,1989.63:2534-2542
    Bradley G., Lancz G., Tanaka A. and Nonoyama M. Loss of Marek's disease virus tumorigenicity is associated with truncation of RNAs transcribed within BamHI-H. J Virol, 1989b.63(10): 4129-4135
    Brown A. C., Baigent S. J., Smith L. P., et al. Interaction of MEQ protein and C- terminal- binding protein is critical for induction of lymphomas by Marek′s disease virus[ J] . Proc Natl Acad Sci, 2006. 103: 1687- 1692
    Brune W., Messerle M. & Koszinowski U. H. Forward with BACs: new tools for herpesvirus genomics. Trends Genet 2000.16, 254–259.
    Bublot M. & Sharma J. Vaccination against Marek’s disease.In Marek’s Disease– An Evolving Problem, pp. 168–185. Edited by T. F. Davison & V. Nair. London 2004: Academic Press
    Buscaglia C., Calnek B. W. and Schat K. A. Effect of immunocompetence on the establishment and maintenance of latency with Marek's disease herpesvirus. J Gen Virol, 1988.69(5): 1067-1077
    Buscaglia C., Calnek B. W. and Schat K. A. Effect of immunocompetence on the establishment and maintenance of latency with Marek’s disease herpesvirus. J Gen Virol,1988. 69: 1067-1077
    Buscaglia C. and Calnek B. W. Maintenance of Marek’s disease herpesvirus latency in vitro by a factor found in conditioned medium. J Gen Viorl,1988. 69: 2809-2818
    Calnek B.W., Carlisle J.C., Fabricant J., Murthy K. K., Schat K. A. Comparative pathogenesis studies with oncogenic and non-oncogenicMarek’s disease viruses and turkey herpesvirus. Am. J. Vet. Res. 1979. 40, 541–54
    Calnek B. W., Schat K. A., Fabricant J. Modification of Marek’s disease pathogenesis by in ovo infection or prior vaccination. In: Essex, M., Todaro, G., zur Hausen, H. (Eds.), Viruses in Naturally Occurring Cancers. Cold Spring Harbor,New York, pp. 1980.185–197
    Calnek B. W., Schat K. A., Peckham M. C., Fabricant J. Field trials with a bivalent vaccine (HVT and SB-1) against Marek’s disease. Avian Dis. 1983.27, 844–849.
    Cantello J. L., Anderson A. S. and Morgan R. W. Identification of latency-associated transcripts that map antisense to the ICP4 homolog gene of Marek’s disease virus. J Virol,1994. 68: 6280-6290
    Chattoo J. P., Stevens M. P., Nair V. K. Rapid identificationof non-essential genes for in vitro replification of Marek’s disease virus bu random transposon mutagenesis. J Virol ,2006.135:288-291
    Churchill A. E. and Biggs P. M. Agent of Marek’s disease in tissue Culture. Nature, 1967. 215: 528-530
    Churchill A. E., Chubb R. C. and Baxendale C. W. The attenuation with loss of oncogenicity of the herpes-type virus of Marek’s disease (strain HPRS-16) on passage in cell culture. J. Gen. Virol, 1969. 4: 557-564
    Cui H. Y., Wang Y. F., Shi X. M. et al. Construction of Marek’s Disease Virus Serotype 814 strain as an Infectioous Bacterial Artificial Chromosome. Chin J Biotech, 2008. 24(4): 569-575
    Cui Z., Qin A., Lee L. F., Wu P. and Kung H. J. Construction and characterization of a H19 epitope point mutant of MDV CVI988/Rispens strain. Acta Virol, 1999. 43(2-3): 169-173
    Cui Z. Z. The affinity of 38kD phosphorylated protein gene product of Marek’s disease virus. Chinese journal of virology, 2004. 20: 52~57.
    Cui Z. Z., Ding Y. and Lee L. F. Marek’s disease virus gene clones encoding virus-specific phosphorylated polypeptides and serological characterization of fusion proteins. Virus Genes, 1990. 3: 309-322
    Cui Z. Z., Lee L. F., Liu J. L. and Kung H. J. Structural anslysis and tuanscriptional mapping of the Marek’s disease virus gene encoding pp38, an antigen associated with transformed cells. J Virol, 1991. 65: 6509-6515
    Cui Z. Z. and Qin A. Immunodepressive effects of the recombinant 38kd phosphorylated protein of Marek’s disease virus. In Silva et al. (eds): Current research on Marek’s disease virus, Rose Printing Company, Inc, Florida,USA, 1996.278~283
    Cui Z., Qin A., Lee L. F., Wu P. and Kung H. J. Construction and characterization of a H19 epitope point mutant of MDV CVI988/Rispens strain. Acta Virol, 1999. 43(2-3): 169-173
    Cui Z. Z., Zhang Z., Qin A. J. and Lee L. F. Analyzing the H19- and T65-epitopes in 38kd phosphorylated protein of Marek’s disease viruses and comparing chicken immunological reactions to viruses point-mutated in the epitopes. Science in China Ser. C Life Science, 2004. 47: 82~91
    Datsenko K. A., Wanner B. L. One-step inactivation of chromosome genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA,2000. 97:6640-664
    Davidson F., Nair V. K. Marek’s Disease:An Evolving Problem. London: Academic Press.
    Davidson I., Borenshtain R. In vivo events of retroviral long terminal repeat integration into Marek’s disease virus in commercial poultry: detection of chimeric molecules as a marker. Avian Dis, 2001. 45(1): 102-121
    Delecluse H. J., Schuller S. and Hammerschmidt W. Latent Marek’s disease virus can be activated from its chromosomally integrated state in herpesvirus-transformed lymphoma cell. Eur Mol Biol Organ J, 1993.2: 3277-3286
    Deleclus H. J. and Hammerschmidt W. Status of Marek’s disease virus in established lymphoma cell lines: lines: Herpesvirus integration is common. J Viro, 1993. 67: 82-92
    Ding J. B., Cui Z. Z., Jiang S. J., et al. The enhancement effect of pp38 gene product on the activity of its upstream bi-directional promoter in Marek's disease virus. Science in China (Series C). 2006a. 49(1):53-62
    Ding J. B., Cui Z. Z., Lee L. F., et al. The role of pp38 in regulation of Marek’s disease virus bi-directional promoter between pp38 and 1.8-kb mRNA. 2006b. Virus Genes, 32: 193-201
    Dorange F., Tischer B. K., Vautherot J. F., Osterrieder N.Characterization of Marek’s Disease Virus Serotype 1 (MDV-1)Deletion Mutants That Lack UL46 to UL49 Genes: MDV-1 UL49, Encoding VP22, Is Indispensable for Virus Growth. J Virol,2002. 76(4):1959-1970
    Eidson C. S. and Schmittle S. C. Studies on acute Marek's disease. I. Characteristics of isolate GA in chickens. Avian Dis, 1968.12: 467-76
    Fauqet C. M., Mayo M. A., Maniloff J., Desselberger U. & Ball L. A.(editors) Virus Taxonomy, VIIIth Report of the ICTV. London: Elsevier. 2005.
    Fukuchi K., Tanaka L., Schierman R.,et al. The structure of the Marek’s disease virus DNA: the precence of unique expansion in nonpathogenic DNA.Proc Natl Acad Sci USA,1985. 82:751-754
    Gimeno I. M., Witter R. L., Hunt H. D., et al. The pp38 gene of Marek's disease virus (MDV) is necessary for cytolytic infection of B cells and maintenance of the transformed state but not for cytolytic infection of the feather follicle epithelium and horizontal spread of MDV.J Virol.2005. 79(7):4545-4549
    Holland M. S., Mackenzie C. D., Bull R. W. & Silva R. F. Latent turkey herpesvirus infection in lymphoid, nervous, and feather tissues of chickens. Avian Dis. 1998.42, 292–299
    Igarashi T., Takahashi M., Donovan J., Jessip J., Smith M., Hirai K., Tanaka A. and Nonoyama M. Restriction enzyme map of herpesvirus of turkey DNA and its collinear relationship with Marek’s disease virus DNA. Virology, 1987.157: 351-358
    Ikuta K., Nakajima K., Naito M., Ann S. H., Ueda S., Kato S. and Hirai K. Identification of Marek’s disease virus specific antigen in Marek’s disease lymphoblastoid cell line using monoclonal antibody against virus-specific phosphorylated polypetides. Int. J. Cancer, 1985. 35: 257~264
    Ikuta K., Nishi Y., Kato S. and Hirai K. Immunoprecipitation of Marek's disease virus-specific polypeptides with chicken antibodies purified by affinity chromatography. Virology, 1981.114(1): 277-281
    Ikuta K., Ueda S., Kato S. and Hirai K. Monoclonal antibodies reactive with the surface and secreted glycoproteins of Marek’s disease virus and herpesvirus of turkeys. J Gen Virol, 1983.64:2597-2610
    Ikuta K., Nishi Y., Kato S. and Hirai K. Identification of Marek’s disease virus-specific antigens in Marek’s disease lymphobastoid cell lines using monoclonal antibody against virus-specific phosphorylated polypeptides. Int J Cancre, 1985.35: 257-264
    Isfort R., Jones D., Kost R., et al. Retrovirus insertion into herpesvirus in vitro and in vivo. Proc Ntal Acad Sci USA, 1992. 89(3): 991-99
    Isfort R. J., Qian Z., Jones D., Silva R. F., Witter R. L. and Kung H. J. Integration of multiple chicken retroviruses into multiple chicken herpesviruses: herpesviral gD as a common target of integration. Virology, 1994.203(1): 125-133
    Islam A., Harrison B., Cheetham B. F., Mahony T. J., Young P. L.& Walkden-Brown S. W. Differential amplification and quantitation of Marek’s disease viruses using real-time polymerase chain reaction. J Virol Methods. 2004. 119, 103–113
    Jarosinski K. W., Osterrieder N., Nair V. K., Schat K. A. Attenuation of Marek's Disease Virus by Deletion of Open Reading Frame RLORF4 but Not RLORF5a. J Virol. 2005.79:11647-11659
    Jarosinski K. W., Tischer B. K., Trapp S., et al. Marek′s disease virus: lytic replication, oncogenesis and control [ J] . Expert Bev Vaccines, 2006. 5: 761- 772
    Jones et al. Retrovirus insertion into a herpesvirus are clustered at the junctions of the short repeat and unique sequences. Proc Natl Acad Sci USA,1993. 90:3855-3859
    Jones D., Brunovskis P., Witter R. and Kung H. J. Retroviral insertional activation in a herpesvirus: transcriptional activation of US genes by an integrated long terminal repeat in a Marek's disease virus clone. J Virol, 1996. 70(4): 2460-2467
    Karaca G., Anobile J., Downs D., Burnside J. & Schmidt C. J. Herpesvirus of turkeys: microarray analysis of host gene responses to infection. Virology. 2004.318, 102–111
    Kawamura H., King D. J. & Anderson D. P. A herpesvirus isolated from kidney cell culture of normal turkeys. Avian Dis. 1969.13,853–863
    Kawamura M., Hayashi M., Furuichi T., et al. The inhibitory effects of oligonucleotides,complementary to Marek’s disease virus mRNA transcribed from the BamHI-H region, on the proliferation of transformed lymphoblastiod cells MDCC-MSB1.J Gen Virol, 1991. 72(pt5):1105-1111
    Kingham B. F., Zelnik V., Kopacek J., Majerciak V., Ney E. & Schmidt C. J. The genome of herpesvirus of turkeys: comparative analysis with Marek’s disease viruses. J Gen Virol . 2001.82, 1123–1135
    Lee E. C., Yu D., Martinez de., Velasco J., Tessarollo L., Swing D. A., Court D. L., Jenkins N. A. & Copeland N. G. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics. 2001. 73, 56–65
    Lee L. F., Liu J. L., Cui X. P., Kung H. J. Marek’s disease virus latent protein MEQ:delineation of an epitope in the BR1 domain involved in nuclear localization.Virus Genes.2003. 27 (3), 211–218
    Lee L. F., Liu X., Witter R. L. Monoclonal antibodies with specially for three different serotypes of Marek’s disease viruses in chickens. J Immunol, 1983. 130(2): 1003-1006
    Lee L. F., Lupiani B., Silva R. F., Kung H. J., Reddy S. M. Recombinant Marek’s disease virus (MDV) lacking the Meq oncogene confers protection against challenge with a very virulent plus strain of MDV. Vaccine. 2008.26, 1887—1892
    Lee L. F., Wu P., Sui D., Ren D., Kamil J., Kung H. J. and Witter R. L. The complete unique long sequence and the overall genomic organization of the GA strain of Marek's disease virus. Proc Natl Acad Sci U S A, 2000.97(11):6091-6096
    Lee L. F. Characterization of a monoclonal antibody against a nuclear antigen associated with serotype-1 Marek's disease virus-infected and transformed cells. Avian Dis, 1993.37(2): 561-567
    Lee L. F., Kieff E. D., Bachenheimer S. L., Roizman B., Spear P. G., Burmester B. R. and Nazerian K. Size and composition of Marek’s disease virus deoxyribonucleic acid. J Virol, 1971. 7: 289-294
    Lee L. F., Nazerian K., Leinbach S. S., Reno J. M. and Boezi J. A. Effect of phosphonoacetate on Marek's disease virus replication. J Natl Cancer Inst,1976.56(4): 823-827
    Lee L. F. Mcrophage restriction of Marek's disease virus replication and lymphoma cell proliferation. J Immunol, 1979.123: 1088-1091
    Lupiani B., Lee L. F., Cui X. P., et al. Marek′s disease virus- encoded Meq gene is involved in transformation of lymphocytes but is dispensable for replication [ J] . Proc Natl Acad Sci, 2004. 101: 11815- 11820
    Maotani K., Kanamori A.,Ikuta K.,et al.Amplification of a tandem direct repeat within inverted repeats of the Marek’s disease virus DNA during serial in vitro passage.1986.J Virol,58:657-659
    Morgan R. W., Cantello J. L., McDermott C. H., et al. Transfection of chicken embryo fibroblasts with Marek’s disease virus DNA. Avian Dis, 1990. 34(2): 345-351
    Muyrers J. P., Zhang Y., Stewart A. F., et al. Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res, 1999. 27(6): 1555-1557
    Nair V. K., Howes K., Barron G.. S., et al. Recombinant env-gp85 of HPRS-103 (subgroup J) avian leukosis virus: antigenic characteristics and usefulness as a diagnostic reagent. Avian Disease. 1997. 41: 283-288
    Nair V. K., Smith L. M., Howes K., et al. Antigenic variants of J subgroup avian leukosis virus: sequence analysis reveals multiple changes in the env gene. Journal of General Virology. 1988. 79: 757-766.
    Nair V. K. Evolution of Marek’s disease- A paradigm for incessantrace between the pathogen and the host [J] . Vet J,2005. 170:175- 183
    Narayaman K., Williamson R., Zhang Y., et al. Efficient and engineering of a 200 kb beta-globin human bacterial chromsome in E. coli DH10B using an inducible homologous recombination system. Gene Ther, 1999. 6(3): 442-447
    Osterrieder K. & Vautherot J. F. The genome content of Marek’s disease-like viruses. In Marek’s Disease– An Evolving Problem, pp. 17–31. Edited by T. F. Davison & V. Nair. 2004.ondon:Academic Press
    Peng F. G., Bradley A. Tanaka G..,Lancz. and Nonoyama M. Isolation and characterization of cDNA from BamHI-H gene family RNAs associated with the tumorigenicity of the Marek’s disease virus. J Virol. 1992.66:7389-7396
    Petherbridge L., Brown A. C., Baigent S. J., et al. Oncogenicity of Virulent Marek’s Disease Virus Cloned as Bacterial Artificial Chromosomes. J Virol, 2004. 78(23): 13376-13380
    Petherbridge L, Homes K, Baigent S J, et al. Replication-competent bacterial artificial chromosomes of Marek's disease virus: novel tools for generation of molecularly defined herpesvirus vaccines. J Virol, 2003, 77(16): 8712-8718
    Petherbridge L., Xu H. T., Zhao Y. G., Smith L. P., Simpson J., Baigent S. J. and Nair V. K. Cloning of Gallid herpesvirus 3(Marek’s disease virus serotype-2) genome as infectious bacterial artificial chromosome for analysis of viral gene functions.J.Virol.Methods,2009
    Reddy S. M., Lupiani B., Gimeno I. M., Silva R. F., Lee L. F. and Witter R. L. Rescue of a pathogenic Marek's disease virus with overlapping cosmid DNAs: use of a pp38 mutant to validate the technology for the study of gene function. Proc Natl Acad Sci USA, 2002. 99: 7054–7059
    Sambrook J., Fritsch D. F., Maniatis T., et al. Molecular cloning: a laboratory manual. Cold Spring Harbor Cold Spring Harbor Laboratory Press, 1989
    Sambrook J. & Russell D. W. Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. 2001
    Schat K. A. & Calnek B. W. Characterization of an apparently nononcogenic Marek’s disease virus. J Natl Cancer Inst 60, 1978.1075–1082
    Schumacher D., Tischer B. K., Fuchs W., et al. Reconstitution of Marek’s Disease Virus Serotype 1(MDV-1) from DNA cloned as a Bacterial Artificial Chromosome and Characterization of a Glycoprotein B-Negative MDV-1 Mutant. J Virol, 2000. 74(23): 11088-11098Schumacher D., Tischer B. K., Reddy S. M., Osterrieder N. Glycoproteins E and
    I of Marek’s disease virus serotype 1 are essential for virus growth in cultured cells. J. Virol. 2001.75, 11307–11318
    Shigekane H., Kawaguchi Y., Shirakata M, et al. The bi-directional transcriptional promoters for the latency-relating transcripts of the pp38/pp24 mRNAs and the 1.8 kb-mRNA in the long inverted repeats of Marek's disease virus serotype 1 DNA are regulated by common promoter-specific enhancers.Arch Virol, 1999. 144:1893-907
    Silva R. F., et al. Expansion of a unique region in the Marek’s disease virus genome occurs concomitantly with attenuation but is not sufficient to cause attenuation. J Virol 2004.p.733-740
    Smitll G. A. and Enquist. L. W. Construction and transposon mutagenesis in Escherichia coli of a fu11 length infectious clone of pseudorabies virus an alphaherpesvirus.Journal of Virology.1999.73:6405-6414
    Suchodolski P. K., Izumiya Y., Lupiani B., Reddy S. M. Homodimerization of Marek's disease virus-encoded Meq protein is not sufficient for transformation of lymphocytes in chickens.J Virol. Jan; 2009. 83(2): 859-69
    Sun A. J., Petherbridge L., Zhao Y. G..,Li Y. P., Nair V. K. and Cui Z. Z. A BAC clone of MDV strain GX0101 with REV-LTR integration retained its pathogenicity.Chinese Science Bulletin, 2009.54:1-7
    Tieber V. L., Zalinskis L. L., Silva R. F., Finklelstein A. and Coussens P. M. Transactivation of the Rous sarcoma virus long terminal repeat promoter by Marek's disease virus. Virology, 1990.179(2): 719-727
    Tischer B. K., Schumacher D., Messerle M., Wagner M. & Osterrieder N. The products of the UL10 (gM) and the UL49.5 genes of Marek’s disease virus serotype 1 are essential for virus growth in cultured cells. J Gen Virol . 2002.83, 997–1003
    Tischer B. K., Schumacher D., Beer M., Beyer J., Teifke J. P., Osterrieder K., Wink K., Zelnik V., Fehler F. and Osterrieder N. DNA vaccine containing an infectious Marek's disease virus genome can confer protection against tumorigenic Marek's disease in chickens. J Gen Virol , 2002.83(10): 2367-2376
    Tischer B. K., von Einem J., Kaufer B., Osterrieder N. Two-step Red-mediated recombination for versatile, high-efficiency markerless DNA manipulation in Escherichia coli.BioTechniques. 2006.40, 1–6
    Tischer B. K., Schumacher D., Messerle M., Wagner M.& Osterrieder N. The products of the UL10(gM) and the UL49.5 genes of Marek's disease virus serotype I are essential for virus growth in cultured cells.Journal of Genernal Virology.2002.83.997-1003
    Tulman E. R., Afonso C. L., Lu Z., Zsak L., Rock D. L. & Kutish G.. F. The genome of a very virulent Marek’s disease virus. J Virol. 2000.74, 7980–7988
    Warming S., Costantino N., Court D. L., Jenkins N. A., Copeland N.G. Simple and highly efficient BAC recombineering using galK selection. Nucl. Acids Res. 2005.33, e36
    Witter R. L. Protection by attenuated and polyvalent vaccines against highly virulent strains of Marek’s Disease virus. Avian Pathol. 1982. 11, 49–62
    Witter R. L. Influence of serotype and virus strain on synergism between Marek’s disease vaccine viruses. Avian Pathol. 1992.21, 601–614
    Witter R. L. Marek’s disease vaccines– past, present and future (chicken vs. virus-a battle of the centuries). In: Schat, K.A., Morgan, R.W., Parcells, M.S., Spencer, J.L. (Eds.), Current Progress on Marek’s Disease Research. American Association of Avian Pathologists, Kennett Square, PA, 2001a. pp. 1–9
    Witter R. L., Protective efficacy of Marek’s disease vaccines. Curr. Top. Microbiol. Immunol. 2001b. 255, 57–90
    Witter R. L. Marek’s disease: the continuing struggle between pathogen and host. Vet. J. 2005.170, 149–150
    Witter R. L., Lee L. F. Polyvalent Marek’s disease vaccines: safety, efficacy and protective synergism in chickens with maternal antibodies. Avian Pathol. 1984. 13,75–92
    Witter R. L., Fadly A. M. Reticuloendotheliosis,In:Diseases of Poultry,11th edition, edited by Saif, Y. M.Lowa Strate University, p517-535,2003.Ames, USA
    Witter R. L., Nazerian K., Purchase H.G., Burgoyne G. H. Isolation from turkeys of a cell-associated herpesvirus antigenically related to Marek’s disease virus.Am. J. Vet. Res. 1970.31, 525–538
    Witter R. L., Sharma J. M., Lee L. F., Opitz H. M., Henry C. W. Field trials to test the efficacy of polyvalent Marek’s disease vaccines in broilers. Avian Dis. 1984. 28,44–60
    Witter R. L, Silver R. F, Lee L. F. New serotype 2 and attenuated serotype 1 Marek’s diseasevaccine viruses: selected biological and molecular characteristics. Avian Dis, 1987, 31(4): 829-840
    Yoshida S., Lee L. F., Yanageda N., et al. Identification of serotype-s and 3 Marek’s disease virus gB homology of herpes simplex virus and their expression by fowl pox virus recombinants[J]. Virology, 1994.200:484~493
    Yu D., Ellis H. M., Lee E. C., Jenkins, N. A., Copeland N. G., Court D. L. An efficient recombination systemfor chromosomeengineering in Escherichia coli. Proc.Natl.Acad. Sci. U.S.A. 2000.97, 5978–5983
    Zelnik V. Marek’s disease virus research in the post-genomicera: new tools for the study of gene functions and virus-host interactions. Avian Pathol. 2003. 32, 323–333
    Zhang Y. F., Buchholz J. P., Muyrers. and Stewart.A. F. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 1998.20:123–128
    Zhang Z., Cui Z. Isolation of recombinant field strains of Marek’s disease virus integration with reticuloendotheliosis virus genome fragments. Sci China C Life Sci, 2005. 48(1); 81-88
    Zhao Y. G., Petherbridge L., Smith L. P., et al. Self-excision of the BAC sequence from the recombinant Marek’s disease virus genome increases replication and pathogenicity. Virol J, 2008. 5:19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700