用户名: 密码: 验证码:
客运专线大断面黄土隧道施工力学及支护设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国内大规模基础设施的投资建设,西部将建设一大批大断面黄土隧道。先期建设的郑西铁路客运专线包含大量黄土隧道,其单洞开挖断面达170m~2,为我国黄土历史上第一,且黄土地层具有特殊性和软弱性,工程难度大。我国目前尚无相关工程的施工与设计经验,缺少规范的指导,因此对其施工技术和支护理论的研究显得尤为迫切。本文依托该工程,率先对大断面黄土隧道的力学行为展开研究,主要开展了以下工作:
     1.通过调查和分析客专黄土围岩的特殊性质,指出黄土的结构性强度可概括为双线性屈服准则,而垂直节理可视为遍布节理,两者在新、老黄土中具有不同的赋存状况和发育程度。
     2.提出应按考虑黄土特性的双线性本构模型进行黄土隧道的力学分析,结果认为,结构强度主要影响塑性区和位移量值,对形态影响不大,而垂直节理对深、浅埋黄土隧道的位移模式与破坏形态有很大影响。
     3.采用三维数值仿真方法,并结合试验工点监测数据,研究了大断面黄土隧道中双侧壁、CRD、弧形导坑法的施工力学动态,揭示出深、浅埋皆为不利情况,开挖前围岩位移释放率高、支护位移量大、早期变形快、持续时间长、支护受力大等是其主要特点;给出了施工监测控制基准值,指出浅埋应按变形控制,深埋应按变形与受力双重标准控制。
     4.针对三种工法提出改进与优化,并进行了力学验证。
     5.针对黄土围岩中锚杆的拉拔试验,修正了基于剪滞理论的锚杆轴力与剪力计算式,并用于评价锚杆-围岩界面强度;基于中性点理论研究了锚杆-黄土围岩的相互作用机制,指出围岩不同部位的变形模式是锚杆作用与受力大小的决定性因素。
     6.采用数值分析与现场1:1原型支护试验结果,对系统锚杆在黄土隧道中的锚固效果进行了研究,指出拱部锚杆作用小,边墙锚杆有一定作用。
     7.根据黄土的结构性及喷射混凝土硬化,建立了支护钢架+喷混组合体的平面受力分析方法,得出快速硬化条件下格栅+喷混与型钢+喷混支护能力相当。
     8.采用三维分析方法,对型钢与格栅在大断面黄土隧道中的支护机制与支护能力进行了分析,指出两者的主要差别在于对水平位移的约束上,而对约束拱部的整体沉降差别不大。
     9.采用现场1:1原型支护试验结果对格栅与型钢的支护性能进行对比分析,发现快速硬化条件下两者差距不大,均可在断面黄土隧道中采用。
With much domestic investment being used for transport infrastructure, groups of loess tunnels with large cross section will soon appear in the west of China. The railway passenger delicated line from Zhengzhou to Xi'an, which has taken the lead in building, includes a lots of loess tunnels. These tunnels have a cross section of more than 170 m~2 that broke the history record in loess region. Loess ground is so special and weak that this building project will have to encounter huge challenge. At present, there is quite a lack in relative construction & design experience and necessary guidance of criterion for large loess tunnel, for that reason the research of constructing technology and support theory seems very urgent. This dissertation firstly carries out a study on the mechanical behavior of large loess tunnel by multiform methods.
     1. Through the research of special loess property in passenger delicated line, it is pointed out that loess's structural strength could be concluded into bilinear yielding rule, and that vertical joint could be treated as ubiquitous joint. Both of them have different growth environment.
     2. According to loess's special property, bilinear constitutive model should be adopted for tunnel's mechanical analysis. The results reveal that structural strength, with a little effect on displacement form, affects mainly plastic zone and the magnitude of displacement, and that vertical joint affect not only displacement mode but also breakage form of wall rock.
     3. By three-dimensional numerical method and monitoring data from experimental tunnel, constructing schemes that include method of double side-wall, CRD and arch lead hole, has been studied in dynamic mechanics process. It comes to the conclusion that either shallow burial or deep burial is not enough secure. Some typical characters, such as big displacement magnitude and release ratio, durative deformation and high early deformation, great support stress, etc, will occur synchronously in large loess tunnel. Monitoring method suggests support deformation should be controlled in shallow burial condition, and double control of support stress and deformation should be done in deep burial condition.
     4. Based on mechanical character of three methods above, countermeasure or optimization is proposed to make the tunnel construction safe. Numerical analysis validates the amendatory effect.
     5. To obtain cohesion strength between rockbolt and loess ground, shear-lag theory is modified to evaluate rockbolt pull-out test. On the basis of midpoint principle and data fit of numerical analysis, interaction mechanism of rockbolt-ground is studied, and finally finds that deformation mode occurring at different rock wall location will bring a critical effect to rockbolt axial force.
     6. Through numerical analysis and 1:1 antetype test, anchor effect of systemic rockbolt in large loess tunnel is investigated. The result shows its' weak in the tunnel crown and work relatively well in the sidewall.
     7. In term of loess' structural strength and hardening of shotcrete, plane method is created for analyzing the combined effect of steel rib and shorcrete. The outcome indicates that under fast hardening lattice girder and profiled bar have the same support effect.
     8. By three-dimensional numerical method, it is pointed out that the difference between lattice girder and profiled bar is in the resistance capability to horizontal displacement, not in the resistance to arch settlement.
     9. 1:1 antetype support experiment is used to compare lattice girder with profiled bar, detecting that under fast hardening they have a little distinction. All of them may be applied in large loess tunnel.
引文
[1]乔定平,李增均.黄土地区工程地质[M].北京:水利电力出版社,1990.
    [2]王永焱,林在贯.中国黄土的结构特性及物理力学性质[M].北京:科学出版社,1990.
    [3]姚惠发,刘新荣,钟祖良等.黄土连拱隧道施工方法探讨[J].地下空间与工程学报,2005,27(6):695-697.
    [4]刘新荣,孙辉,陈晓江等.黄土连拱隧道二次衬砌的结构分析与监测研究[J].岩土工程学报,2005,27(6):695-697.
    [5]铁道第二勘察设计院.西安轨道交通一号线初步设计图,2005.
    [6]郑余朝.三孔并行盾构隧道近接施工的影响度研究[D].成都,西南交通大学博士学位论文,2006.
    [7]龚建伍.扁平大断面小净距公路隧道施工力学研究[D].上海,同济大学博士学位论文,2008.
    [8]喻渝,杨建民.黄土隧道衬砌设计及工法研究科研报告[R].成都,2005.
    [9]高扬,喻渝,陈赤坤.黄土隧道下穿高速公路科研报告[R].成都,2005.
    [10]铁道第二勘察设计院主编.铁路隧道设计规范[S].TB10003-2005.
    [11]重庆交通科研设计院主编.公路隧道设计规范[S].JTG D70-2004.
    [12]关宝树.隧道工程施工要点集[M].北京:人民交通出版社,2003.
    [13]沈珠江.理论土力学[M].北京:中国水利水电出版社,1999.
    [14]陕西省水利科学研究所土工研究室.西北黄土的性质[M].西安:陕西人民出版社,1959.
    [15]Gisbert Steinheuser.Extremely difficult environmental conditiona for construction of the 'Westtangente' motorway tunnel in Bochum.International Symposium Underground Works Environment,1983:197-209.
    [16]刘洪洲.大跨度扁坦隧道施工的力学响应及施工方法的研究[D].重庆,重庆大学博士学位论文,1999.
    [17]姚海波.大断面隧道浅埋暗挖法下穿既有地铁构筑物施工技术研究[D].北京,北京交通大学博士学位论文,2005.
    [18]曲海峰.扁平特大断面公路隧道荷载模式及应用研究[D].上海,同济大学博士学位论文,2007.
    [19]Katushi Miura,Hiroshi Yagi,Hiromichi Shiroma etc.Study on design and construction method for the New Tomei-Meishin expressway tunnels[J]. Tunnelling and Underground Space Technology,2003,(18):271-281.
    [20]Karmen Fifer Bizjak,Borut Petkovsek.Displacement analysis of tunnel support in soft rock around a shallow highway tunnel at Golovec[J].Engineering Geology,2004,(75):89-106.
    [21]高军.大跨隧道初期支护稳定性分析[J].矿山压力与顶板管理,2002,(1):45-47.
    [22]庄金波,薛书琢,张玉杰.曾家坪1#大跨车站隧道施工技术[J].隧道建设,2000,(4):38-42.
    [23]孙纬.西岙三线隧道施工技术[J].铁道建筑技术,2008(增):208-211.
    [24]周亚宇.大别山隧道围岩破碎带全断面开挖施工方案研究[J].隧道建设,2006,26(4):54-57.
    [25]黄伟钊.大断面软弱围岩隧道三台阶法施工[J].桥隧机械&施工技术,2007,(4):72-74.
    [26]许志仁,刘昌用,蒋中庸等.军都山隧道黄土段施工方法探讨[J].铁道建设,1989(4):6-9.
    [27]张儒林,卿光全.特浅埋双线铁路隧道软弱围岩大断面开挖爆破技术[J].铁道工程学报,1985,12:133-140.
    [28]李书静,陈中,谭成中.内昆线金珠林隧道大跨段穿越软弱围岩的探讨[J].西部探矿工程,2002,75(2):81-83.
    [29]陈振林.浅埋、偏压、三线铁路隧道结构优化设计[J].隧道建设,1996,(1):12-20.
    [30]薛继连.长梁山隧道软弱围岩施工方法[J].岩石力学与工程学报,2000,19(增4):1085-1094.
    [31]冯卫星,张国华,梁洪彪.京九铁路岐岭隧道进洞方案设计[J].石家庄铁道学院学报,1994,7(4):1-7.
    [32]雷升祥.渝怀铁路彭水长隧道施工技术研究[J].现代隧道技术,2004,41(1):51-58.
    [33]黄南清.浅埋软岩大跨度铁路隧道施工技术研究[J].施工技术,2006,35(11):75-77.
    [34]汶文钊.龙头山大跨度隧道浅埋段施工技术[J].西部探矿工程,2007.9:172-174.
    [35]黄成造,严宗雪.龙头山双洞八车道公路隧道的设计与施工[J].铁道建筑,2007,1:52-54.
    [36]陈耕野,刘斌,万明富等.韩家岭大跨度公路隧道应力监测分析[J].岩石力学与工程学报,2005,24(增2):5509-5515.
    [37]陈卫忠,于洪丹,郭小红等.厦门海底隧道海域风化槽段围岩稳定性研究[J].岩石力学与工程学报,2008,27(5):872-884.
    [38]张建斌.厦门翔安海底隧道陆域段CRD法位移监测分析[J].岩石力学与工程学报,2007,26(增2):3653-3658.
    [39]吴金牛,唐和青,孟维孝等.厦门翔安海底隧道穿越富水砂层施工技术[J].岩石力学与工程学报,2007,26(增2):3816-3822.
    [40]张明聚,林毅,黄明琦等.厦门翔安隧道洞口段管棚设计与施工[J].北京工业大学学报,2007,33(10):1056-1059.
    [41]张兴来,蒋树屏,韩道均等.真武山隧道设计技术特点[J].公路,2005.3:175-179.
    [42]李利平,李术才,张庆松等.浅埋大跨隧道现场试验研究[J].岩石力学与工程学报,2007,26(增1):3565-3571.
    [43]伍国军,陈卫忠,戴永浩等.浅埋大跨公路隧道施工过程和支护优化的研究[J].岩土工程学报,2006,28(9):1118-1123.
    [44]李言信,周远明等.京珠高速公路靠山椅隧道断面优化设计[J].广东公路交通,1998,54(增刊):18-20.
    [45]吕乾辉,马虎群,韩树兴等.六车道大跨连供隧道的施工技术[J].中外公路,2007,27(5):89-92.
    [46]李玉文,王联.三车道公路隧道的设计与施工[J].世界隧道,1999,5:33-36.
    [47]李通林,谭学术,刘传伟.矿山岩石力学[M],重庆:重庆大学出版社,1984.
    [48]蔡美峰.岩石力学与工程[M],北京:科学出版社,2002.
    [49]张咸恭.中国工程地质学[M],北京:科学出版社,2000.
    [50]刘春.深埋大断面隧道施工力学性态研究[D],重庆,重庆大学博士学位论文,2007.
    [51]陈南秋.非的对称连拱隧道动态施工力学模拟研究[D],重庆,重庆大学博士学位论文,2005.
    [52]崔茂玉.公路隧道三维动态信息控制与施工力学分析研究[D],上海,同济大学博士学位论文,2000.
    [53]王兵等.通过软弱围岩的双车道公路隧道模型试验[J].公路, 1993(5):29-34.
    [54]李志业,王明年,翁汉民.大跨度公路隧道结构模型试验研究[J].铁道学报,1996,18(2):114-120.
    [55]王明年,何川,翁汉民等.3车道隧道模型试验研究及有限元分析[J].公路,1995,(9):19-28.
    [56]蒋树屏,刘洪洲,鲜学福.大跨度扁坦隧道动态施工的相似模拟与数值分析探究[J].岩石力学与工程学报,2000,19(5):567-572.
    [57]吴梦军,黄伦海.四车道公路隧道动态施工力学研究[J].岩石力学与工程学报,2006,25(增1):3057-3062.
    [58]万明富,海洪,刘斌.单洞四车道隧道开挖室内模型试验研究[J].东北大学学报(自然科学版),2007,28(2):266-269.
    [59]林刚,何川.连拱公路隧道施工方法模型试验研究[J].现代隧道技术,2003,40(6):1-6.
    [60]刘涛,沈明荣,陶履彬.连拱隧道动态施工模型试验与三维数值仿真模拟研究[J].岩石力学与工程学报,2006,25(9):1802-1808.
    [61]章元爱.铁路客运专线新型隧道衬砌结构的模型试验研究[J].四川建筑,2006,26(6):109-113.
    [62]周生国,黄伦海,蒋树屏等.黄土连拱隧道施工方法模型试验研究[J].地下空间与工程学报,2005,1(2):188-191.
    [63]来弘鹏,谢永利,杨晓华.公路隧道衬砌断面形式模型试验研究[J].岩土工程学报,2006,28(6):740-744.
    [64]张强勇,李术才,李勇.大型分岔隧道围岩稳定性与支护三维地质力学模型试验研究[J].岩石力学与工程学报,2007,26(增2):4051-4059.
    [65]李术才,王汉鹏,郑学芬.分岔隧道稳定性分析及施工优化研究[J].岩石力学与工程学报,2008,27(3):447-457.
    [66]张有天.隧道施工期变形过程分析[J].岩石力学与工程学报,1992,11(1):63-71.
    [67]孙均,朱合华.软弱围岩隧洞施工性态的模拟与分析[J].岩土力学,1994,(15).
    [68]孙均,张德兴,张玉生.深层隧洞围岩的粘弹-粘塑性有限元分析[J].同济大学学报,1998,(1).
    [69]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M],北京:科学出版社,1996.
    [70]王明年,关宝树,何川.三车道公路隧道在不同构造应力作用下的力学行为研究[J].岩土工程学报,1998,20(1):51-55.
    [71]曾小清,张庆贺.隧道施工过程的解析与数值结合方法[J].岩土工程学报,1998,20(1):14-17.
    [72]卢耀宗,杨文武.莲花山大跨度连拱隧道施工方法研究[J].中国公路学报,2001,14(2):75-77.
    [73]徐林生,孙均.洋碰隧道CRD工法施工过程的动态仿真数值模拟研究[J].地质灾害与环境保护,2001,12(1):58-67.
    [74]蒋树屏,胡学兵.云南扁平状大断面公路隧道施工力学响应数值模拟[J].岩土工程学报,2004,26(2):178-182.
    [75]丁春林,孟祥兵,陈力.城市地铁喇叭口过渡段隧道施工技术研究及数值模拟分析[J].岩石力学与工程学报,2004,23(15):2528-2533.
    [76]黄文生,张震,阳军生.牛湖山大断面公路隧道稳定性数值分析[J].长沙理工大学学报(自然科学版),2006,3(1):6-10.
    [77]吴波,刘维宁,高波等.地铁分岔隧道施工性态的三维数值模拟与分析[J].岩石力学与工程学报,2004,23(18):3081-3086.
    [78]张延新,蔡美峰,乔兰等.高速公路隧道开挖与支护力学行为研究[J].岩石力学与工程学报,2006,25(6):1284-1289.
    [79]霍玉华.隧道围岩变形量预测的灰色模型应用比较研究[J].北京交通大学学报,2006,30(4):42-45.
    [80]田执祥,乔春生,腾文彦等.基于支持向量机的隧道变形预测方法[J].中国铁道科学,2004,25(1):86-90.
    [81]李宏建.隧道变形预测的灰色Verhulst模型[J].石家庄铁道学院学报,2000,13(4):28-30.
    [82]任松,姜德义,蒋再文等.隧道围岩应力时序的神经网络预测模型[J].重庆大学学报(自然科学版),2006,29(4):77-86.
    [83]王树栋,刘开云.长达隧道软弱围岩施工大变形智能预测方法[J].中国铁道科学,2008,29(2):82-87.
    [84]姜德义,任松,刘新荣等.隧道拱顶下沉时序遗传算法神经网络预测模型[J].地下空间与工程学报,2006,2(4):547-550.
    [85]陈南秋,张永兴,陈建功.基于BP网络动态预测预报轻轨隧道围岩位移[J].公路交通科技,2004,21(2):65-69.
    [86]丁祥,林宝龙,朱永全.堡镇隧道围岩变形的神经网络预测[J].石家庄 铁道学院学报,2007,20(1):39-43.
    [87]李元松,李新平,张成良.基:FBP网络的隧道围岩位移预测方法[J].岩石力学与工程学报,2006,25(增1):2769-2773.
    [88]朱道建,杨林德,黄建勇.厦门海底隧道地表沉降控制效果分析及其预测[J].岩石力学与工程学报,2007,26(11):2356-2362.
    [89]时亚昕,陶德敬,王明年.大断面浅埋暗挖隧道施工引起的地表移动及变形预测[J].岩土力学,2008,29(2):465-474.
    [90]朱合华,张晨明,王建秀等.龙头山双连拱隧道动态位移反分析与预测[J].岩石力学与工程学报,2006,25(1):67-73.
    [91]铁道第一勘察设计院.黄土隧道设计施工难点[R],西安,2006.
    [92]Andrea Bistacchi,Matteo Massironi,Giorgio V.Dal Piaz,etc.3D fold and fault reconstruction with an uncertainty model:An example from an Alpine tunnel case study[J].Computers & Gepsociences,2008,(34):351-372.
    [93]Lisa Hernqvist,Asa Fransson,Gunnar Gustafson,etc.Analyses of the grouting results for a section of the APSE tunnel at Aspo Hard Rock Laboratory[J].International Journal of Rock Mechanics & Mining Science,2008,(1):1-11.
    [94]Kazuhiko Haruyama,Satoshi Teramoto,Kazuo Taira,etc.Constuction of large cross-section double-tier Metropolitan Inter-city Highway (Ken-O-Do) Ome Tunnel by NATM[J].Tunnelling and Underground Space Technology,2005,20:111-119.
    [95]S.Coulter,C.D.Martin.Effect of jet-grouting on surface settlements above the Aeschertunnel,Switzerland[J].Tunnelling and Underground Space Technology,2006,21:542-553.
    [96]D.Brox,H.Hagedorn.Extreme Deformation and Damage during the Construction of Large Tunnels[J].Tunnelling and Underground Space Technology,1999,14(1):23-28.
    [97]Fernando Rodriguez-Roa.Ground Subsidence due to a Shallow Tunnel in Dense Sandy Gravel[J].Journal of Geotechnical and Geoenvironmental Engineering,2002,128(5):426-434.
    [98]Monica Galdo Vega,Katia Maria Arguelles Diaz,etc.Numerical 3D simulation of a longitudinal ventilation system:Memorial Tunnel case[J].Tunnelling and Underground Space Technology,2008,(23):539-551.
    [99]I.Williams,N.Osborne & Aw Eng Thai.Recent Large-Diameter Tunnel Construction in Singapore Using Sprayed Concrete Linings[J].Tunnelling and Underground Space Technology,1999,14(4):527-538.
    [100]A.Aydin,A.Ozbek,I.Cobanoglu.Tunnelling in difficult ground:a case study from Dranaz tunnel Sinop,Turkey[J].Engineering Geology,2004,(74):293-301.
    [101]Katsushi Miura.Design and construction of mountain tunnels in Japan[J].Tunnelling and Underground Space Technology,2003,(18):115-126.
    [102]中国科学院土木建筑研究所土力学研究室.黄土基本性质的研究[R].北京:科学出版社,1961.
    [103]夏旺民.黄土弹塑性损伤本构模型及工程应用研究[D].西安,西安理工大学博士学位论文,2005.
    [104]蒋明镜沈珠江结构性粘土剪切带的微观分析[J].岩土工程学报,1998,20(2):26-30.
    [105]高国瑞.黄土的微结构分类与湿陷性[J].中国科学,1980,(12):1203-1208
    [106]高国瑞.中国黄土微结构[J].科学通报,1980(20):945-948
    [107]雷祥义.黄土的显微结构与物理力学性质指标之间的关系[J].地质学报,1989(2):12-16
    [108]刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社,1996.
    [109]张炜,张苏民.非饱和黄土的结构强度特性[J].水文地质工程地质,1990,(4):22-25.
    [110]田堪良,张慧沥等.黄土的结构性及其结构强度特性研究[J].水力发电学报,2005,24(2):64-67.
    [111]党进谦,李靖.非饱和黄土的结构强度与抗剪强度[J].水利学报,2001,(7):79-83.
    [112]胡再强,沈珠江,谢定义.结构性黄土的变形特性[J].岩石力学与工程学报,2004,23(24):4142-4146.
    [113]田堪良,张慧沥等.黄土的结构强度及其定量分析方法[R].中国岩石力学与工程学会第七次学术论文大会论文集,西安,2002:178-180.
    [114]李雯霞,米海珍,李如梦.含水量与围压对黄土结构性的影响[J].甘肃科学学报,2006,18(4):10-113.
    [115]王正贵,康国瑾,马崇武等.关于黄土垂直节理形成机制的探讨[J].中 国科学(B辑),1993,23(7):765-770.
    [116]陈存礼,胡再强,高鹏.原状黄土的结构性及其与变形特性关系研究[J].岩土力学,2006,27(11):1891-1896.
    [117]冯连昌,郑晏武.中国湿陷性黄土[M].北京:中国铁道出版社,1982.
    [118]卢全中,彭建兵.黄土体结构面的发育特征及其灾害效应[J].西安科技大学学报,2006,26(4):446-450.
    [119]姜海波,苏生瑞,倪万魁.陕北地区黄土节理对公路边坡稳定性的影响[J].工程地质学报,2006,14(3):360-364.
    [120]刘祖典,李靖,郭增玉等.陕西关中黄土变形特性和变形参数的探讨[J].岩土工程学报,1984,6(8):24-34.
    [121]沈珠江,胡再强.黄土的二元介质模型[J].水利学报,2003,(7):1-6.
    [122]沈珠江.结构性粘土的弹塑性损伤模型[J].岩土工程学报,1993,15(3):21-28.
    [123]沈珠江.结构性粘土的非线性损伤力学模型[J].水利水运科学研究,1993,(4):247-255.
    [124]夏旺民.黄土弹塑性损伤本构模型及工程应用研究[D].西安,西安理工大学博士学位论文,2005.
    [125]邵生俊,周飞飞,尤吉勇.原状黄土结构性及其定量化参数研究[J].岩土工程学报,2004,26(4):531-536.
    [126]邵生俊,李彦兴,周飞飞.湿陷性黄土结构损伤演化特性[J].岩石力学与工程学报,2004,(24):4161-4165.
    [127]谢定义,齐吉琳.土结构性及其定量化研究的新途径[J].岩土工程学报,1999,21(6):651-656.
    [128]谢定义.考虑土结构性的本构关系[J].土木工程学报,2000,33(4):35-41.
    [129]谢定义,齐吉琳,朱元林.土的结构性参数及其与变形强度的关系[J].水利学报,1999,(10):1-6.
    [130]谢定义,齐吉琳,张振中.考虑土结构性的本构关系[J].土木工程学报,2000,33(4):35-40.
    [131]夏旺民,郭增玉.Q1黄土的弹塑性软化模型[J].西安理工大学学报,2004,20(3):241-244.
    [132]夏旺民,郭增玉.Q1黄土的非线性弹性模型[J].工程力学,2002,23(增刊).
    [133]夏旺民,郭增玉.Q1黄土的弹塑性损伤模型[J].岩土力学,2004,25(9):1423-1426
    [134]夏旺民,郭金晓,郭增玉.应变空间Q1黄土的弹塑性模型[J].岩石力学与工程学报,2004,23(24):4147-4150.
    [135]陈存礼,何军芳,杨鹏.考虑结构性影响的原状黄土本构关系[J].岩土力学,2007,28(11):2284-2290.
    [136]Itasca Consulting Group,Inc.Theory and Background:Constitutive Models[M].FLAC~(3D) Manuals,2005.
    [137]罗禄森.郑西客运专线大断面黄土隧道二次衬砌设计方法研究[D].成都,西南交通大学硕士学位论文,2008.
    [138]孙均,侯学渊.地下结构[M].北京:科学出版社,1988.
    [139]关宝树.隧道力学概论[M].成都:西南交通大学出版社,1993.
    [140]中铁第一勘察设计院集团有限公司,中铁西南科学研究研究院有限公司,西南交通大学,等.大断面黄土隧道施工方法与监控技术研究阶段才成果总报告[R].西安,2008.
    [141]中铁一局集团有限公司.客运专线隧道工程施工技术指南[S].TZ214-2005.
    [142]中铁二局集团有限公司.铁路隧道施工规范[S].中华人民共和国行业标准,TB10204-2002,J163-2002.
    [143]中铁二院工程集团有限责任公司.铁路隧道监控量测技术规程[S].中华人民共和国行业标准,TB10121-2007.
    [144]王文杰.城市大断面浅埋隧道中导洞法施工安全性评价[J].现代隧道技术,2007,44(2):31-34.
    [145]韩桂武,刘斌,范鹤.浅埋黄土隧道衬砌结构受力分析[J].岩石力学与工程学报,2007,26(增1):3250-3256.
    [146]陈建勋,姜久纯,王梦恕.黄土隧道网喷支护结构中锚杆的作用[J].中国公路学报,2007,20(3):71-75.
    [147]王梦恕.地下工程浅埋暗挖技术通论[M].合肥:安徽教育出版社,2004.
    [148]郭小红,王梦恕.隧道支护结构中锚杆的功效分析[J].岩土力学,2007,28(10):2234-2239.
    [149]关宝树.隧道工程设计要点集[M].北京:人民交通出版社,2003.
    [150]程良奎.岩土锚固研究与新进展[J].岩石力学与工程学报,2005,24(21):3803-3811.
    [151]张乐文,汪稔.岩土锚固理论研究之现状[J].岩土力学,2002,23(5):627-631.
    [152]Abramento M,Whittle J A.Analysis of pullout tests for planar reinforcements in soil[J].Geotech Eng,1995,121(6):476-485.
    [153]Yue Cai,Esaki Tetsuro,Jiang Yujing.A rock bolt and rock mass interaction model[J].Rock Mechanics and Mining Sciences,2004,(41):1055-1067.
    [154]Cai Y,Esaki T,Jiang Y J.An analytical model to predict axial load in grouted rock bolt for soft rock tunneling[J].Tunnelling and Underground Space Technology,2004,(19):607-618.
    [155]蔡跃,蒋宇景,江崎哲郎.杆状支护系统的耦合模型及应用[J].岩石力学与工程学报,2003,23(6):1024-1028.
    [156]蒋忠信.拉力型锚索锚固段剪应力分布的高斯曲线模式[J].岩土工程学报,2001,23(6):696-699.
    [157]方勇,何川.全长粘结式锚杆与隧道围岩相互作用研究[J].工程力学,2007,24(6):111-116.
    [158]何思明,李新坡.预应力锚杆作用机制研究[J].岩石力学与工程学报,2006,25(9):1876-1880.
    [159]Li C,Stillborg B.Analytical models for rock bolts[J].International Journal of Rock Mechanics and Mining Sciences,1999,36:1013-1029.
    [160]Freeman T J.The behaviour of fully-bonded rock bolts in the Kielder experimental tunnel[J].Tunnels and Tunnelling,1978,(7):37-40.
    [161]王明恕.全长锚固锚杆机理的探讨[J].煤炭学报,1983,(1):40-47.
    [162]铁道第二勘察设计院,北京交通大学,西南交通大学,等.浅埋黄土隧道支护结构中锚杆的作用研究[R].成都,2007.
    [163]Tao Z,Chen J X.Bahavior of rock bolting as tunneling support[C].Proceedings of the International Symposium on Rock Bolting.Rotterdam:Balkema,1984:87-92.
    [164]Barley A D.Theory and practice of the single bore multiple anchor system[A].Proc.Int.Symp.On Anchors in Theory and Practice[C].Salzburg,1995:322-328.
    [165]Woods R I,Barkhordari K.The influence of bond stress distribution on ground design[A].Proc.Int.Symp on Ground Anchorages and Anchored Structures[C].London:Themas Telford,1997:300-306.
    [166]Fuller,P G..,Cox R H T.Mechanics load transfer from steel tendons of cement based grouted[A]. Fifth Australasian Conference on the Mechanics of structures and Materials[C], Melbourne: Published by Australasian Institute of Mining and Metallurgy, 1995.
    [167] Nakakyama, M. Beaudoin, B. A novel technique determining bond strength developed between cement paste and steel[J]. Cement and Concrete Research, 1987,22(3):478-488.
    [168] Hyett A J, Bawden W F, Reichert R D. The effect of rock mass confinement on the bond strength of fully grounted cable bolts[J]. Int. J,Rock Mech. Min. Sic. And Genomic. Abstr. 1992,29(5):503-524.
    [169] Jarred D J, Haberfield C M. Tendon/grout interface performance in grouted anchors[A]. Proc. Ground Anchorages and Anchored Structures[C]. London:Thomas Telford, 1997.
    [170] Gurung N. 1D analytical solution for extensible and inextensible soil/rock reinforcement in pull-out tests[J]. Geotextiles and Geomembranes, 2001,19(2):195-212.
    [171] Farmer I W. Stress distribution along a resin grounted anchor[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1975,12(3):347-352.
    [172] Windsor C R. Rock reinforcement systems[J]. Int. J Rock Mech. Min. Sci., 1997,34(6):919-931.
    [173] Morrison, J.K., Shah, S.P. and Jenq, Y.S. Analysis of fiber debonding and pullout in composites[J]. Journal of Engineering Mechanics, 1988,114(2):277-294.
    [174] Zhou L M, Mai Y W, Bailie C. Interfacial debonding and fibre pullout stresses, Part Ⅴ: A methodology for evaluation of interfacial properties[J].Journal of Materials Science, 1994,(29):5541-5550.
    [175] Gerrard, C, Rock bolting in thoery-a keynote lecture, "Rock Bolting", 1983:1-32.
    [176] X. Nie, Q. Zhang. A system of monitoring and dimensioning tunnel support[J]. Rock Mechanics and Rock Engineering, 1994,27(1):23-26.
    [177] T.Kitagawa, T.Kumeta, T.Ichizyo ect. Application of convergence confinement analysis to the study of preceding displacement of a squeezing rock tunnel[J]. Rock Mechanics and Rock Engineering, 1991,24(1):31-35.
    [178]S.Kiebassa,H.Duddeck.Stress-strain fields at the tunneling face:three-dimensional analysis for two-dimensional technical approach[J].Rock Mechanics and Rock Engineering,1991,(24):115-132.
    [179]Yii-Wen Pan.Yi-Ming Chen.Plastic zones and characteristics-line families for openings in elastic rock mass[J].Rock Mechanics and Rock Engineering,1990,(23):275-278.
    [180]Duddeck H.,Erdmann J.On structural design models for tunnels in soft soil[J].Underground Space,1985,(9):246-259.
    [181]Pan X.D,Reed M.B.A coupled distinct element-finite element method for large deformation analysis of rock mass[J].Rock Mech.Min.Sci.&Geomech,1991,28(1):93-99.
    [182]Brox D,Hagedorn H.Extreme deformation and damage during the construction of large tunnels[J].Tunneling and Underground Space Technology,1999,14(1):23-28.
    [183]G.Barla,J.C.Sharp,U.Raabagliati.Excavation and support optimization for a large underground storage facility in weak jointed chark[C].Proc.Int.Congress on Rock Mechanics,Aachen,Deuschland,1991,1:1067-1072.
    [184]R.K.Bhasin,N.Barton,E Grimstad.Comparison of predicted and measured performance of a large cavern in the Himalayas[J].Int.J.Rock Mech.Min.Sic.& Geomech.Abstr.1999,33(6):607-626.
    [185]王民寿,杨明举,李艳玲.锚杆支护对地下洞室围岩应力分布的影响[J].工程力学增刊,2001:532-536.
    [186]贺若兰,张平,李宁.拉拔工况下全长粘结锚杆工作机理[J].中南大学学报(自然科学版),2006,37(2):401-407.
    [187]杨振华.锚杆支护的现场试验和工程应用[J].矿业快报,2003,(412):23-25.
    [188]杨松林,徐卫亚,刘祖德.岩石锚杆拉拔实验数据处理及可靠度分析[J].岩石力学与工程学报,2003,22(1):61-64.
    [189]张发明,陈祖煜,刘宁.岩体与锚固体间粘结强度的确定[J].岩土力学.2001,22(4):470-473.
    [190]P.P.Oreste.A procedure for determining the reaction curve of shotcrete lining considering transient conditions[J].Rock Mechanics and Rock Engineering,2003,36(3):209-236.
    [191]P.P.Oreste,D.Peila.Modelling progressive hardening of shotcrete in convergence-confinement approach to tunnel design[J].Tunnelling and Underground Space Technology,19978,12(3):425-431.
    [192]杨其新,仇文革,关宝树.格栅钢架的特征曲线分析[J].铁道标准设计,1995.1:45-47.
    [193]常燕庭.喷射混凝土早期材料性质对支护效果的影响[J].长江科学院院报,1992,9(3):8-16.
    [194]Panet M.Analysis of convergence behind the face of a tunnel[J].Tunnelling 82:197-204.
    [195]铁道第二勘察设计院,北京交通大学,西南交通大学,等.大断面黄土隧道支护结构中型钢钢架和格栅钢架的适用性条件研究[R],成都,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700