用户名: 密码: 验证码:
水岩耦合过程及其多尺度行为的理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩体工程规模越来越大,复杂程度越来越高,人们对岩石这一天然地质材料的认识越来越深。不同尺度的岩石(体)富含有一系列软弱结构面和裂隙,成岩作用及成岩环境的差异或随机性造成了岩石(体)宏观结构和微观结构上的非连续性、非均质性、各向异性和非线弹性(DIANE),再加上不同地应力环境及其变化,形成了岩石(体)中大量方向各异的岩石微缺陷和岩体结构面,这些微缺陷和结构面对岩体的强度和变形以及渗透性起着至关重要的作用。本文主要研究岩石(体)的多尺度特性,提取多尺度信息,并结合数值计算方法,探索从岩石到工程岩体的力学特性、水力学特性及其耦合特性。目的是为实际工程行为分析和预测提供一种更为有效、更为精细的过程模拟和过程控制手段。
     本文首先提出了数字岩石(体)模型的概念,将空间岩石(体)尺度分为细观尺度、实验室尺度、工程尺度和区域尺度,给出了多尺度上数字岩石(体)模型的构建方法,包括基于数字图像处理技术的细观尺度数字岩石模型的构建方法、基于随机子结构模拟的实验室尺度数字岩石模型的构建方法和基于裂隙网络模拟的大尺度数字岩体模型的构造方法。提出了虚拟岩体工程的概念,并介绍了岩体工程虚拟现实技术的理论与应用前景。
     在此基础上,利用有限元方法,编制了研究水岩耦合作用的计算程序GeoCAAS,对构建的各种数字岩石(体)模型进行了力学和水力学特性以及水岩耦合效应的数值试验,通过数值试验研究,探讨了岩石(体)的力学与水力学特性与其内部结构之间的关系。
     利用均匀化方法,推导了从细观尺度到实验室尺度的水岩耦合控制方程,揭示了细观尺度和宏观尺度上信息的融合与联系。
     推导了具有圆形和椭圆形含水孔洞的岩石中极限水压力值,提出了水压敏感性表征系数,用于探讨孔隙尺寸对水岩耦合效应的影响。提出了多尺度级序有限元方法(MsHFEM),并利用多尺度有限元法(MsFEM)和MsHFEM研究了非均质岩石中的渗流过程。
With the rock engineering scale larger and larger, and its complexity higher and higher, people’s cognition to geological materials is more and more deep. Rock or rock mass is a kind of natural geological body which is rich in weak structure planes and fractures. The differences or the randomicity of its diagenesis and diagenetic environment lead to the discontinuous, inhomogeneous, anisotropic and non-elastic (DIANE) characters of rock masses in their macrostructures and microstructures. In addition, combined with different ground stress environment and its change, abundant rock mass structure planes with different directions are formed, which affects the deformation and seepage process and the strength of rock and rock mass. Multiscale properties of rock or rock mass are studied in this thesis. By extracting the multiscale information and combining them with numerical methods, the mechanical and hydraulic and their coupling properties are discussed from rock to engineering rock mass. The main purpose is to provide a more effective and finer method for behavior analysis and predicting of real engineering.
     The concept of digital rock or rock mass models is put forward firstly. The special rock or rock mass scale is divided to be meso-scale, lab-scale, engineering-scale and regional scale, and the modelling methods, including the meso-scale digital rock modeling based on the digital image process, the lab-scale digital rock modeling by random sub-structure simulation method and the large scale digital rock mass modeling by random fracture networks simulation method are given. Many inhomogeneous digital rock or rock mass models containing different sub-structures are modeling according to the various shape of natural engineering rock or rock mass. In addition, the concept of virtual rock engineering is presented, and the theory of rock mass virtual reality and its application are introduced.
     On the basis that have been mentioned, FEM-based computer codes, GeoCAAS (Geo Computer Aided Analysis System), are developed to study the mechanics, hydraulics, and the coupled process between them with the various digital rock or rock mass models. The relationship between mechanics and hydraulics properties of rock or rock mass and the sub-structures is discussed.
     The homogenization method is utilized to deduce the control equations of rock-water coupled process from meso-scale to lab-scale. The syncretization and relationship of the information between these two scales are revealed.
     The ultimate water pressure in rocks with circular and elliptic holes is deduced, and water pressure sensitivity characterizing coefficient is defined to discuss the influence of holes’scale on the water-rock coupled process. The multi-scale hierarchy finite element method (MsHFEM) is provided for multiscale probloms in rock engineering, and the multi-scale finite element method (MsFEM) and MsHFEM are applied to study the seepage process in heterogeneous rock mass.
引文
[1]王思敬,杨志法,傅冰骏.中国岩石力学与岩石工程的世纪成就与展望.第八次全国岩石力学与工程学术大会论文集, 2004:1-9.
    [2] Jaeger J C, Cook N G W, Zimmerman R W. Fundamentals of Rock Mechanics, 4th ed. Oxford: Blackwell, 2007.
    [3]傅冰骏. 21世纪我国岩石力学面临的机遇与挑战.岩土工程界, 2000, 3(4):9-12.
    [4]孙钧.迎接新世纪的岩石力学若干进展.第五届全国岩石力学与工程大会.上海:中国科技出版社, 1998:1-10.
    [5]王思敬.岩石力学与工程的新世纪、岩石力学新进展与西部开发中的岩土工程问题.中国岩石力学与工程学会第七次学术大会论文集.北京:中国科学技术出版社, 2002:1-3.
    [6]王思敬.地球内外动力耦合作用与重大地质灾害的成因初探.工程地质学报, 2002, 10(2):115-117.
    [7] Biot M A. General theory of three-dimensional consolidation. Journal of Applied Mechanics. 1941, 12: 155-164.
    [8] Bear J. Dynamics of Fluids in Porous Media. New York: Elsevier, l972.
    [9] Stephansson O, Hudson J A, Jing L. Coupled Thermo-Hydro-Mechanical- Chemical Processes in Geo-Systems: Fundamentals, Modelling, Experiments and Applications. Amsterdam: Elsevier, 2004.
    [10] Jing L, Stephansson O. Research Results from the DECOVALEX III & BENCHPAR Projects. International Journal of Rock Mechanics and Mining Sciences. 2005, 42 (5-6): 591-870.
    [11] Zhao J. Experimental studies of the hydro-thermo-mechanical behaviour of joints in granite [D]. Imperial College, London, 1987.
    [12] Bower K M, Zyvoloski G. A numerical model for thermo-hydro-mechanical coupling in fractured rock. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8):1201-1211.
    [13]刘亚晨.核废料贮存裂隙岩体水热耦合迁移及其与应力的耦合分析[博士学位论文].湖北:中国科学院武汉岩土力学研究所, 2000.
    [14]冯夏庭,丁梧秀.应力-水流-化学耦合下岩石破裂全过程的细观力学试验.岩石力学与工程学报, 2005, 24(9):1465-1473.
    [15]周辉,冯夏庭.岩石应力-水力-化学耦合过程研究进展.岩石力学与工程学报, 2006, 25(4):855-864.
    [16]王媛.裂隙岩体渗流及其与应力的全耦合分析[博士学位论文].南京:河海大学. 1995.
    [17]周创兵.裂隙岩体渗流场与应力场耦合分析研究[博士学位论文].武汉:武汉水利电力大学, 1995.
    [18]龚玉峰.裂隙岩体多场广义耦合分析及工程应用研究[博士学位论文].武汉:武汉大学, 2003.
    [19]周创兵,熊文林.双场耦合条件下裂隙岩体的渗透张量.岩石力学与工程学报, 1996, 15(4): 338-344.
    [20]刘建军,薛强.岩土工程中的若干流-固耦合问题.岩土工程界, 2004, 7(11): 27-30.
    [21]薛强,梁冰,刘晓丽,等.污染物在非饱和带内运移的流固耦合数学模型及其渐近解.应用数学和力学, 2003, 24(12): 1309-1318.
    [22]孔祥言.高等渗流力学.合肥:中国科学技术大学出版社, 1999.
    [23]周维垣.高等岩石力学.北京:水利电力出版社, 1990.
    [24]仵彦卿,张倬元.岩体水力学导论.成都:西安交通大学出版社, 1995.
    [25]杨天鸿,唐春安,徐涛,等.岩石破裂过程渗流特性--理论、模型与应用.北京,科学出版社, 2004.
    [26]朱珍德,郭庆海.裂隙岩体水力学导论.北京:科学出版社, 2006.
    [27]詹美礼,岑建.岩体水力劈裂机制圆筒模型试验及解析理论研究.岩石力学与工程学报, 2007, 26(6): 1173-1181.
    [28]王恩志,王洪涛,孙役.三维裂隙网络渗流数值模型研究.工程力学, 1997: 14(增):520-525.
    [29]张延军,王恩志,王思敬.非饱和土中的流-固耦合研究.岩土力学, 2004, 5(6): 999-1004.
    [30]王恩志,杨成田.裂隙网络地下水流数值模型及非连通裂隙网络水流的研究.水文地质工程地质. 1992, 19(1):12-14.
    [31]王恩志.岩体裂隙的网络分析及渗流模型.岩石力学与工程学报, 1993, 2(1):20-35.
    [32] Lomize G.M.. Flow in fractured rocks. Gesenergoizdat,Moscow,1951.
    [33] Louis C., A study of groundwater flow in jointed rock and its influence on the stability on rock masses. Rock.Mech.Res.Rep.10, Imp. Coll., London, 1969.
    [34] Romm E.S. Flow characteristics of fractured rocks. Nedra, Moscow, 1966.
    [35] Barenblatt G.I., Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J.Appl.Math.Mech., 1960, 24(5):1286-1035.
    [36] Warren J.E., Root P.J.. The behavior of naturally fractured reservoirs. J.Soc.Petrol Eng., 1963:245-255.
    [37] Snow D.T., Anisotropic permeability of fractured media. Water Resources Research, 1969, 5(6):1273-1289.
    [38] Long J C, Pemer J S, Wilson C R, et al. Porous media equivalents for networks of discontinuous fractures. Water Resources Research, 1982, 18(3):645-658.
    [39] Oda M., An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses. Water Resources Research, 1986, 22(13):1845-1856.
    [40]张有天,张武功.裂隙岩石渗透特性、渗流数学模型及系数量测.岩石力学, 1982, 8:41-52.
    [41]田开铭,万力.各向异性裂隙介质渗透性的研究与评价.北京:学苑出版社, 1989.
    [42] Sager B., Runchal A., Permeability of fractured rock: Effect of fracture size and data concertainties. Water Resources Research, 1982, 18(2):266-274.
    [43] Long J.C.S., Witherspoon P. A.. The relationship of the degree of interconnection to permeability in fractured networks. J.Geo.Res., 1985, 90(B4):3087-3098.
    [44] Miller L., Louis C.著.李世平,冯震海译,岩石力学(岩体水力学).北京,煤炭工业出版社, 1981.
    [45] Wittke W.. Rock Mechanics-Theory and Applications with Case Histories. Berlin: 1990:377-386.
    [46]谢和平.分形-岩石力学导论.北京:科学出版社, 1996.
    [47]谢和平,陈忠辉.岩石力学.北京:科学出版社, 2004.
    [48]蔡美峰.岩石力学与工程.北京:科学出版社, 2002.
    [49] Hudson J A, Harrison J P. Engineering Rock Mechanics: an introduction to the principles. New York: Pergamon, 2000.
    [50] Brady B H G, Brown E T. Rock mechanics for underground mining. 3rd ed. Dordrecht:springer, 2004.
    [51] Hoek E., 2007. Practical rock engineering, 2007 Ed. [2007-04-08]. http://www.rocscience.com/hoek/PracticalRock Engineering.asp
    [52] Hill R. The mathematical theory of plasticity. Oxford: Clarendon Press, 1950.
    [53] Charlez P A. Rock Mechanics. I: Theoretical Foundamentals. Pairs: Editions Technip, 1991.
    [54] Charlez P A. Rock Mechanics. II: Petroleum Applications. Pairs:Editions Technip, 1997.
    [55]毛昶熙,陈平.岩石裂隙渗流的计算与试验.水利水运科学研究, 1984, 3:29-37.
    [56]毛昶熙,段祥宝,李定方.网络模型程序化及其应用.水利水运科学研究, 1994, 3:197-207.
    [57]王泳嘉.离散单元法及其在岩土力学中的应用.沈阳:东北工业出版社, 1991.
    [58]冯夏庭.智能岩石力学.北京:科学出版社, 2000.
    [59]谢康和,周健.岩土工程有限元分析理论与应用.北京:科学出版社, 2002.
    [60]王勖成,邵敏.有限单元法基本原理和数值方法(第二版).北京:清华大学出版社, 1997.
    [61]朱伯芳.有限单元法原理与应用(第二版).北京:中国水利水电出版社, 1998.
    [62]周维垣,杨强.岩石力学数值计算方法.北京:中国电力出版社, 2005.
    [63]杨强,薛利军,王仁坤,等.岩体变形加固理论及非平衡态弹塑性力学.岩石力学与工程学报, 2005, 24(20):3704-3712.
    [64]陈胜宏.计算岩体力学与工程.北京:中国水利水电出版社, 2006.
    [65]石根华.数值流形方法与非连续变形分析.裴觉民,译.北京:清华大学出版社, 1997.
    [66]张雄,刘岩.无网格法.北京:清华大学出版社, 2004.
    [67]唐春安,赵文.岩石破裂全过程分析软件系统RFPA2D.岩石力学与工程学报, 1997, 16(5):507-508.
    [68]金峰,贾伟伟,王光纶.离散元-边界元动力耦合模型.水利学报, 2001, 32(1):23-27.
    [69] Cundall P. A.. UDEC-A Generalized distinct element program for modeling jointed rock. Final technical report to European Research Office, U.S.Army, 1980.
    [70] Xie H. Fractals in Rock Mechanics, Netherlands: Balkema A. A., 1993.
    [71] Jing L, Stephansson O. Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Application. Oxford: Elsevier Publishers, 2007.
    [72] Lewis R W, Schrefler A. The finite element method in the static and dynamic deformation and consolidation of porous media. New York: John Wiley and Sons, Inc.,1998.
    [73] Mohammadi S. Extended Finite Element Method: For Fracture Analysis of Structures. Oxford : Wiley-Blackwell, 2008.
    [74] Jing L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics & Mining Sciences, 2003, 40(3):283–353.
    [75] Jing L, Hudson J A. Numerical Methods in Rock Mechanics. International Journal of Rock Mechanics & Mining Sciences, 2002, 39(4): 409-427.
    [76] Smith I M, Griffiths D V. Programming the Finite Element Method. 4th ed. John Wiley and Sons, 2004.
    [77] Efendiev Y, Hou T Y. Multiscale Finite Element Methods: Theory and Applications. New York: Springer, 2008.
    [78] Jing L, Stephansson O. Fundamentals of Discrete Element Methods for Rock Engineering. Oxford: Elsevier Publishers, 2007.
    [79] Munjiza A. The Combined Finite-Discrete Element Method. Chichester: Wiley & Sons, 2004.
    [80]李晓红,卢义玉,康勇,等.岩石力学实验模拟技术.北京:科学出版社, 2007.
    [81] Stavrogin A N, Tarasov B G. Experimental Physics and Rock Mechanics. Rotterdam: A.A.Balkema,2001.
    [82]周思孟.复杂岩体若干岩石力学问题.北京:中国水利水电出版社, 998.
    [83] Mogi K. Experimental rock mechanics. London: Taylor & Francis, 2007
    [84] Terzaghi K. Die Berechnung der Durchlassigkeitszi!er des Tones aus dem Verlauf der hydrodynamischen Spannungsersceinungen (The calculation of the permeability number of clay from the course of the hydrodynamic stress phenomena. Academy of Sciences in Vienna,Minutes of Proceedings,Section for Mathematics and the Natural Sciences, PartⅡa, 1923, 132(3/4):125-138.). Originally published in 1923 and reprinted in From Theory to Practice in Soil Mechanics, New York: Wiley, 1960: 133-146.
    [85] Terzaghi K. Theoretical Soil Mechanies. New York: John Wiley and Sons, 1943.
    [86]徐曾和.渗流的流固耦合问题与应用[博士学位论文].沈阳:东北大学, 1998.
    [87] Biot M A. Consolidation settlement under a rectangular load distribution. Journal of Applied Physics, 1941, 12(5):426-430.
    [88] Biot M A, Clingan F M. Consolidation settlement of a soil with an impervious top surface. Journal of Applied Physics, 1941, 12(7): 578-581.
    [89] Biot M A. Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 1955, 26(2):182-185.
    [90] Biot M A, Willis D G. General solutions of the equations of elasticity and consolidation for a porous material. Journal of Applied Mechanics, Trans. ASME, 1956, 18: 91-96.
    [91] Biot M A, Willis D G. The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, Trans. ASME, 1957, 24:594-601.
    [92] Biot M A. Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range. The Journal of the Acoustical Society of America, 1956, 28(2):168-178.
    [93] Biot M A. Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher frequency range. The Journal of the Acoustical Society of America, 1956, 28(2):179-191.
    [94] Biot M A. Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 1962, 33(4):1482-1498.
    [95] Biot M A. Generalized theory of acoustic propagation in porous dissipative media. The Journal of the Acoustical Society of America, Part I, 1962, 34(5): 1254-1264.
    [96] Verruijt A.. Elastic storage of aquifers. //De Wiest R J M. Flow Through Porous Media, chapter 8. New York: Academic Press, 1969:331-376.
    [97] Savage W Z, Braddock W A. A model for hydrostatic consolidation of Pierre shale. Int J Rock Mech Min Sci Geomech Abstr, 1991: 28(5):345-354.
    [98]刘泽佳,李锡夔,武文华.多孔介质中化学-热-水力-力学耦合过程本构模型和数值模拟.岩土工程学报, 2004, 26 (6):707-803.
    [99]李锡夔,范益群非饱和土变形及渗流过程的有限元分析.岩土工程学报, 1998, 20(4):20-24.
    [100]武文华.非饱和土中热—水力—力学—传质耦合过程模拟及土壤环境工程中的应用[博士学位论文].大连:大连理工大学, 2002.
    [101] Li Xikui, Li Rongtao, Schrefler B A. A coupled chemo-thermo-hydro- mechanical model of concrete at high temperature and failure analysis. Int.J. Numer. & Anal. Methods in Geomechanics, 2006, 30(7):635-681.
    [102]张洪武,钟万勰,钱令希.饱和土壤固结分析的算法研究.力学与实践, 1993, 15 (1):20-22.
    [103]张洪武,钟万勰,钱令希.土体固结分析的一种有效算法.计算力学学报(计算结构力学及其应用), 1991, 8(4):389-395.
    [104] Zhang H W. Parametric variational principle for elastic-plastic consolidation analysis of saturated porous media. Int. J. Numer. Anal. Meths. Geomechanics, 1995, 19: 851-867.
    [105] Zhang H W. Dynamic finite element analysis for interaction between a structure and two-phase saturated soil foundation. Computers& Structures, 1995, 56(1):49-58.
    [106] Zienkiewicz O C, Shiomi T. Dynamic behavior of saturated porous media: the generalized Biot formulation and its numerical solution. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(1):71-96.
    [107]董平川,徐小荷.储层流固耦合的数学模型及其有限元方程.石油学报, 1998, 19(1):64-70.
    [108]徐曾和,徐小荷.可变形多孔介质中的一维非定常耦合渗流.应用力学学报, 1999, 16(4):47-52.
    [109]王恩志,王洪涛,孙役.双重裂隙系统渗流模型研究.岩石力学与工程学报. 1998, 17(4):400-406.
    [110] Witherspoon P A, Wang J S Y, Iawi K, et al. Validity of the cubic law for fluid flow in a deformable rock fracture. Water Resour.Res.,1980,16(6):1016-1024.
    [111] Wilson C.R., Witherspoon P.A.. Steady static flow in rigid networks for fractures. Water Resources Research, 1974, 10(2):328-335.
    [112] Long J.C.S., Gilmour P., Witherspoon P.A., A method for steady fluid flow in random three-dimensional networks of dis-shaped fractures. Water Resources Research, 1985, 21(8):1105-1115.
    [113] Noorishad J, Tsang C F, Witherspoon P A. Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous rocks:numerical approach. J. Geopyhs. Res., 1984, 89(B12):10365-10373.
    [114] Noorishad J, Tsang C F. Coupled thermohydroelasticity phenomena in variably saturated fractured porous rocks-formulation and numerical solution. //Stephansson O, Jing L, Tsang C F. Coupled Thermohydro-mechanical Processes of Fractured Media. Amsterdam: Elsevier, 93-l34, l996.
    [115] Barton N, Bandis S, Bakhtar K. Strength, deformationed conductivity coupling of rock joints. Int.J.Rock Mech. Min. Sci. & Geomech., Abstr., 1985, 22(3):121-140.
    [116] Nordqvist A.W., Tsang Y.W., Tsang C.F.. A variable aperture fracture network model for flow and transport in fractured rocks. Water Resources Research, 1992, 28(6):1703-1713.
    [117] Dershowitz W.S., A new three dimensional model for flow in fractured rock. Int.Assoc.Hydrogeol., 1985, (17):441-448.
    [118] Jing L, Baghbanan A. Stress and scale-dependency of the hydraulic properties of fractured rocks. Proc. ISRM symposium for young scholars, Beijing China, London:,Taylor & Francis Group, 2008:41-48.
    [119]井兰如,冯夏庭.放射性废物地质处置中主要岩石力学问题.岩石力学与工程学报,2006, 25(4):833-841.
    [120] Jing L, Hudson J A. Fundamentals of the Hydro-Mechanical Behaviour of Rock Fractures: Roughness Characterization and Experimental Aspects. Int. J. rock Mech. Min. Sci., 2004, 41(3):383.
    [121]刘继山.单裂隙受正应力作用时的渗流公式.水文地质工程地质, 1987, 14(2):32-33.
    [122]万力,李定方,徐志英.三维裂隙岩体渗流耦合模型及其有限元模拟.水文地质工程地质, 1995, 3:1-4.
    [123]杜广林,周维垣,沈大利,等.裂隙介质中的多重裂缝网络渗流模型.岩石力学与工程学报,2000, 19(增刊):1014-1018.
    [124]柴军瑞,仵彦卿.岩体渗流场与应力场耦合分析的多重裂隙网络模型.岩石力学与工程学报, 2000, 19(6):712-717.
    [125] Louis C A. Study on groundwater flow in jointed rock and its influence on the stability of rock masses[R]. London:Imperial College,1969.
    [126] Louis C. Rock hydraulics. // Muller L. Rock mechanics. 1974: 299-387.
    [127] Jones F O. A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate tocks. J.Petrol.Tech., 1975,21.
    [128] Snow D T, Rock fracture spacings, openings and porosities. J. Soil. Mech. Found. Div., Proc. ASCE, 1968, 94(SMI):73-91
    [129] Gale J E., The effects of fracture type ( Induced versus natural) on the stress-fracture closure permeability relationships. In: Proc. 23th Symp. On Rock Mech., Berkeley, California, 1982.
    [130] Iwai K. Fundamental studies of fluid flow through a single fracture [D]. Berkeley: University of California at Berkeley,1976.
    [131] Tsang Y W, Witherspoon P A. Hydromechanical behavior of a deformable rock fracture subject to normal stress. J.Geophs.Resear., 1981, 86(B10): 9187-9198.
    [132] Gangi A F. Variation of whole and fractured porous rock permeability with confining pressure. Int.J.Rock Mech. Min. Sci. & Geomech., Abstr., 1978, 15(4):249-257.
    [133] Walsh J B., A new model for analyzing the effect of fracture on compressibility. J.Geophs.Resear., 1979, 84(b7): 3532-3536.
    [134] Walsh J B., Effect of pore pressure and confining pressure on fracture permeability. Int.J.Rock Mech. Min. Sci. & Geomech., Abstr.,1981, 18(5):429-435.
    [135] Wang Sijing, Wang Enzhi. Recent study on coupled processes in geotechnical and geo-environmental fields in China. Geoproc2003, 2003:66-76.
    [136] Wang E Z, YUE Z Q. A dual fracture model to simulate large-scale flow through fractured rocks. Canadian Geotechnical Journal, 2002, 39(6): 1302-1312.
    [137]张玉卓,张金才.裂隙岩体渗流与应力耦合的试验研究.岩土力学. 1998, 19(2):59-62.
    [138]赵阳升,胡耀青.三维应力下吸附作用对煤岩体气体渗流规律影响的实验研究.岩石力学与工程学报, 1999, 18(6):651-653.
    [139]耿克勤.岩体裂隙渗流水力特性的实验研究.清华大学学报(自然科学版), 1996, 36(1):102-106.
    [140]沈洪俊,高海鹰,夏颂佑.应力作用下裂隙岩体渗流特性的试验研究.长江科学院院报, 1998, 15(3):35-39.
    [141]陈崇希,唐仲华.地下水流动问题的数值方法.武汉:中国地质大学出版社, 1990.
    [142] Esaki J. Shear-Flow coupling test on rock joints. Rroc.7th.int.Conf. ISRM, 1992.
    [143]朱学愚,谢春红.地下水运移模型.北京:中国建筑工业出版社,1990.
    [144]柴军瑞,仵彦卿.单裂隙水流对裂隙壁施加的拖曳力分析.工程地质学报, 2001, 9(1): 29-31.
    [145] [苏] K.C.巴斯宁耶夫, A.M.费拉西莫夫等编著.地下流体力学.北京:石油工业出版社, 1990.
    [146]杨延毅,周维垣.裂隙岩体的渗流-损伤耦合分析模型及其工程应用.水利学报, 1991, 5:19-27.
    [147]吴林高.渗流力学.上海:上海科技文献出版社, 1996.
    [148]朱珍德,孙钧.裂隙岩体非稳态渗流场与损伤场的耦合分析模型.四川联合大学学报, 1999, 3(4): 73-80.
    [149]薛禹群.地下水动力学.北京:地质出版社, 1997
    [150]郑少河,朱维申.裂隙岩体渗流损伤耦合模型的理论分析.岩石力学与工程学报, 2001, 20(2):156-159
    [151]毛旭熙.渗流计算与分析.北京:水利电力出版社, 1990.
    [152] Nemat-Nasser S, Hori M, Micromechanics: overall properties of heterogeneous materials. Elsevier: The Netherlands, 1993
    [153]章根德,王羽,石占中.地质材料中的流-固耦合研究岩石力学与工程学报, 2000, 19(增):856-859
    [154] Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: I. Yield criteria and flow rules for porous ductile media. ASME J.Eng.Mat &Tech., 1977, 99: 2-15.
    [155]吉小明,白世伟,杨春和.岩体地下流固耦合理论的研究综述.岩土力学与工程学报, 2001, 20:846-849.
    [156] Uyakon P S. Pinder G F. Computation Methods in Subsurface Flow. New York : Academic Press, 1983.
    [157] Istok J. Groundwater Modeling by the Finite Element Method. Washington DC: American Geophysical Union, 1989.
    [158] Bach L B..Soil water movement in response to temperature gradients: Experimental measurements and model evoluation. Soil Sci.Soc.Am.J. 1992, 56:37-46.
    [159] Cary L W. Water flux in moist soil: Thermal vs suction gradients. Soil Sci, 1965, 100:168-175.
    [160] Cary L W. Soil moisture transport due to thermal gradients.proctical aspects. Siol.Sci.Soc.Am.Proc, 1966, 30:428-433.
    [161]项彦勇.裂隙岩体中非饱和渗流与运移的概念模型及数值模拟[J].工程地质学报,2002,10(2):204-209.
    [162] Milly C D, Advances in modeling of water in the unsaturated zone, Transport in Porous Media,1998,3:491-514
    [163] Pcck A J., Moisture profile development and air compression during water uptake by bounded porous bodices:2. Horizontal columns, Soil Sci. 1965a,100:333-340
    [164]张辉.裂隙孔隙岩体非饱和渗透率的探讨.云南水力发电, 2002(1):54-57.
    [165] Harrison J P, Hudson J A. Engineering rock mechanics. Part 2:illustrative workable examples. In: S.arkk.a P, Eloranta P, editors. Oxford: Pergamon, 2000.
    [166] Hudson J A. Rock engineering case histories: key factors, mechanisms and problems. // Sarkka, E. Rock Mechanics-a challenge for society. Rotterdam: Balkema, 2001:13-20.
    [167]刘晓丽,水气二相流与双重介质变形的流固耦合数学模型[硕士学位论文].辽宁工程技术大学硕士学位论文.
    [168]王思敬.岩体工程地质力学中的数值分析.岩体工程地质力学问题(八),科学出版社, 1987.
    [169]王思敬.工程地质学的任务与未来.工程地质学报. 1999, 7(3):195-199.
    [170]王思敬.环境工程地质评价、预测与对策分析.地质灾害与环境保护, 1997,8(1):27-34.
    [171]王思敬.水库地区的水岩作用及其地质环境影响.工程地质学报, 1996, 4(3):1-9.
    [172]谢新宇,朱向荣,谢康和,等.饱和土体一维大变形固结理论新进展.岩土工程学报, 1997, 19(4):30-38.
    [173]同登科,杨河山,柳毓松.油气流-固耦合渗流研究进展[J].岩石力学与工程学报,2005,24(24):4 594-4 602.
    [174] Rutqvist J, Wu Y S, Tsang C F, et al.A modeling approach for analysis of coupled multiphase fluid flow,heat transfer,and deformation in fractured porous rock.International Journal of Rock Mechanics and Mining Sciences, 2002, 39(4):429-442.
    [175] Bower K M, Zyvoloski G. A numerical model for thermo-hydro-mechanical coupling in fractured rock. International Journal of Rock Mechanics and Mining Sciences, 1997,34(8):1201-1211.
    [176] Tsang C F, Jing L R, Stephansson O, et al. The DECOVALEXⅢProject: a summary of activities and lessons learned. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(5):593-610.
    [177] Mandel J. Balancing domain decomposition. Comm. Appl. Num. Meth. Eng., 1993, 9(3):233-241.
    [178] Farhat C, Roux F X. A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Num. Meth. Eng., 1991,32(6):1205-1227.
    [179] Huhes T J R, Levit J, Winget J. Eelement-by-element implicit algorithms for heat conduction analysis. Journal of Engineering Mechanics, 1983, 109(6):576-585.
    [180] Kazemi H,Merrill J R, Porterfield K L, et al. Numerical simulation of water-oil flow in naturally fractured reservoir. Trans. AIME, 1976, 261:317-326.
    [181] Samier P, Fontaine G. Coupled analysis of geomechanics and fluid flow in reservoir simulation[C]. // Proceedings of the SPE Reservoir Simulation Symposium.Houston, USA, 2003:485-497.
    [182] Bagheri M, Settari A. Modeling of geomechanics in naturally fractured reservoirs[C] // Proceedings of the SPE Reservoir Simulation Symposium. Woodlands, USA, 2005:235-253.
    [183] Suan E, Minkoff C, Stone M, et al. Coupled fluid flow and geomechanical deformation modeling. Journal of Petroleum Science and Engineering, 2003, 38:37-56.
    [184] Mckee C R, Bumb A C, Koenig R A. Stress-dependent permeability and porosity of coal and other geologic formations. SPE Formation Evaluation, 1988,3(1):81-91.
    [185] Thomas L K, Chin L Y, Pierson R G, et al. Coupled geomechanics and reservoir simulation. SPE Journal, 2003,8(4):350-358.
    [186] Rosenblum L, Earnshaw R A, Encarnacao J, et al. Scientific Visualization: Advances and Challenges. New York: Academic Press, 1994.
    [187] Dershowitz W S,Einstein H H. Three-dimensional flow modeling in jointed rock masses[A].// Proc. the 6th Int. Cong.,ISRM[C], 1987. 87-92.
    [188]王恩志,王洪涛,邓旭东.“以管代孔”-排水孔模拟方法探讨.岩石力学与工程学报, 2001, 20(3):346-349.
    [189]王恩志,王洪涛,邓旭东.以缝代井列-排水孔幕模拟方法探讨.岩石力学与工程学报, 2001, 20(6): 750-753.
    [190]郑少河,赵阳升,段康廉.三维应力作用下天然裂隙渗流规律的实验研究.岩石力学与工程学报,1999,18(2):133-136.
    [191] Bazant Z P, Cheng E P. Scaling of structural failure. Appl Mech Rev, 1997, 50(10): 593-627.
    [192] Bazant Z P, Planas J. Fracture and Size Effect in Concrete and Other Quasibrittle Materials. Boca Raton:CRC Press,1998.
    [193]王利,高谦.考虑尺寸效应的裂隙岩体强度损伤力学研究.矿冶工程, 2006, 26 (6):20-24.
    [194] Barenblatt G I. Micromechanics of fracture. // Bodner S R, Singer J, Solan A, et al. Theoretical and Applied Mechanics. Amsterdam: Elsevier Science Publishers,1992.
    [195]白以龙,汪海英,柯孚久,等.从“哥伦比亚”号悲剧看多尺度力学问题.力学与实践, 2005, 27(3):1-6.
    [196]何国威,夏蒙梦,柯孚久,等.多尺度耦合现象:挑战和机遇[J].自然科学进展, 2004, 14(2):121-124
    [197] Bai Y L, Xia M F, Wei Y J, et al. Non-Equilibrium Evolution of Collective Microdamage and Its Coupling with Meso-scopic Heterogeneities and Stress Fluctuations. // Horie Y, Davisona L, Thadhani N N. Shock Dynamics and Non- Equilibrium Mesoscopic Fluctuations in Solids. New York: Springer-Verlag, 2002: 255-278.
    [198]张征,刘更,刘天祥,等.计算材料科学中桥域多尺度方法的若干进展.计算力学学报, 2006, 23(6)652-658.
    [199] Hou T Y, Wu X H. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media. J. Comput Phys. , 1997, 134:169-189.
    [200] Aarnes J, Hou T Y. Multiscale Domain Decomposition Methods for Elliptic Problems with High Aspect Ratios. Acta Mathematicae Applicatae Sinica, 2002, 18(1): 63-76.
    [201] Efendiev Y, Hou T Y, Luo W. Preconditioning of Markov Chain Monte Carlo Simulations Using Coarse-Scale Models. SIAM Journal of Scientific Computing, 2006, 28(2): 776-803.
    [202] Efendiev Y, Hou T Y, Strinopoulos T. Multiscale Simulations of Porous Media Flows in Flow-Based Coordinate System. Comput. Geoscience , 2008, 12:257-272.
    [203]岳中琦.岩土细观介质空间分布数字表述与相关力学数值分析的方法、应用和进展.岩石力学与工程学报, 2006, 25(5):875-888.
    [204]陈沙,岳中琦,谭国焕.基于数字图像的非均质岩土工程材料数值分析方法.岩土工程学报, 2005, 27(8):956-964.
    [205] Chen S, Yue Z Q, Tham L G. Digital image-based numerical modeling method for prediction of inhomogeneous rock failure. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(6):939-957.
    [206] Wittmann F H, Roelfdtra P E, Sadouki H. Simulation and analysis of composite structures. Mater Sci Engng., 1984, 68:239-248.
    [207]王宗敏.不均质材料(混凝土)裂隙扩展及宏观计算强度与变形[博士学位论文].北京:清华大学, 1996.
    [208]刘光廷,王宗敏.用随机骨料模型模拟混凝土材料的断裂.清华大学学报, 1996, 1:84-89.
    [209]刘光廷,高政国.三维凸型混凝土骨料随机投放算法.清华大学学报(自然科学版), 2003, 43(8):1120-1123.
    [210]高政国,刘光廷.二维混凝土随机模型研究.清华大学学报(自然科学版), 2003, 43(5):710-714.
    [211] Cacas M C, Ledoux E, de Marsily G, et al. Modeling fracture flow with a stochastic discrete fracture network: calibration and validation,1. the flow model[J]. Water Resour. Res., 1990, 26(3): 479-489.
    [212] Kulatilake P H S W. Fitting Fisher distributions to discontinuity orientation data. J. of Geological Education, 1985:33, 266–269.
    [213] Priest S D. Discontunuity Analysis for Rock Engineering. New York: Chapman & Hall Press, 1993.
    [214]刘汉东,姜彤,黄志全,等.岩体力学参数优选理论及应用.郑州:黄河水利出版社, 2006.
    [215]黄润秋,许模,胡卸文,等.复杂岩体结构精细描述及其工程应用.北京:科学出版社, 2004.
    [216] Kulatilake P H S W, Asce A M. Estimating Elastic Constants and Strength of Discontinuous Rock. Rock Mech. Rock Engng, 1985, 19(2):847-864.
    [217] Huang T H, Chang C S, Yang Z Y. Elastic Moduli for Fractured Rock Mass. Rock Mech. & Rock Engng., 1995, 28(3):135-144.
    [218]晏石林,黄玉盈,陈传尧.贯通节理岩体等效模量与弹性参数确定.华中科技大学学报, 2001,29(6): 60-63.
    [219]晏石林,黄玉盈,陈传尧.非贯通节理岩体等效模量与弹性参数确定.华中科技大学学报, 2001,29(6): 64-67.
    [220]晏石林,潘朋志,吴代华.有限元法预测贯通节理岩体三维等效弹性参数.武汉理工大学学报, 2003, 25(4):47-50.
    [221]杨海天,邬瑞锋,王刚,李新宇.节理岩体的复合本构有限元仿真计算.岩土工程学报, 1996: 18(6): 69-76.
    [222]张志刚,乔春生.改进的节理岩体变形模量经验确定方法及其工程应用.工程地质学报, 2006: 14(2):233-238.
    [223]崔玉红,周世才,陈蕴生.非贯通细观裂纹节理介质CT试验的数值模拟及影响参数讨论.岩石力学与工程学报, 2006, 25(3): 630-640.
    [224]王学滨.节理倾角对单节理岩样变形破坏影响的数值模拟.四川大学学报(工程科学版), 2006, 38(2): 24-29.
    [225]张玉军.节理岩体等效模型及其数值计算和室内试验.岩土工程学报, 2006: 28(1): 29-32.
    [226]李同录,罗世毅,何剑,等.节理岩体力学参数的选取与应用.岩石力学与工程学报, 2004, 23 (13): 2182-2186.
    [227] Ulrich H. Homogenization and porous Media. New York: Springer, 1996.
    [228] Iliev O, Mikelic A, Popov P. Fluid-structure interaction in deformable porous media. Tech. Rep. 65, Fraunhofer ITWM, Kaiserslautern, Germany. 2004. [2008-06-08] http://www.itwm.de/zentral/download/berichte/bericht65.pdf.
    [229]张守良,沈琛,邓金根.岩石变形及破坏过程中渗透率变化规律的实验研究.岩石力学与工程学报, 2000, 19(增):885-888.
    [230]李世平,李玉寿,吴振业.岩石全应力应变过程对应的渗透率-应变方程.岩土工程学报, 1995, 17(2):13-18.
    [231]张宜虎.岩体等效水力学参数研究[博士学位论文].武汉:中国地质大学, 2006.
    [232] Oda M,Takemura T,Aok T. Damage growth and permeability change in triaxial compression tests of Inada granite[J]. Mechanics of Materials,2002,34(6):313-331.
    [233]速宝玉,詹美礼,赵坚.光滑裂隙水流模型试验及其机制初探.水利学报, 1994, (5): 19-24.
    [234]速宝玉,詹美礼,王媛.裂隙渗流与应力耦合特性的试验研究.岩土工程学报, 1997, 19(4):73-77.
    [235] Sijing Wang, Xiaoli Liu, Enzhi Wang, Hydro-geodynamic analysis and its application, 2nd International Conference on Coupled T-H-M-C Processes in Geosystems(GeoProc 2006), 2006:14-30.
    [236]陈刚林,周仁德.水对受力岩石变化破坏宏观力学效应的实验研究.地球物理学报, 1991, 34(3):335-342.
    [237]钱七虎.非线性岩石力学的新进展-深部岩体力学的若干关健问题. //西部大开发中的岩石力学与工程问题-第8次全国岩石力学与工程学术大会论文集.北京:科学出版社, 2004.
    [238]何满潮,钱七虎.深部岩体力学研究进展. //第九届全国岩石力学与工程学术大会论文集.北京:科学出版社, 2006.
    [239] Hoek E, and Brown E T.. Underground excavations in rock. London: Instn Min. Metall., 1980.
    [240]薛禹群,叶淑君,谢春红.多尺度有限元法在地下水模拟中的应用.水利学报, 2004(7) :7-13.
    [241] Murad M A, Loula A F D. Improved accuracy in finite element analysis of Biot’s consolidation problem. Computer Methods in Applied Mechanics and Engineering, 1992, 95:359–382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700