用户名: 密码: 验证码:
液压挖掘机振动掘削机理及其过程优化建模与智能控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
至今为止,广泛应用的液压挖掘机由于掘削方式所限,仍然存在着能量利用率较低以及作业能力相对不足等严重问题,如何对工程机械中的能耗大户——液压挖掘机实施节能减排和智能控制,已成为工程技术研究的焦点之一。为了直接减小液压挖掘机掘削阻力,使在掘削作业过程中达到低能耗、高效率,并具有一定的自适应能力,本文以国家863课题[2003AA430200]“挖掘机的机电一体化及制造信息化”为依托,结合教育部“新世纪优秀人才支持计划”[NCET-05-0697],将振动理论应用于液压挖掘机掘削过程,采用理论分析与实验研究相结合的方法,以期探索一种合理有效的新型液压挖掘机土壤掘削方法,并对其掘削过程进行优化建模与智能控制策略研究,论文的主要工作如下:
     (1)研究了土壤静强度特性、动强度特性,探讨了土壤掘削原理及失效机理,进行了岩土破碎过程静态加载和动态载荷作用下的仿真实验研究,得到了动态载荷振动冲击作用不但可以大幅降低掘削阻力,也可以改善刀具的受力方式,从而使得岩体在低于破坏强度时就产生破坏的结论。
     (2)针对液压挖掘机振动掘削过程铲斗激振力检测信号不可避免地受到噪声干扰的实际情况以及该检测信号含噪声特征,应用软门限方法对以宽带随机噪声为背景的信号IMF分量作门限处理,提出了一种基于EMD的含噪信号噪声处理的算法,并进行了仿真应用研究,所获得的去噪处理算法为分析提取铲斗激振力信号的特征线谱提供了有力的工具。
     (3)建立了基于LS-SVM的液压挖掘机振动掘削过程土壤参数在线辨识算法,并在此基础上进行了土壤固有频率等参数的在线辨识仿真研究,在线辨识仿真及共振柱实验法实验结果表明,该土壤参数在线辨识算法具有更小的误差、更好的辨识能力和较高的辨识精度,更能适合于动态系统的辨识。
     (4)分析了激振频率、振幅和插入速度等对振动掘削阻力的影响,并对其进行了参数优选匹配,基于振动参数的优选匹配试验的极差分析结果,利用正交扩展型函数链神经网络建立了土壤振动掘削阻力软测量模型,并采用函数链神经网络进行了相应的在线自校正。通过与实测值对比验证了该软测量模型的建模精度和泛化能力。
     (5)建立了静态掘削、正弦波激振掘削、三角波激振掘削三种掘削方式的液压挖掘机掘削功率消耗模型,并进行了实验研究,找到了一种节能效果较好的振动掘削方式。
     (6)开发了一种将专家控制、非线性PI控制器以及单神经元相结合,采用自适应粒子群优化方法对其参数进行最优整定的液压挖掘机振动掘削智能控制系统,提出了基于Ultronics双阀芯结构控制阀的振动掘削执行机构的控制策略,并对其数据通讯和控制模式实现进行了研究。
     (7)搭建了SWE85型液压挖掘机振动掘削实验平台,并对振动掘削控制系统的平稳性、高频响应特性、控制策略的适用性以及振动掘削阻力和功率消耗情况进行了实验研究。实验研究验证了所开发的液压挖掘机振动掘削控制系统具有较好稳定性、快速性等性能,符合振动掘削的功能要求。采用正弦波振动掘削可使掘削阻力降低到70%左右,功率消耗降低到80%左右。
     总之,论文对液压挖掘机振动掘削新方法进行了系统的研究,取得了较高应用价值的研究成果,为其实用化研究打下了较为扎实的理论基础。
Nowadays it is known that there are some difficulties, such as lower energy rate and inadequate work capacity in the excavating process for hydraulic excavator because of conventional excavating pattern and it is very important for hydraulic excavator with high energy consuming from engineering machines how to realize optimum and intelligent control in excavating process. In order to minish directly excavating resistance and energy consuming of hydraulic excavator and enhance work efficiency and self-adaptive capacity, some main research task in this paper such as seeking after a reasonable and effective excavating method for soil and process optimization modeling and intelligent control strategy of hydraulic excavator are completed based on applying vibratory theory to soil excavating process for hydraulic excavator and using theory analysis and experiment research combinatively, and the research fund is obtained from "863 Research Fund[2003AA430200]"(namely mechanics-electronics and manufacture informatization of hydraulic excavator) and "Program for New Century Excellent Talents in University"[NCET-05-0697]. The main works of the paper are expressed as:
     (1) The characteristic of static intensity and dynamic intensity were studied and excavating principle and invalidation mechanism to soil were discussed. The simulation experiment results about crashing rock and soil process based on dynamic load receal that vibratory impact function dynamic load can improve force method of shovel blade and minish excavating resistance in a big way, therefore, rock and soil can be destroyed even if its stress lower than its destructive intensity.
     (2) In allusion to fact circs of noise jamming of exciting force signal from the buchet inevitably and the characteristic of noise from exciting force signal in the vibratory excavating process for hydraulic excavator, IMF weight of signal based on the wideband random noisy background is processed using soft threshold method and a signal denoising algorithm for noisy signal is given based on EMD method. The simulation results reveal that the signal denoising algorithm can enhance decomposing veracity of exciting force signal from the buchet, time effect property of extracting instantaneous parameters and can remove availably noise jamming of exciting force signal from the buchet.
     (3) A online identification algorithm about rock and soil parameters in the vibratory excavating process for hydraulic excavator is given based on LS-SVM. And then online identification about some parameters of soil such as natural frequency was simulated. The results of its simulation and resonant column experiment reveal that the online identification algorithm is of smaller error, better identification capacity and higher identification precision and it is much fit for dynamic systems identification.
     (4)The impacts on vibratory excavating resistance from the parameters such as exciting frequency, amplitude and inserting velocity were analyzed and the parameters were preferentially matched. Based on matched results, a soft sensing model of vibratory excavating resistance form rock and soil is established by using of orthogonal and extensible function chain neural network and its online self-correction was done accordingly by using of function chain neural network. The application results reveal that soft sensing model is of much high modeling precision and generalization capability.
     (5) The excavating power consuming models due to different excavating methods such as static excavating, sine wave excavating and triangle wave excavating in the hydraulic excavator is established and corresponding experiments were done. A kind of excavating method with better effect in saving energy aspect than other excavating methods was gotten.
     (6)An intelligent control system for vibratory excavating in the hydraulic excavator was designed by using of combinative expert control, non-linear PI controller and single neuron and its parameter can be tuned based on self-adaptive particle swarm optimization algorithms. The control tactic of executive machine for vibratory excavating was submitted based on Ultronics control valve with double cores and its data communication and control model application were studied.
     (7)An experiment platform for vibratory excavating rock and soil in SWE85 hydraulic excavator is set up and the stability of control system for vibratory excavating, the respond characteristic of high frequency, the applicability of control strategy, excavating resistence and power consuming were studied by using of the experiments. The experiments results reveal that the vibratory excavating control system in hydraulic excavator is of better stability and rapid capability and can ensure that excavating resistence depress to 70% and power consuming depress to 80% when exerting sine wave vibratory methods.
     In a word, a new vibratory excavating method for the hydraulic excavator was studied by the numbers in the paper and some research achievements with higher applied price were gotten, which can offer steadier theory basis for practicability.
引文
[1]刘雪梅.我国将成为世界上最大的挖掘机产地[J].机电新产品导报,2003,(1):64-66.
    [2]陈正利.2003年中国挖掘机市场总结及预测[J].今日工程机械,2004,(3):44-45.
    [3]李孝明.中国小型液压挖掘机市场及其发展趋势和预测[J].建设机械技术与管理,2006,(7):56-58.
    [4]张铁.液压挖掘机结构、原理及使用[M].北京:石油大学出版社,2006.
    [5]张强.挖掘机器人规划控制方法与技术的研究[D].杭州:浙江大学,2002.
    [6]张大庆,何清华,郝鹏,等.液压挖掘机铲斗轨迹跟踪控制[J].吉林大学学报(工学版),2005,35(5):490-494.
    [7]张大庆,何清华,郝鹏,等.液压挖掘机铲斗轨迹跟踪的鲁棒控制[J].吉林大学学报(工学版),2006,36(6):934-938.
    [8]蔺化军.液压挖掘机功率控制系统的研究[D].长春:吉林工业大学,2000.
    [9]廖承林.车辆动力传动一体化控制系统的研究与开发[D].北京:北京理工大学,2001.
    [10]国香恩.液压挖掘机节能模糊控制系统的研究[D].长春:吉林大学,2004.
    [11]何清华,常毅华,郝鹏.液压挖掘机恒功率与变功率协调控制节能系统研究[J].建筑机械,2006,(3s):55-58.
    [12]纪云锋.液压挖掘机动力系统的节能控制研究[D].长沙:中南大学,2004.
    [13]Peyret F,Jurasz J.The Computer Integrated Road Construction project[J].Automation in Construction,2000,(9):447-461.
    [14]Singh S,Cannon H.Multi-Resolution Planning for Earthmoving.Proceedings International Conference on Robotics and Automation[C].Leuven,Belgium,1998.
    [15]Nguyen Q H,Ha Q P,Rye D C,etc.Force/position tracking for electro- hydraulic systems of a robotic excava tor[C].Proceeding of the 39th IEEE Conference on Decision and Control.Sydney,2000:5224-5229.
    [16]David A B,Derek W S.The Development,Control and Operation ofan Autonomous Robotic Excavator[J].Journal of Intelligent and Robotic Systems,1998,(21):73-75.
    [17]谢习华,周亮,张大庆.液压挖掘机技术研究的发展现状[J].工程机械,2007,38(8):54-57.
    [18]栾新立,张建宗.浅谈液压挖掘机的节能技术及发展趋势[J].矿山机械,2001(8):19-21.
    [19]Jiro Sumitani,Kiyoharu Anzai.Powertrain Control- System Development Support[J].Technical Reports,2001(6):25-27.
    [20]吴文江,李夏青.卡特皮勒320L挖掘机电控系统分析[J].筑路机械与施工机械化, 1999(5):30-31.
    [21]彭天好,杨华勇,傅新.液压挖掘机全局功率匹配与协调控制[J].机械工程学报,2001(11):50-53.
    [22]高峰.液压挖掘机节能控制技术的研究[D].杭州:浙江大学,2001.
    [23]田奇,马鹏飞.液压挖掘机发展概况[J].筑路机械与施工机械化,2000,17(3):1-2.
    [24]朱建新,邹湘伏,黄志雄.谈国产液压挖掘机未来的发展趋势[J].凿岩机械气动工具,2003,(3):48-54.
    [25]宋占伟.21世纪工程机械的发展趋势[J].建筑机械,1999,(12):27-30.
    [26]郭鑫.液压挖掘机振动掘削减阻机理分析及参数优选[D].长沙:中南大学,2006.
    [27]Mogami T,Kubo K.The behavior of soil during vibration[A].In proceedings of the third international conference of soil mechanics and foundation engineering[C],1953,(1):152-155.
    [28]Winterkorn H.F.Dynamic testing soils special technical publication[A].American Society of Testing Material[C],1954,15(6):77-89.
    [29]Cooper A.W.,Mccreery W.F.Plastic surfaces for tillage tools[J].Transaction of the ASAE,1961,6(1):648-650.
    [30]朱建新,郭鑫,邹湘伏,等.岩土振动掘削技术研究现状及其发展趋势[J].工程机械,2006,37(1):33-38.
    [31]Szabo B F,Barnes S,Sture,H Y Ko.Effectiveness of vibrating bulldozer and plow blades on draft force reduction[J].Transaction of the ASAE,1994.
    [32]Boyd B H,Nalezny C L.A model of vibratory soil cutting[A].Society of Automotive Engineers Paper[C],No.670750,1967
    [33]Gupta C P,Rajput D S.Effect of amplitude and frequency on soil break up by an oscillating tool in a soil bin experiment.Soil & Tillage Research,1993,(25):329-338.
    [34]Yow J,Smith J L.Sinusoidal vibratory tillage[J].Journal of terra mechanics,1976,13(4):211-226.
    [35]Buston M J,Macintyre D.Vibrating soil cutting Ⅰ:Soil tank studies of draught and power requirements[J].Journal of Agricultural Engineering Research,1981(26):409-418.
    [36]殷涌光,李俊明,王国强.二维振动铲装的实验研究[J].农业机械学报,1994,25(2):18-23.
    [37]Gunn J T,Tramontini V N.Oscillation of tillage implements.Journal of Agricultural Engineering,1995,36(11):725-729.
    [38]Totten D S,Kaufman L C.Dynamic response of a clay soil to an oscillating subsoiler.Transaction of the ASAE,1971(8):793-796.
    [39]Eggenmuller A.Field experiment with an oscillating plow body[J].Grundlagender Landtechnik,1958,(10):89-95.
    [40]Dubrovskii A A.Vibration Engineering in Agriculture[A].New Delhi:Indian National Scientific Documentation Center[C].Published for the U.S.Department of Agriculture,1968.
    [41]Niyamapa T,Salokhe V M.Force and pressure distribution under vibratory tillage tool[J].Journal of Terramechanics,2000,(37):139-150.
    [42]Niyamapa T,Salokhe V M.Soil disturbance and force mechanics of vibrating tillage tool[J].Journal of Terramechanics,2000,(37):151-166.
    [43]邱立春.全方位深松机系统动态模型与减阻节能研究[D].沈阳:沈阳农业大学,1998.
    [44]李润成,荆元昌.振动切削截煤模拟试验台的研制[J].矿业世界,1997,(4):15-19.
    [45]赵伟民,周贤彪,陆念力,等.关于振动掘削岩土的基础研究[J].建筑机械,2000,(6):56-60.
    [46]Muro T,Tran D T.Regression analysis of the characteristics of vibrocutting blade for tuffaceous rock[J].Journal of Terramechanics,2004(40):191-219.
    [47]朱凤武,佟金.土壤深松技术及高效节能仿生研究的发展[J].吉林大学学报(工学版),2003,33(2):95-99.
    [48]洪英,杨军,阿不里孜,等.土壤深松工作部件减阻与仿生[J].新疆农机化,2005,(1):30-31.
    [49]丁仲毅,刘晋军.液压挖掘机节能控制系统的研究与开发[J].建筑机械,2000,(6):49-51.
    [50]王晨,应富强.液压挖掘机的智能化节能控制策略[J].浙江工业大学学报,2000,28(2):108-111.
    [51]王文深,王保铭.液压系统负载自适应控制节能技术[J].矿山机械,2003,(2):50-51.
    [52]尚涛,赵丁选,肖英奎,等.液压挖掘机功率匹配节能控制系统[J].吉林大学学报(工学版),2004,34(4):592-596.
    [53]芮小健,张幼珍,钟秉林.振动切削过程的实质与机理研究[J].机械制造,1994,(12):13-14.
    [54]孙俊兰,姜大志.振动切削机理研究及应用[J].机械制造,1997,(4):6-7.
    [55]唐宋.振动切削机理探析[J].黄河水利职业技术学院学报,2004,16(1):40-42.
    [56]杨成云.液压挖掘机振动掘削机理及其实现[D].长沙:中南大学,2005.
    [57]赵崇友.液压挖掘机振动掘削及其控制系统研究[D].长沙:中南大学,2006.
    [58]殷涌光,程悦荪,李俊明.振动式二维切削土壤减小阻力机理[J].农业机械学报,1992,23(2):11-16.
    [59]徐嘉梁.土壤触变性与垂直振动切削土壤试验[J].农业机械学报,1992,23(4):77-80.
    [60]殷涌光,李俊明,王登峰.二维振动切削土壤的功率消耗[J].农业机械学报,1993,24(1):6-11.
    [61]荆元昌,李润成.振动切削截煤机理的研究[J].煤炭学报,1996,21(2):153-156.
    [62]王俊发,刘孝民,陈玉芳,等.振动深松机理的探讨[J].佳木斯大学学报(自然科学版),2000,18(4):335-338.
    [63]邱立春,李宝筏.自激振动深松机减阻试验研究[J].农业工程学报,2000,16(6):72-76.
    [64]杨成云,朱建新.基于比例阀的液压挖掘机振动掘削控制系统设计[J].凿岩机械气动工具,2005,(1):24-29.
    [65]赵崇友,朱建新.液压挖掘机振动掘削机理研究[J].机械,2005,32(11):4-6.
    [66]肖葆武.数学模型浅谈[J].天津城建学院学报,1994,(1):33
    [67]李伟,贺友多.转炉底吹气体过程中的三维数学模型[J].包头钢铁学院学报,1994,13(1):45-48
    [68]潘玉华,马萍.复吹转炉底吹气流数学模型研究[J].钢铁,1994,29(5):17-21
    [69]苍大强,阎敏,张慧芳.高炉氧煤枪枪体温度场数学模型[J].冶金能源,1994,13(3):22-25
    [70]王根启,徐广尧,宋建成.高炉富氧喷煤优化数学模型[J].包钢科技,1994,(2):76-81.
    [71]李保卫,贺友多.顶吹转炉内流动、燃烧及传热的一个数学模型[J].包头钢铁学院学报,1994,13(4):30-40.
    [72]邱夏陶,韩小良.回转窑传热数学模型及其优化[J].钢铁,1994,29(6):66-70.
    [73]丁丽萍,李成之,赫冀成.循环流化床的燃烧数学模型[J].冶金能源,1994,13(5):29-34.
    [74]陈义华.数学模型[M].重庆:重庆大学出版社,1995.13.
    [75]杨旗.转炉提钒静态模型研究[D].重庆:重庆大学,2002.
    [76]王知人,侯培国.求解线性规划问题的神经网络模型[J].燕山大学学报,1999,23(3):249
    [77]陈伟,李允,段永刚等.遗传演化建模方法研究[J].西南石油学院学报,2000,22(4):73-75
    [78]陈义华.数学建模的层次分析法[J].甘肃工业大学学报,1997,23(3):92
    [79]秦虎,汪旭光.爆破效果综合评价的模糊数学模型[J].工程爆破,1997,3(3):6
    [80]贺建勋.系统建模与数学模型[M].福州:福建科学技术出版社,1995.92
    [81]潘亚林.应用灰色系统模型提高仪器测量精度[J].电子工艺技术,2002,23(3):126
    [82]蔡自兴,徐光祜.人工智能及其应用[M].北京:清华大学出版社,1996:
    [83]蔡自兴,陈海燕,魏世勇.智能控制工程研究的进展[J].控制工程,2003,10(1): 1-6.
    [84]王使普,陈睬,徐杨,等.基于Agent的集散递阶智能控制的研究[J].控制与决策,2001,16(2):177-181.
    [85]Wang Li-hui,Sivaram Balasubramanian.Agent based intelligent control system design for real time distributed manufacturing environments[A].Agent-based on Manufacturing Workshop Autonomous Agents'98[C].Minneapolis/ St Paul:University of Calgary,1998.
    [86]韩璞,郭鹏.一种新型神经网络智能PID控制器的仿真研究[J].计算机仿真,2001,18(4):17-19.
    [87]胡包钢,应浩.模糊PID控制技术研究发展回顾及其面临的若干重要问题[J].自动化学报,2001,27(4):567-584.
    [88]Astrom K.J.,Hang C.C.,Persson P.,et al.Towards intelligent PID control[J].Automatica,1992,28(1):1-9.
    [89]Zhu Q.M.,Intelligent PID controllers for complex dynamic systems[A].IEEE Workshop on Learning Systems for Control,Proceedings[C].UK:Birmingham,2000.
    [90]王耀南,王辉.复杂工业过程的综合集成智能控制[J].信息与控制,1999,28(4):298-304.
    [91]李桃,范晓慧,姜涛.冶金过程的自适应预测模糊控制研究与应[J].矿冶工程,2000,20(3):34-36.
    [92]Gao Zhi-qiang,Thomas A.Trautzsch,James Dawson.A stable self-tuning fuzzy logic control system for industrial temperature control problems[A].IEEE Industrial Application Society 2000 Annual Meeting and World Conference on Industrial Applications of Electrical Energy[C].USA:Cleveland,2000.
    [93]Frey C.W.,Sajidman M.,Kuntze H.B.A neuro-fuzzy supervisory control system for industrial batch processes[A].Proceedings of the 9th IEEE International Conference on Fuzzy Systems FUZZ[C].TX:SanAntonio,2000.
    [94]Wu M.,Nakano M.,She J.H..A model-based expert control strategy using neural networks for the coal blending process in an iron and steel plant[J].Expert Systems with Applications,1999,16(3):271-281.
    [95]陈晓方,桂卫华,蔡自兴.过程控制中的智能集成建模方法[J].系统仿真学报,2001,13(5):7-11.
    [96]Wang Y.,Gui W.H.,Yang C.H.,et al.Multi-intelligent synthetic modeling for production-quota-oriented optimal control on Pb-Zn sintering process[A].The Third Asian Control Conference(ASCU 2000)[C].China:Shanghai,2000.
    [97]容长发,孙光明,吴华.土壤切削力学[J].农业与技术,1997,97(2):3-7.
    [98]陈波.土壤动态切削的试验研究[J].筑路机械与施工机械化,2000,17(2):11-12.
    [99]王成华.土力学原理[M].天津:天津大学出版社,2002:122-162
    [100]徐希民,黄宗益.铲土运输机械设计[M].北京:机械工业出版社,1989:5-20
    [101]黄文熙.砂基和砂坡的液化研究[A].水工建设中的结构力学与岩土力学问题[C].黄文熙论文选集.北京:水利电力出版社,1984:252-256.
    [102]Yong R N,Fattah E A,Skiadas N.Soil Cutting and Tillage[J].New York:ELSEVIER SCIENCE PUBLISHERS B.V,1985:54-61.
    [103]王久聪,李奎贤,张辉.挖掘机挖掘阻力的试验研究[J].工程机械,1992,(11):21-26.
    [104]何斌,那荣华.单斗液压挖掘机挖掘阻力探讨[J].建筑机械化,1993,(1):24-27.
    [105]Norden E H.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-station time series analysis[J].Proc R Soc,1998,A454:903-995.
    [106]MA Shuo.HHT Analysis of Near-Field Seismic Ground Motions[D].Colorado:The Colorado School of Mines,2001.
    [107]谭善文.Hilbert-Huang变换的滤波特性及其应用[J].重庆大学学报,2004,27(1):9-12.
    [108]朱建新,赵崇友,邹湘伏.液压挖掘机振动掘削土壤参数在线辨识[J].中南大学学报(自然科学版),2006,37(3):537-541.
    [109]Vapnik V.The nature of statistical learning theory[M].New York:Springer,1999.
    [110][美]瓦普尼克著,张学工译.统计学习理论的本质[M].北京,清华大学出版社,2000.
    [111]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42
    [112]边肇祺,张学工.模式识别[M].清华大学出版社,2000.
    [113]牟廉明,统计学习与支持向量机,内江师范学院学报,2002,17(6):3-7.
    [114]崔伟东,周志华,李星,支持向量机研究[J].计算机工程与应用,2001,(1):58-61.
    [115]Vapnik V.Statistical learning theory[M].New York:Wiley,1998.
    [116]王晓丹,王积勤.支持向量机研究与应用[J].空军工程大学学报(自然科学版),2004,5(3):49-55.
    [117]谭东宁,谭东汉小样本机器学习理论:统计学习理论[J].南京理工大学学报,2001,25(1):108-112.
    [118]邵惠鹤.支持向量机理论及其应用[J].自动化博览,2003,S1:90-95.
    [119]Boser B,Guyon I,Vapnik V N.A training algorithm for optimal margin classifiers Fifth Annual Workshop on Computational learning Theory,Pittsburgh ACM:144-152.
    [120]Comes C,Vapnik V N.The soft margin classifier[M].Technical Memorandum 11359-931209-18TM,AT&T Bell Labs,1993.
    [121]Cortes C,Vapnik V N.Support vector networks[J].Machine Learning,2000,20:273-297.
    [122]Vapnik V N,Golowich S,Smola A.Support vector method for function approximation,regression estimation and signal processing[A]..Mozer M.C,Jordan M.I.,and Petsche T.,Advances in Neural Information Processing Systems 9[C],Cambridge MA:MIT Press 1997:281-287.
    [123]卢增样,李衍达.交互支持向量机学习算法及其应用[J].清华大学学报(自然科学版),1999,37(9):93-97
    [124]Chapelle O.,Vapnik V.,Model selection for support vector machines,Advances in Neural Information Processing Systems 12,Cambridge MA:MIT Press,2000.
    [125]Kulkarni A,Jayaraman V K,Kulkarni B D.Support vector classification with parameter tuning assisted by agent-based technique.Computer & Chemical Engineering 2004,8(3):311-319
    [126]Cherkassky V,Ma Yunqian.Practical selection of SVM parameters and noise estimation for S VM regression.Neural Networks} 2004,17(1):113-127.
    [127]Carl Staelin.Parameter selection for support vector machines.Technical Report,HPL-2002-35481,HP Labs
    [128]吴涛,贺汉根,贺明科.基于插值的核函数构造[J].计算机学报,2003,26(8):990-996.
    [129]吴涛.核函数的性质、方法及其在障碍检测中的应用[D].长沙:国防科学技术大学,2003.
    [130]Daniel J S,Gabriele S.Hybrid wavelet support vector classification of waveforms[J].Journal of Computational And Applied Mathematics.2002,148:375-400
    [131]张莉,周伟达,焦李成.尺度核函数支撑矢量机[J].电子学报,2002,30(4):527-529.
    [132]Shun-ichi Amari,Si Wu.Improving Support Vector Machine Classifiers by Modifying Kernel Functions[J].Neural Networks,1999,12:783-789.
    [133]Mangasarian O.L.Mathematical programming in data mining[J].Data Mining and Knowledge Discovery,1997,42(1):183-201.
    [134]褚蕾蕾,陈绥阳,周梦,等.计算智能的数学基础[M].北京:科学出版社,2002.
    [135]Osuna E,Freund R.Girosi F.Training Support machines:an application to face detection[A].In Proceedings of CVPR'97[C],Puerto Rico,1997.
    [136]John C P.Fast training of support vector machines using sequential minimal optimization[A].Scholkopf B.Advances in kernel Methods-Support vector learning[C],Cambridge,MA,MIT Press,1999:185-208.
    [137]Chih-Wei Hsu,Chih-Jen Lin.A simple decomposition method for support vector machines[J].Machine Learning,2002,46:291-314.
    [138]Keerthi S S,Shevede S K,Bhattacharyya C,et al.A fast iterative nearest point algorithm for support vector machine classifier design[J].IEEE Trans on Neural Networks,2000,11(1):124-136.
    [139]Suykens J.A.K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
    [140]Fung G.,Mangasarian O L.Proximal support vector machine classifiers[A].In:Processing of the Conference on Knowledge Discovery and Data Mining[C],San Francisco,2001.
    [141]Christopher J C Burges.A Tutorial on support vector machine for pattern recognition[J].Data Mining and Knowledge Discovery.1998,2:121-167.
    [142]Ma Yong,Ding Xiaoqing.Face detection based on cost-sensitive support vector machines[A].In:Seong-whan Lee,Alessandro Verri(Eds.),Pattern Recognition with Support Vector Machines[C],Niagara Falls,Canada,2002:260-267.
    [143]陶卿,曹进德,孙德敏.基于支持向量机分类的回归方法[J].软件学报,2002 13(5):1024-1028
    [144]Drucker H.,Burges C.J.C.,Kaufman L,et al.Support vector regression machines[A].Advances in Neural Information Processing Systems 9[C],Cambridge,MA,M1T Press,1997:155-161.
    [145]Steve R Gunn.Support vector machines for classification and regression.Technical Report,Southampton:Department of Electronics and Computer Science of University of Southampton,1998:1-28
    [146]马云潜,张学工.支持向量机函数拟合在分形插值中的应用[J].清华大学学报(自然科学版),2000,40(3):76-78.
    [147]骆剑承,周成虎,梁怡.支撑向量机及其遥感影像空间特征提取和分类的应用研究[J].遥感学报,2002,6(1):50-55
    [148]Danny Roobaert,Marc M.Van Hulle.View-based 3D object recognition with support vector machines[A].In:Proceeding IEEE International Workshop on Neural Networks for Signal Processing(NNSP99)[C],Madison,Wiscosin,USA,August,1999.
    [149]Isabelle GuYon,Jason Weston,Stephen Barnhill.Gene Selection for Cancer Classification using Support Vector Machines[J].Machine Learning,2002,46:389-422.
    [150]瞿永杰,王东风,韩璞.基于多类支持向量机的汽轮发电机组故障诊断[J].动力工程,2003,23(5):2694-2698.
    [151]李凌均,张周锁,何正嘉.支持向量机在机械故障诊断中的应用研究[J].计算机工程与应用,2002,(19):19-21
    [152]David M.J.Tax,Alexander Ypma,Robert P W Duin.Pump failure detection using support vector data description[A].Proceedings of the 1999 IEEE Workshop on Neural Networks for Signal Processing[C],Madison,1999.
    [153]何学文.基于支持向量机的故障智能诊断理论与方法研究[D].长沙:中南大学,2004.
    [154]鄂加强.智能故障诊断及其应用[M].长沙:湖南大学出版社,2006.
    [155]于静江,周春晖.过程控制中的软测量技术[J].控制理论与应用,1996,13(4):137-144.
    [156]罗荣富.软测量方法及其工业应用[A].第六届过程控制科学报告会论文集[C].上海:上海交通大学出版社,1993,324-329.
    [157]Willis M.J.Artificial neural networks in process engineering[J].IEE Proceedings-D,1991,138(3):256-266.
    [158]Willis M.J.Artificial neural networks in process estimation and control[J].Automatica,1992,28(6):1181-1187.
    [159]罗荣富,邵惠鹤.推断控制中二次变量选择方法和研究[A].1992年控制与决策学术年会论文集[C].沈阳:控制与决策编辑部,1992,146-149.
    [160]孙欣,王金春,何声亮.过程软测量[J].自动化仪表.1995,16(8):1-5.
    [161]俞金寿,刘爱伦.软测量技术及其应用[J].世界仪表和自动化.1998,1(2):18-20.
    [162]Brosilow.Inferential control of process[J].Journal of Artificial Intelligence and Cheroical Engineering,1978,24(3):485-509.
    [163]Morari M.,Stephanopoulos G.Optimal selection of secondary measurements within the framework of state estimation in the present unknown disturbances[J].Journal of Artificial Intelligence and Chemical Engineering,1980,26(2):247-260.
    [164]Mejdell T.,Skogestad S.Output estimation using multiple secondary measurements:high-purity distillation[J].Journal of Artificial Intelligence and Chemical Engineering,1993,39(10):1641-1653.
    [165]Weber R.,Brosilow C.The use of secondary measurements to improve control[J].Journal of Artificial Intelligence and Chemical Engineering,1972,18(3):614-623.
    [166]Jay H.L.,Morari M.Robust measurement selection[J].Automatica,1991,27(3):519-527.
    [167]Lorena J.S.,Biegler T.Data reconciliation and gross error detection for dynamic systems[J].Journal of Artificial Intelligence and Chemical Engineering,1996,42(10):2841-2856.
    [168]李红军,秦永胜,徐用懋.化工过程中的数据协调及显著误差检测[J].化工自动化及仪表,1997,24(2):25-32.
    [169]Mejdell T.,Skogestad S.Estimation of distillation composition from multiple temperature measurements using Partial-least-squares Regression[J].Ind.Eng.Chem. Res.,1991,30(12):2543-2555.
    [170]Gupta G.,Narasimhan S.Application of neural networks for gross error detection[J].Ind.Eng.Chem.Res.,1993,32(7):1651-1657.
    [171]黄克瑾.精馏过程的模型化及仿真[D].杭州:浙江大学,1992.
    [172]于静江.大型原油蒸馏塔的模型化与控制[A].工业过程模型化及控制(第四卷)[C].广州:华南理工大学出版社,1992,165-171.
    [173]丁云,于静江,周春晖.原油蒸馏塔的质量估计和优化管理[J].石油炼制与化工,1994,25(5):23-28.
    [174]Guilandoust M.T.Adaptive inferential control[J].IEE Proceedings-D,1987,134(3):171-179.
    [175]Tham M.T.Soft-sensors for process estimation and inferential control[J].Journal of Process Control,1991,1(1):3-14.
    [176]Quintero-Marmol.Application of an extended luenberger observer to the control for multi-component batch distillation[J].Ind.Eng.Chem.Res.,1991,30(8):1870-1880.
    [177]Tham M.T.Soft-sensors a solution to the problem of measurement delays[J].Chem.Eng.Res.Des.,1989,67(6):347-364.
    [178]Guilandoust M.T.An adaptive estimation algorithm for inferential control[J].Ind.Eng.Chem.Res.,1988,27(9):1658-1664.
    [179]Morari M.and Alexander K.W.Nonlinear inferential control[J].Computers Chem.Eng.,1982,6(4):271-281.
    [180]Parrish J.R.and Brosilow C.B.Nonlinear inferential control[J].Journal of Artificial Intelligence and Chemical Engineering,1988,34(4):633-644.
    [181]罗荣富,邵惠鹤.模糊神经网络方法及其在推断控制中的应用[A].第一届全球华人智能控制与智能自动化大会论文集[C].北京:科学出版社,1993,763-769.
    [182]于静江,周春晖.原油塔控制中的智能方法[A].第一届全球华人智能控制与智能自动化大会论文集[C].北京:科学出版社,1993,471-475.
    [183]叶楠,吕勇哉.模式识别在状态估计中的应用-一类软测量技术[J].仪器仪表学报,1988,9(4):368-374.
    [184]穆罕默德·阿塔,蒋慰孙.精馏塔板效率的在线模式识别[J].信息与控制,1993,22(1):47-49.
    [185]郑建英,朱云.流化床内颗粒尺寸大小的模糊测量模型[J].计量学报,1999,20(3):203-207.
    [186]Van den Bo A.,Eykhoff P.Model building and parameter estimation as means for intelligent measurement[J].Measurement,1988,6(1):25-32.
    [187]Willis M.J.,Momtague G..A.and Massimo D.et al.Artificial neural networks in process estimation and control[J].Automatica,1992,28(6):1181-1187.
    [188]Kurtanjek Z.Modeling and control by artificial neural networks in biotechnology[J].Computers Chem.Eng.,1994,18(12):1025-1032.
    [189]Di Massinso C.Towards improved penicillin fermentation via artificial neural networks[J].Computers Chem.Eng.,1992,16(4):283-291.
    [190]Hunt K.L.Neural networks for control systems-a survey[J].Automatica,1992,28(6):1083-1112.
    [191]赵晓生.神经元网络用于建立油品质量模型的研究[J].石油炼制,1993,24(9):9-14.
    [192]罗荣富,邵惠鹤.分布式网络局部学习方法及其在推断控制中的应用[J].自动化学报,1994,20(6):739-741.
    [193]张鸿宾.训练多层网络的样本数问题[J].自动化学报,1993,19(1):71-77.
    [194]Drucker H.,Cun Y.Le.Improved generalization performance using double back propagation[J].IEEE Trans on Neural Networks,1992,3(6):991-997.
    [195]徐苓安.相关流量测量技术的现状与发展趋势[J].自动化仪表,1988,9(3):1-4.
    [196]Beck M.S.,Williams R.A.Process tomography:a European innovation and its applications[J].Meas.Sci.Technol.,1996,7:215-224.
    [197]Isermann R.Process fault detection based on modeling and estimation methods-a survey[J].Automatica,1984,20(4):387-404.
    [198]童勤业,严筱刚,孔军等.“混沌”理论在测量中的应用[J].电子科学学刊,1999,21(1):42-49.
    [199]Bai D.,Bi H.T.,Grace J.R.Chaotic behavior of fluidized beds based on pressure and voidage[J].Journal of Artificial Intelligence and Chemical Engineering,1997,43(5):1357-1361.
    [200]黄文高,童勤业.测量技术中的混沌方法[J].浙江大学学报(工学版),2001,35(5):546-549.
    [201]Rivere J.M.,Bayart M.,Thiriet J.M.Intelligent instruments:some modeling approaches[J].Measurement & control,1996,29:179-186.
    [202]骆晨钟,邵惠鹤.软仪表技术及其应用[J].仪表技术与传感器,1999,(1):32-39.
    [203]Lenartson B.E.V.Combing infrequent and indirect measurements by estimation and control[J].Ind.Eng.Chem.Res.,1989,28(11):1653-1658.
    [204]Eberhart R.C.,Kennedy J.A new optimizer using particles swarm theory.Proc.Sixth International Symposium on Micro Machine and Human Science[C].Nagoya,Japan.1995.
    [205]Kennedy J,Eberhart R C,Shi Y.Swarm intelligence[M].San Francisco:Morgan Kanfman Publishers,2001.
    [206]Shi Y,Eberhart R C.A modified particle swarm optimizer[A].Proceedings of the IEEE Intemational Conference on Evolutionary Computation[C].1998,69-73.
    [207]Sift Y,Eberhart R C.Fuzzy Adaptive Particle Swarm Optimition[A].Proceedings of the IEEE Congress on Evolutionary Computation[C].2001,101-106.
    [208]Clerc M,Kennedy J.The particle swarm:explosion,stability and convergence in a multi-dimensional Complex Space[J].IEEE Transactions on Evolutionary Computation,2002,6:58-73.
    [209]吴浩扬,朱长纯,常炳国,等.基于种群过早收敛程度定量分析的改进自适应遗传算法[J].西安交通大学学报,1999,33(11):27-30.
    [210]王凌.智能优化计算及其应用[M].北京:清华大学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700