用户名: 密码: 验证码:
岩石地下洞室与边坡的相互影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下洞室包括各类天然形成的地下空区(溶洞等)、矿山生产过程中形成的地下采空区以及各类人工开挖形成的洞室(如人防洞、隧道等)。地下洞室与边坡的相互影响问题是随着工程建设的开展而出现的。根据地下洞室与边坡存在的先后顺序将地下洞室与边坡的关系分为两种情况,第一种情况是地下洞室先于边坡存在,如地下开采转为露天开采条件下矿山的地下采空区与露天开挖的边坡;另一种情况是边坡先于地下洞室存在,如山区隧道开挖形成的洞口边坡与隧道。地下洞室与边坡的相互影响问题一般可以分为两个方面来研究:一方面是地下洞室的存在对边坡稳定的影响;另一方面是边坡施工对地下洞室稳定性的影响。另外,根据地下洞室与边坡的相对空间位置还会带来另外一个十分重要的问题,即地下洞室顶板的安全厚度问题。顶板的安全厚度关系到地下洞室的安全与正常运营,甚至关系边坡的稳定。本文结合湖南省自然科学基金资助项目“GFRP锚杆加固岩质边坡基本理论与设计方法研究”(07JJ6084)与高等学校博士点学科专项基金项目“复杂岩体边坡最危险滑动面的滑移线分条自动搜索研究”(20060533071)以及贵州宏福实业开发有限总公司“瓮福磷矿穿岩洞矿段地下转露天开采中地下采空区对露天开采的影响研究”等研究课题,对地下洞室与边坡之间的相互影响以及顶板安全厚度进行了深入的研究。主要研究内容与结论如下:
     建立了边坡下伏地下岩石洞室深埋与浅埋的计算模型,应用弹性力学理论与相同映射函数的复变函数解法推导了边坡下伏浅埋圆形洞室的应力解析解,将深埋洞室视为一个双向受压无限板板孔应力集中问题,得到了边坡下伏深埋圆形洞室的应力解析解,对于复杂形状洞室,采用Christoffel-Schwarz积分确定映射函数或采用近似方法和数值方法来研究。
     采取弹塑性有限元与强度折减方法,利用自编的有限元程序对瓮福磷矿穿岩洞矿段地下采空区与露天边坡的相互影响进行了研究,模拟露天边坡开挖过程对边坡与地下采空区的影响,得到了各部开挖过程中边坡与采空区的应力、应变与塑性区分布以及边坡的安全系数。
     对工程上常用来估算地下洞室顶板安全厚度的简支梁与固支梁模型进行了改进,应用结构稳定理论,考虑地下洞室水平应力对安全顶板厚度的影响,分别建立集中力与均布荷载作用下改进的简支梁与固支梁模型。对改进的梁模型考虑岩石本构关系的影响,将岩石视为理想弹塑性材料,建立了改进梁模型的广义弯矩-曲率-轴力关系,并采取假设挠曲线的近似解法得到了最大承载力的广义弯矩-轴力-侧向均布荷载的相关方程。运用裂隙张量理论,将岩体中的裂隙看作初始损伤,对含随机分布裂隙的顶板岩体进行了分析,推求了裂隙岩体的等效变形模量和等效泊松比,研究裂隙密度对地下洞室顶板厚度的影响。
     应用突变理论建立了地下球形洞室与地下巷道式洞室顶板的突变模型,得到地下洞室顶板失稳破坏的必要条件与充分条件。经过分析可知,地下洞室顶板安全厚度与岩石弹性模量、泊松比、洞室跨度、自重以及板顶荷载与板端水平应力有关。
     将顶板上车辆荷载视为简谐荷载,研究在车辆简谐荷载作用下顶板的动力响应,得到了在匀速移动的车辆简谐荷载下,考虑基本振型时,共振发生在ω_1=Q_p,动力放大因子将取决于车辆移动的速度。在一般阻尼情况下,动力放大因子取决于阻尼比ξ_1的大小,匀速移动车辆荷载作用下动力响应只有固定于跨中的车辆荷载作用下的动力响应的一半。建立了车队荷载作用下,地下洞室顶板失稳的突变理论模型,得到了顶板失稳破坏的充要条件。将地下洞室顶板视为单向厚板或矩形厚板,在车辆荷载作用下进行了动力学分析,分析了不同边界条件的影响,得到了在车辆振动荷载作用下顶板的动力放大系数。
     采用FLAC~(3D)如软件与强度折减理论对地下采空区的顶板厚度与稳定性进行了分析,并且研究了地下采空区的采高与跨度对顶板厚度的影响。针对瓮福磷矿穿岩洞矿段地下转露天开采中的地下采空区与露天边坡,采用SURPAC软件建立了地下采空区的三维地质模型,编制了模型与FLAC~(3D)的接口程序,将三维模型导入FLAC~(3D)如计算程序,在边坡与空区设置监测点,研究分析地下采空区与露天边坡之间的相互影响。
     本文立足于学科前沿,运用最新数学计算方法和手段,对地下洞室与边坡的相互影响进行了深入研究,具有较高的理论和应用价值。
Underground cavern include the natural underground vacant areas (for example, karst cave), underground mined area formed in the mine production progress and artificial cavern because of manual excavation (for example, air defense cave and tunnel). The research of influence between underground cavern and slope appears along with the development of engineering construction. According to the formed sequence of the underground cavern and slope, the relationship of them can be divided into two conditions. The first condition is that the underground cavern had existed before the slope excavation, such as the mined underground area under the excavation slope in the case of underground mining converted to surface mining. The second condition is the slope had existed before the underground cavern formed, such as the tunnel excavation in mountainous areas. The research of interaction between the underground cavern and slope can be divided into two aspects. The one aspect is the influence of underground cavern on slope, the other aspect is the effect of slope excavation on underground cavern. In addition, the other important problem which is result from the relative tertiary location of underground cavern and slope is the safety roof thickness of underground cavern. The safety roof thickness relates to the safety and normal operation of underground cavern and even determines the stability of slope. In this paper, the author studied deeply the interact between the underground cavern and slope and the safety roof thickness, combining with the three projects: the project supported by HuNan provincial natural science foundation of China " (07JJ6084) , doctoral subject special fund of university in China (20060533071) and the project supported by HongFu company of GuiZhou province "the influence research of underground mined area on surface mining of WenFu phosphate mine". The main contents of the dissertation are summarized as follows:
     The calculation models were built which were applied to the analysis of deep-buried and shallow-buried rock cavern under the slope, the round shallow-buried cavern's stress analytic solution was derived by elasticity theory and complex function method, the deep-buried cavern was regarded as a stress concentration problem of biaxial compression infinite plate pole and the analytic solution of stress was gotten. For complex shape rock cavern, the Christoffel-Schwarz integral, approximate method or numerical method were used to analyze the stress and strain.
     The interact between the underground mined area and the slope in WenFu phosphate mine was researched and analyzed by elasto-plastic finite element method of lowing material's strength safety factor using my own two-dimensional FEM program, the effect of the underground mined area and the open pit slope was simulated in the slope excavation process and the stress ,the strain , the distribution of plastic zone and the safety factor of the underground area and the slope were gotten by analysis.
     The model of simply supported beam and the model of clamped-clamped beam which are often applied to estimate the safety roof thickness of the underground cavern were improved by considering the influence of horizontal stress of beam end on safety roof thickness, the improved beam models were built on the condition of concentrated force and uniform load acting on the beam by structural stability theory. The rock was looked on as perfectly elastic-plastic material and the relationship of the generalized moment-curvature-axial force was established and the equation of the generalized moment-axial force-lateral uniform load was built through the approximate solution method in which the beam deflection curve was assumed. For fractured rock mass, the fracture of rock was regarded as initial damage, the roof rock mass with random distribution fracture was researched, the equivalent deformation module and the poisson ratio of fracture rock mass were deduced and the effect of fracture density on the roof thickness was analyzed.
     The catastrophe models of underground spherical cavity and tunnel were established with catastrophe theory and the necessary and sufficient condition of roof failure was derived. The analysis shows that the underground cavern roof thickness is related to rock elastic modular, poisson ratio, cavern span, roof dead weight, the load acting on the roof and horizontal stress of roof end.
     The dynamic response of roof on which vehicle load act was researched regarding the vehicle load as harmonic load. The conclusions show the resonance happens whenω_1 = Q_p and the dynamic amplification factor depends on the vehicle velocity , the vibration response is larger while the driving velocity is slower when the vehicle drives on the roof with the same velocity only considering the model's basic vibration type. On the condition of general damping, the dynamic amplification factor depends on damping ratio (ξ_1) and the dynamic response when the vehicle drive on the roof with the same velocity is only half dynamic response when the vehicle is fixed to the roof mid-span. The catastrophe theory model of roof failure was built when the vehicle platoon acts on the roof and the necessary and sufficient condition of the roof failure was derived. In order to analyze the influence of calculation model, the roof was looked on as unidirectionally or rectangular thick plate model and the roof dynamic response was calculated, the effect of different boundary conditions was analyzed and the dynamic amplification factor was gotten with the vehicle vibration load.
     The underground mined area's roof safety thickness and its stability were analyzed by using FLAC~(3D) method and lowing material's strength safety factor method, the influence of the underground cavern's mining height and its span on the slope's stability was calculated. Taking the underground mined area and surfacing slope in the WenFu mine for example, the 3D geological model of the underground mined area was established with SURPAC software, the interface program of the model to FLAC~(3D) was written and the displacement and stress monitoring points were set in the underground mined area and the slope, the interaction betweem the underground mined area and open pit slope was researched with introduced 3-D geological model into FLAC~(3D) calculation program.
     Stood at the front of science research, the interaction between underground cavern and the slope is studied in the author's dissertation using newly numerical methods and means in the course of research work. It shows a high theoretical and practical value.
引文
[1]杨有莲,刘全林,刘丛国.贵州水黄公路滑坡地段溶洞的影响与治理[J].岩土工程界,2003,6(12):72-74
    [2]杨有莲,刘丛国.溶洞对滑坡地段的影响及其治理技术[J].2004,6:194-195
    [3]孙玉科,牟会宠,姚宝魁.边坡岩体稳定性分析[M].北京:科学出版社,1988
    [4]孙广忠,姚宝魁.中国滑坡地质灾害及其研究[J].中国典型滑坡,1988,5-6
    [5]崔政权,李宁.边坡工程理论与实践最新发展[M].北京:中国水利水电出版社,1999
    [6]孙玉科,杨志法,丁恩保等.中国露天矿边坡稳定性研究[M].北京:中国科学出版社,1999
    [7]Hoek E,Bray J W,卢世宗,李成村,雷化南等译.岩石边坡工程[M].北京:冶金工业出版社:1983
    [8]李华晔.地下洞室围岩稳定性分析[M].北京:水利水电出版社,1999
    [9]李庶林.论我国金属矿山地质灾害与防治对策[J].中国地质灾害与防治学报,2002,13(4):44-48
    [10]董慧明,曹平.含地下硐室的露天矿边坡稳定性研究[J].中国煤田地质,2004,16(6):24-26
    [11]李科.银山矿露天采区内采空区的爆破处理[J].矿冶,2002,11(4):12-16
    [12]陆富龙,李芬芳.露天采矿场下部采空区顶板安全厚度的确定[J].采矿技术,2004,4(3):34-36
    [13]秦豫辉,程秀升,李春晓,张五兴.三道庄矿区不规则空区的处理[J].矿业研究与开发,2004,24(1):27-29
    [14]曾宪辉,林连宝,邹凯.紫金山金矿地下采空区顶板上露天台阶失稳的控制[J].有色金属,2002,54(2):93-97
    [15]刘荣春.地下开采转露天开采工程岩体的失稳危害与控制技术[J].有色金属(矿山部分),2005,57(3):25-28
    [16]刘献华.地下转露天开采的主要安全隐患与技术对策[J].金属矿山,2002(7):52-54
    [17]王官宝,任高玉.格尔珂金矿采空区稳定性评价及安全开采措施[J].露开采矿技术,2004,6:13-16
    [18]王思敬.地下工程岩体稳定分析[M].北京:科学出版社.1984
    [19]Ali EI-Naqa.Application of RMR and Q Geomechanical Classification systems along the proposed Mujib tunnel route[M].cengtral Jordan Bull ENG geol env(2001)60:257-269
    [20]Bienlawski Z.T.Engineering Classification of Jointed Rock Mass[J].Civ.Engrs,1973,15(12)Traps.S.Africa Inst.
    [21]Batton N R.Choubey V.The shear strength of rock joints in theory an practice[J].Rock Mech,1976,10:1-59
    [22]Barton N.,Lien R.&Lunde J.Engineering classification of rock masses for design of the tunnel support[J].Rock Mechanics,1974,6(4)
    [23]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979,10
    [24]肖树芳,杨淑碧.岩体力学[M].北京:地质出版社,1987
    [25]孙广忠.岩体结构力学[M].北京:科学出版社,1988
    [26]王润富.弹性力学的复变函数计算机解[J].河海大学学报,1991(2):84-86
    [27]王润富.一种保角映射法及其微机实现[J].河海大学学报,1991(Ⅰ):86-90
    [28]范广勤,汤澄波.应用三个绝对收敛级数相乘法解非圆形洞室的外域映射函数[J].岩石力学与工程学报,1993(3):255-264
    [29]吕爱钟.应用最优化技术求解任意截面形状巷道映射函数的新方法[J].岩石力学与工程学报.1995(3):269-274
    [30]朱大勇,钱七虎,周早生等.复杂形状洞室围岩应力的弹性解析分析[J].岩石力学与工程学报,1998(4):402-404
    [31]朱大勇,钱七虎,周早生等.复杂形状洞室映射函数的新解法[J].岩石力学与工程学报,1999(3):279-282
    [32]刘保国,杜学东.圆形洞室围岩与结构相互作用的粘弹性解析[J].岩石力学与工程学报,2004,23(4):561-564
    [33]房营光,孙钧.地面荷载下浅埋隧道围岩的粘弹性应力和变形分析[J].岩石力学与工程学报,1998,17(3):239-247
    [34]梁建文,张浩.地下双洞室在SV波入射下动力响应问题解析解[J].振动工程学报,2004,17(2):132-139
    [35]梁建文,张浩,Vincent WLee.地下洞室群对地面运动的影响[J].土木工程学报,2005,38(2):106-113
    [36]于学馥.现代工程岩土力学基础[M].北京:科学出版社,1995
    [37]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002
    [38]于学馥,郑颖人,刘怀恒等.地下工程围岩稳定分析[M]北京:煤炭工业出版 社,1983
    [39]孙钧,侯学渊.地下结构[M].北京:科学出版社,1987
    [40]孙钧等.地下结构有限元法解析[M].上海:同济大学出版社,1988
    [41]孙钧,张德兴,张玉生.深层隧洞围岩的粘弹—粘塑性有限元分析[J].同济大学学报,1981(1)
    [42]孙钧,朱合华.软弱围岩隧洞施工性态的力学模拟与分析[J].岩土力学,1994(4)
    [43]刘怀恒.隧道稳定性分析及其有限元法的应用[J].地下工程,1983(4)
    [44]王芝银.隧道围岩粘弹塑性损伤有限元分析的统一模式[J].西安公路交通大学学报,1997(2)
    [45]朱合华,丁文其.地下结构施工过程的动态仿真模拟分析[J].岩石力学与工程学报,1999(5)
    [46]Cundall,P.A.Numerical Experiments on Localization in Frictional Material,Ingenieur-Archiv,59,148-159.1989
    [47]裴觉民,C.Fairhurst.块状岩体中地下洞室的离散元分析[J].岩土工程学报,1989(6)
    [48]周晓青,王元汉,哈秋等.离散单元法与边界单元法的外部耦合计算[J].岩石力学与工程学报,1996(3)
    [49]金峰,王光纶,贾伟伟.离散元-边界元动力耦合模型在地下结构动力分析中的应用[J].水利学报,2001(2)
    [50]王涛,陈晓玲,杨建.基于3DGIS和3DEC的地下洞室围岩稳定性研究[J].岩石力学与工程学报,2005(19)
    [51]王涛,陈晓玲,于利宏.地下洞室群围岩稳定的离散元计算[J].岩土力学,2005(12)
    [52]盛谦,任放.岩体工程开挖的显式有限差分法模拟[J].长江科学院院报,1993(2)
    [53]梁海波,李仲奎,谷兆祺.FLAC程序及其在我国水电工程中的应用[J].岩石力学与工程学报,1996(3)
    [54]李仲奎,戴荣,姜逸明.FLAC(3D)分析中的初始应力场生成及在大型地下洞室群计算中的应用[J].2002(S1)
    [55]杨典森,陈卫忠,杨为民等.龙滩地下洞室群围岩稳定性分析[J].岩土力学,2004(3)
    [56]李海波,马行东,李俊如等.地震荷载作用下地下岩体洞室位移特征的影响因素分析[J].岩土工程学报,2006(3)
    [57]陈帅宇,周维垣,杨强等.三维快速拉格朗日法进行水布垭地下厂房的稳定分 析[J].岩石力学与工程学报,2003(7)
    [58]张练,丁秀丽,付敬.清江水布垭地下厂房围岩稳定三维数值分析[J].岩土力学,2003(S1)
    [59]曾静,盛谦,廖红建等.佛子岭抽水蓄能水电站地下厂房施工开挖过程的FLAC-(3D)数值模拟[J].岩土力学,2006(4)
    [60]朱维申,刘建华,杨法玉.小浪底水利枢纽地下厂房岩体支护效果数值分析研究[J].岩土力学,2006(7)
    [61]董志宏,邬爱清,丁秀丽.基于数值流形元方法的地下洞室稳定性分析[J].岩石力学与工程学报,2004(S2)
    [62]董志宏,邬爱清,丁秀丽.数值流形方法中的锚固支护模拟及初步应用[J].岩石力学与工程学报,2005(20)
    [63]王靖涛,黄明昌,肖春喜.二滩水电站地下厂房三维边界元分析及稳定性评价[J].岩土工程学报,1986(2)
    [64]周骐.应用边界元法分析洞群的应力状态[J].四川大学学报,1988(1)
    [65]黄运飞.围岩自承岩环作用原理的边界元分析[J].工程力学,1989(2)
    [66]朱敬民,王家远.地下岩石洞室粘弹塑性边界元分析[J].重庆建筑大学学报,1989(2)
    [67]姜弘道,李昭银,陈国荣.三维边界元在地下洞群围岩变形与稳定分析中的应用[J].岩土工程学报,1992(5)
    [68]杨海天,吴京宁.虚边界元法求解岩石力学问题[J].大连理工大学学报,1993(5)
    [69]杨林德,彭敏,马险峰.地下洞室围岩位移量测的优化布置[J].同济大学学报,1995(2)
    [70]郑颖人,徐干成,高效伟.锚喷支护洞室的弹塑性边界元-有限元耦合计算法[J].工程力学,1989(1)
    [71]罗济章,刘正保.开洞地基与框架结构相互作用的耦合分析法[J].重庆建筑大学学报,1991(2)
    [72]Ikegawa Y Systems,Hudson J.A.A Novel Automatic Identification System for Three-dimensional Multiblock Engineering Computations.1992.9(2):169-179
    [73]Jing L.,Stephansson O.Topological Identification Masses.int.j.Rock meth.Min.Sci.&geomech.1994.31(2):163-172
    [74]Richard E.Goodman,Gen-hua Shi.Block theory and its application to Rock engineering.Prentic-hall.
    [75]Jun Liu,Zhongkui Li,Zhuoyuan Zhang.Stability analysis of block in the surrounding rock mass of a large underground excavation,Tunneling and underground apsce technology,2004(19):35-44
    [76]刘军.地下工程围岩块体稳定性研究[D].成都:成都理工大学,2001
    [77]毛海和,夏才初等.块体理论赤平解析法在龙滩水电站地下厂房洞室群稳定分析中的应用[J].岩石力学与工程学报.2005,24(8)
    [78]许强,黄润秋.考虑地应力的洞室围岩块体稳定性分析的理论与实践[J].地质灾害与环境保护.1996,7(41)
    [79]李文秀.地下开挖地表移动的模糊数学分析[J].岩土工程学报,1991(2)
    [80]李文秀.急倾斜厚大矿体地下与露天联合开采岩体移动分析的模糊数学模型[J].岩石力学与工程学报,2004(4)
    [81]陈守煜.模糊最优归类理论模型及其在围岩稳定性分类与场地土类别评定中的应用[J].水利学报,1993(12)
    [82]盛继亮.地下工程围岩稳定性模糊综合评价模型研究[J].岩石力学与工程学报,2003(S1)
    [83]许传华,任青文.地下工程围岩稳定性的模糊综合评判法[J].岩石力学与工程学报,2004(11)
    [84]冯玉国.灰色优化理论模型在地下工程围岩稳定性分类中的应用[J].岩土工程学报,1996(3)
    [85]李文秀.复杂地形工程开挖岩体失稳预测问题研究[J].岩石力学与工程学报,2001(S1)
    [86]冯夏庭.地下采矿方法合理识别的人工神经网络模型[J].金属矿山,1994(3)
    [87]刘占魁,来兴平.基于人工神经网络的地下软岩工程支护初步决策系统的探讨[J].金属矿山,1995(4)
    [88]黄修云,曹国安,张清.人工神经元网络在地下工程预测中的应用[J]北方交通大学学报,1998(1)
    [89]杨朝晖,刘浩吾.地下工程围岩稳定性分类的人工神经网络模型[J].四川大学学报,1999(4)
    [90]王述红,田军,肖福坤,刘宇德,刘斌.遗传神经网络方法预测地下工程位移演化规律[J].东北大学学报,2000(5)
    [91]杨涛,沈培良.基于人工神经网络的岩爆烈度预测研究[J].公路交通科技,2004(7)
    [92]丁德馨,张志军.位移反分析的自适应神经模糊推理方法[J].岩石力学与工程学报,2004(18)
    [92]安红刚.大型洞室群稳定性与优化的并行进化神经网络有限元方法研究[J].岩石力学与工程学报,2003(5)
    [93]周科平,古德生.地下工程稳定性的模糊自组织神经网络聚类分析模型[J].矿业研究与开发,2001(5)
    [94]科学院武汉岩土力学所.岩质边坡稳定性的实验研究与计算方法[M].北京:科学出版社,1981
    [95]夏元友,李梅.边坡稳定性研究及其发展趋势[J].岩石力学与工程学报,2002,21(7)
    [96]陈祖煜,汪小刚,杨键等.岩质边坡稳定分析-原理方法程序[M].北京:中国水利水电出版社,2005
    [97]Bishop A W.The use of the slip circle in the stability analysis of slopes [J].Geotechnique,1955,1:7-17
    [98]Janbu,N.Earth pressures and beating capacity calculations by generalized procedure of slices[J].Proceedings of the fourth international conference on soil mechanics and foundation engineering,1957,2
    [99]Janbu,N.Slope stability computions[J].Soil Mech.and Found.Engrg.Rep.,The technical university of Norway,Trondheim,Norway,1968
    [100]Janbu N.Slope stability computations[J].Embankrnent dam engineering.New York,1973:47-86
    [101 Lowe J.and Karafiath L.Stability of earth dams upon draw down.Proc.[J].lst Pan-Rm.Conf.on Soil Mech.and Found.Engrg.,1960,2:537-552
    [102]U.S.Army Corps of Engineerings.Engineering and design--stability of earth and rock fill dams.Engr[J].Manual EM 1110-2-1502,Dept.of the Army,Corp of Engrs.,Ofc.of the Chf.of Engrs,1970
    [103]Morgenstem N.R and Price V.E.The analysis of the stability of general slip surfaces[J].Geotechnique,1965,15(1):79-93
    [104]Spencer E.A method of analysis of the stability of embankments assuming parallel interstice forces[J].Geotechnique,1967,17(1):11-26
    [105]Hoek E.,Bray J.W,Boyd J.M.The stability of a rock slope containing a wedge resting on two intersecting discontinuities Quarterly[J].Engineering Geology,1973,6(1):17-28
    [106]Revilla J,Castillo E.The calculus of variation applied to stability of slope[J].Geotech,1977,27(1):1-11
    [107]Sarma S.K.Stability analysis ofembankrnents and slopes[J].Geotech.Engrg.Div.,ASCE,1979,105(12):1511-1524
    [108]潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社,1980
    [109]陈祖煜.建筑物抗滑稳定分析中“潘家铮最大最小原理”的证明[J].清华大学学报(自然科学版),1993,38(1):1-4
    [110]李功伯,谢建清.滑坡稳定性分析与工程治理[M].北京:地震出版社,1997
    [111]孙涛,顾波.边坡稳定性分析方法评述[J].岩土工程界,2002,5(12):48-50
    [112]Leshchinsky D.Slope stability analysis:Generalized approach[J].Geotech.Eng.1990,116(5):851-867
    [113]Li K.S.and White W.Rapid evaluation of the critical surface in slope stability problems[J].International for Numerical and Analytical Methods in Geomechanics,1987,11(5):449-473
    [114]Clough A.K.Variable factor of safety in slopes stability analysis by limit equilibrium method[J].1st Eng.,1988,69(3):149-155
    [115]Milutin M Srbalov.Limit equilibrium method with local factors of safety for slope stability[J].Can.Geotech.,1987,24(4):652-656
    [116]Chen Z.-Y.and Shao C.-M.Evaluation of minimum factor of safety in slope stability analysis[J].Can.Geotech.,1988:25(4):735-748
    [117]Meiketsu Enoki,Mori,Yagi,Ryuichi and Yatabe.Generalized slice method for slope stability analysis[J].Soil.Found,1988,30(2):1-13
    [118]Espinazo R.D.,Bourdeau P.L.and Mahunthan B.Unified formulation for analysis of slopes with general surface[J].Geotech.Eng.,1994,120(7):185-204
    [119]Baker R.Determination of the critical slip surface in slope stability computations[J].International for Numerical and Analytical Methods in Geomechanics,1980,4:333-359
    [120]Boutrup E.and Lovell C.W.Search technique in slope stability analysis[J].Engrg.Geol.,1980,16(1):51-61
    [121]Celistino T.B.and Duncan J.M.Simplified search for non-circular slip surface[J].Proc.,10th Int.Conf.on Soil Mech.and Found.Engrg,A.A.Balkema,Rotterdam,The Netherlands,1981:663-669
    [122]Cherubini C and Creco V.R.A probabilistic method for locating the critical slip surface in slope stability analysis[J].Proc.,5th LC.S.A.P.,1987,2:1182-1187
    [123]Yamagami T.and Ueta Y.Search for noncircular slip surfaces by the Morgenstern- Price method[J].Proc.,6th Int.Conf.Numer.Methods in Geomech.1988,6:1219-1223
    [124]Chen Z-Yu.Random trials used in determining global minimum factors of s afety of slopes[J].Can.Geotech.J.,1992,29:225-233
    [125]Greco V.R.Efficient Monte Carlo technique for locating critical slip surface [J].Geotech.Eng.1996,122(7):517-525
    [126]王雪峰.斜坡稳定性随机模拟技术研究[博士学位论文][D].武汉:中国地质大学,1997
    [127]Anagnosti P.Three dimensional stability of fill dams[J].Proc.7th Int.Conf.on Soil Mech.and Found.Engrg.A.A.Balkema,Rotterdam,the Netherlands,1969
    [128]Giger M.W.and Krizek R.J.Stability of vertical comer cut with concentrated surchrge load[J].Geotech.Engrg.Div.ASCE,1976,102(1):31-40
    [129]Baligh M.M.,Azzouz A.S.and Ladd C.C.Line loads on cohesive slopes.Proc.9th Int.Conf.on Soil Mech.and Found.Engrg[J].Japan Soc.For Soil Mech.and Found.Engrg.Tokyo,1977,2:13-17
    [130]Chen R.H.and Chameau J.L.Three dimensional limit equilibrium analysis of slopes[J].Geotechnique,1983,33(1):31-40
    [131]Dennhardt M.and Forster W.Problems of three dimension slope stability [J].Proc.,1 lth Int.Conf.on Soil Mech.and Found.Engrg.,A.A.Balkema,Rottemdam.The Netherlands,1985,2:427-431
    [132]Ugai K.Three-dimensional stability analysis of vertical cohesive slopes.Soils and Found.Tokyo,1985,25(3):41-48
    [133]Seed R.B.,Mitchell J.K.and Seed.H.B.Kettlemen Hills waste landfill slope failure Ⅱ:stability analysis[J].Geotech.Engrg.ASCE,1990,116(4):669-690
    [134]Cundall P.A.and Straek O.D.L.A discrete numerical method for granular assemblies[J].Geotechnique,1979,29(1):47-65
    [135]石根华,任放.块体系统下不连续变形数值分析方法[M].北京:科学出版社,1993
    [136]Gen-hua Shi,R ichard E.Goodman.Generalization of two-dimensional discontinuous deformation analysis for forward modelling[J].International Journal for Numerica land Analytical Methods in Geomechanics,1989,13:359-380
    [137]Gen-hua Shi.Numerical manifold method[J].Proc.of IC ADD-2,The second international conference on analysis of discontinuous deformation,Kyoto University,1997:1-34
    [138]Gussmann P,Ochmann H.概率论和运动单元法[M].见:可靠性理论在地基基础方面的应用译文集[C].上海:同济大学出版社,1987,124-131
    [139]曹平,GussmannP.运动单元法与边坡稳定性分析[J].岩石力学与工程学报,1999,18(6):663-666
    [140]FLAC-user's manual[M].Minneapolis,MN:Itasca Consulting Group Inc.2005
    [141]祝玉学.边坡可靠性分析[M].北京:冶金工业出版社,1993
    [142]Lee L-M.and Lee M.-J.Optimization of rock slopes using reliability concepts [J].International Journal of Rock Mechanics and Mining Science Abstract,1998,35(4/5):661
    [143]Low B.K.and Wilson H.T.Probabilistic slope analysis using Janbu's Generalized Procedure of slices[J].Computers and Geotechnics,1997,21(2):121-142
    [144]Husein M.A.L,Hassan W.F and Abdulla F.A.Uncertainty and reliability analysis applied to slope stability[J].Structural Safety,2000,22:161-178
    [145]Low B.K.Reliability analysis of rock wedges[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1997,123(6):498-505
    [146]秦四清,张悼元,王士天等.非线性工程地质学导引[M].成都:西南交通大学出版社,1993
    [147]周萃英,晏同珍,汤连生.滑坡灾害系统非线性动力学研究[J].长春地质学院学报,1995,25(3):310-316
    [148]周萃英,汤连生,晏同珍.滑坡灾害系统的自组织[J].地球科学一中国地质大学学报,1996,21(6):604-607
    [149]许强,黄润秋.斜坡演化的自组织特征初探[J].中国地质灾害与防治学报,1997,8(1):7-11
    [150]易顺民.分形工程地质及其应用研究[博士学位论文[D].北京:中国地质大学,1996
    [151]郑明新,王恭先,王兰生.分形理论在滑坡预报中的应用研究[J].地质灾害与环境保护,1998,9(2):18-26
    [152]张子新,孙均.分形块体理论及其在三峡高边坡稳定分析中的应用[J].自然灾害学报,1995,4(4):89-95
    [153]吴中如,潘卫平.分形几何理论在岩土边坡稳定性分析中的应用[J].水利学报,1996,(4):79-82
    [154]黄润秋,许强.突变理论在工程地质中的应用[J].工程地质学报,1993,1(1):65-73
    [155]殷坤龙,晏同珍.滑坡预测及其相关模型[J].岩石力学与工程学报,1996,15(1):1-8
    [156]李造鼎,宋纳新,贾立宏.岩土动态开挖的灰色突变建模[J].岩石力学与工程学报,1997,16(3):252-257.
    [157]谭文辉.基于不确定性和非线性的高陡边坡稳定性研究[博士学位论文].北京:北京科技大学,2002
    [158]交通部第二公路勘察设计院.公路设计手册(路基)(第二版)[M].北京:人民交通出版社,1996.
    [159]铁道部第一勘测设计院.铁路工程设计技术手册(路基)[M].北京:人民铁道出版社,1992
    [160]孙萍,彭建兵,范文等.黄土地区公路暗穴顶板临界厚度的确定方法[J].中国公路学报,2006,19(2):12-16
    [161]王明华,杨良策,刘汉超等.大型地下洞室顶板稳定性的岩体结构控制效应[J].岩土力学,2003,24(3):484-487
    [162]汪稔,孟庆山,罗强等.桥基岩溶洞穴顶板稳定性综合评价[J].公路交通科技,2005,22(6):76-80
    [163]黄润秋,陈尚桥,黄家渝等.重庆市浅埋地下洞室安全顶板厚度研究[J].工程地质学报,1998,6(2):120-127
    [164]黎斌,范秋雁,秦凤荣.岩溶地区溶洞顶板稳定性分析[J].岩石力学与工程学报,2002,21(4):532-536
    [165]程晔,赵明华,曹文贵.基桩下溶洞顶板稳定性评价的强度折减有限元法[J].岩土工程学报,2005,27(1):38-41
    [166]李廷春,李术才,白世伟.厦门海底隧道顶板厚度选择及其开挖稳定性分析[J].岩土力学,2005,26(12):2010-2014
    [167]陆富龙,李芬芳.露天采矿场下部采空区顶板安全厚度的确定[J].采矿技术,2004,4(3):34-36
    [168]张小玉,李术才,邱祥波.水下长隧道最小安全顶板厚度研究[J].武汉理工大学学报,2003,25(4):167-170
    [169]廖春芳,彭衡和,曹文贵等.岩溶及采空区路基岩层顶板安全厚度确定方法研究[J].公路,2003,1:2-4
    [170]曹文贵,程晔,赵明华.公路路基岩溶顶板安全厚度确定的数值流形方法研究[J].岩土工程学报,2005,27(6):621-625
    [171]李廷春,李术才等.三维快速拉格朗日法在安全顶板厚度研究中的应用[J].岩土力学,2004,25(6):935-939
    [172]李廷春,李术才,陈卫忠等.厦门海底隧道的流固耦合分析[J].岩土工程学报,2004(3)
    [173]胡卸文,陈光.综合考虑各影响因素下浅埋洞室顶板最大安全荷载预测[J].中国铁道科学,2005(4)
    [174]赵明华,程晔,曹文贵.桥梁基桩桩端溶洞顶板稳定性的模糊分析研究[J].岩石力学与工程学报,2005,24(8):1376-1383
    [175]姜德义,任松,刘新荣等.岩盐溶腔顶板稳定性突变理论分析[J].岩土力学,2005,26(7):1099-1103
    [176]王勇,乔春生,孙彩红等.基于SVM的溶洞顶板安全厚度智能预测模型[J].岩土力学,2006,27(6):1000-1004
    [177]朱合华,李新星,蔡永昌等.隧道施工中洞口边仰坡稳定性三维有限元分析[J].公路交通科技,2005(S1)
    [178]王建秀,唐益群,朱合华等.连拱隧道边坡变形的三维监测分析[J].岩石力学与工程学报,2006,25(11):2226-2232
    [179]徐卫亚,罗先启,谢守益等.水布娅马崖高边坡岩体地下开挖三维数值模拟研究[J].工程地质学报,1999,7(1):89-93
    [180]董慧明,曹平.含地下洞室的露天矿边坡稳定性研究[J].西部探矿工程,2005,3
    [181]万文.地下空区对边坡稳定性的影响研究[D].长沙:中南大学,2006
    [182]蓝航,李凤明,姚建国.露天煤矿排土场边坡下采动沉陷规律研究[J].中国矿业大学学报,2007,36(4):482-486
    [183]韩放,谢芳,王金安.露天转地下开采岩体稳定性三维数值模拟[J].北京科技大学学报,2006,28(6):509-514
    [184]张永波,孙雅洁等.老采空区建筑地基稳定性评价理论与方法[M].北京:中国建筑工业出版社,2006
    [185]张长敏,祁丽华,慎乃齐.采空区建筑地基稳定性评价研究[J].湖南科技大学学报,2006,21(4):46-49
    [186]王生俊,贾学民,韩文峰等.高速公路下伏采空区剩余沉降量FLAC3D计算方法[J].岩石力学与工程学报,2005,24(19):3545-3550
    [187]陈晓斌,张家生,杨果岳等.高速公路采空区工程处理范围确定方法[J].岩石力学与工程学报,2007,26(11:162-168
    [188]赵明华,曹文贵,何鹏祥等.岩溶及采空区桥梁桩基桩端岩层安全厚度研究[J].岩土力学,2004,25(1):64-67
    [189]戴兰芳,苏胜昔,李文秀.采空区地表建筑物基础稳定性的Fuzzy测度分析[J].岩土力学,2004,25(11):1791-1794
    [190]李晓红,靳晓光,卢义玉等.西山坪隧道穿煤及采空区围岩变形特性与数值模拟研究[J].岩石力学与工程学报,2002,21(5):667-670
    [191]王思敬,杨志法,刘竹华.地下工程岩体稳定分析[M].北京:科学出版社,1984
    [192]靳晓光.高地应力区山岭公路隧道围岩稳定性分析位移判据探讨[C].2001年全国公路隧道会议论文集,北京:人民交通出版社,2001,9-13
    [193]李晓红.隧道新奥法及其监控量测技术[M],北京:科学出版社,2002.1
    [194]朱永全.隧道稳定性位移判别准则[J].中国铁道科学.2001,22(6):80-83
    [195]Н·и穆斯赫利什维利著,赵惠元译.数学弹性力学的几个基本问题[M].北京:科学出版社,1958
    [196]陈子荫.围岩力学分析中的解析方法[M].北京:煤炭工业出版社,1994,4:1-39
    [197]樊大钧.数学弹性力学[M].北京:新时代出版社,1983,7:245-258
    [198]房营光,孙钧.地面荷载下浅埋隧道围岩的粘弹性应力和变形分析[J].岩石力学与工程学报,1998,6,17(3):239-247
    [199]房营光,孙钧.地面荷载下浅埋隧道围岩的粘弹性应力和变形分析[J].岩石力学与工程学报,1998,6,17(3):239-247
    [200]房营光,陈尤雯,黄文兴.地面荷载条件下浅埋双圆形隧道围岩的粘弹性分析[J].世界隧道,1999,(2):8-13
    [201]朱大勇,钱七虎,周平生等.复杂形状洞室围岩应力弹性解析分析[J].岩石力学与工程学报,1999.8,18(4):402-404
    [202]A.Vemiijt.A comPlex variable solution for a deforming circular tunnel in an elastic half-Piane[J].Int.J.Numer.Anal.Meth.Geomeeh,1997;21:77-89
    [203]A.Vemiijt.A comPlex variable solution for a deforming buoyant tunnel in a heavy elastic half-plane[J].Int.J.Numer.Anal.Meth.Geomeeh.2002;26:1235 -1252
    [204]陆文超,仲政,王旭.浅埋隧道围岩应力场的解析解[J].力学季刊,2003,24(1):50-54
    [205]陆文超.地面荷载下浅埋隧道围岩应力的复变函数解法[J].江南大学学报2002.12,1(4):409-413
    [206]孙钧,侯学渊.地下结构[M].北京,科学出版社,1988
    [207]于学馥,郑颖人等.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983
    [208]王仁,熊视华.黄文彬.塑性力学基础[M].北京:科学出版社,1981
    [209]孙钧,汪炳缢.地下结构有限元法解析[M].上海:同济大学出版社,1988,6
    [210]Mao-hong Yu.Advances in strength theories for materials under complex stresss state in the 20th century[J].Applied Mechanics Reviews,2002,55(3):169-218
    [211]徐秉业,刘信声.应用弹塑性力学[M].北京:清华大学出版社,1995
    [212]朱伯芳.有限单元法原理与应用[M].北京:水利电力出版社,1979
    [213]张季如.边坡开挖的有限元模拟和稳定性评价[J].岩石力学与工程学报,2002,6
    [214]杜成斌,黄承泉等.百色水电站高边坡开挖模拟及稳定性分析[J].中国农村水利水电,2002,3
    [215]龚朴,严仁军等.三峡船闸高边坡的开挖模拟分析[J].武汉交通科技大学学报,1998,2
    [216]Griffiths D V,Lane P A.Slope stability analysis by finite elements[J].Geotechnique,1999,49(3):387-403
    [217]Maerz,H.H.Highway rock cut stability assessment in rock masses not conducive to stability calculations[C].Proceedings of the 51st Annual Highway Geology Symposium,Aug.29-Sept.1,Seattle,Washington,pp.249-259.
    [218]史恒通,王成华.土坡有限元稳定性分析若干问题探讨[J].岩土力学,2000,21(2):152-155
    [219]宋二详.土工结构安全系数的有限元计算[J].岩土工程学报,1997,19(2):1-7
    [220]赵尚毅,郑颖人,时卫民等.用有限元强度折减法求边坡稳定性安全系数[J].岩土工程学报,2002,24(3):343-346
    [221]连镇营,韩国城,孔宪京.强度折减有限单元法研究开挖边坡的稳定性[J].岩土工程学报,2001,23(4):406-411
    [222]杨强,陈新,周维垣.基于D-P准则的三维弹塑性有限元增量计算的有效算法[J].岩土工程学报,2002,24(1):16-20
    [223]中华人民共和国建设部.GB50021-94.岩土工程勘察规范[S].北京:中国建筑工业出版社,1995
    [224]中华人民共和国建设部.GB50007-2002.建筑地基基础设计规范[S].北京:中国建筑工业出版社,2002
    [225]杜时贵,潘别桐.小浪底边坡工程地质[M].北京:地震出版社,1999
    [226]王正国.露天矿岩质边坡变形破坏模式综合研究[J].攀钢技术,1998,21(3):16-19
    [227]唐家祥,王仕统,裴若娟.结构稳定理论[M].北京:中国铁道出版社,1989
    [228]黎绍敏.稳定理论[M].北京:人民交通出版社,1989
    [229]刘军,谢晔,张倬元等.突变理论在安全埋高研究中的应用[J].岩石力学与工程学报,21(6):879-882
    [230]刘军,柴贺军,张倬元.西南某巨型水电站地下厂房顶拱安全埋高解析解初步研究[J].地质灾害与环境保护,2000,(4):337-340
    [231]Baron,F.and M.S.Venkatesan.Inelastic Response for Arbitrary Histories of Loads[J].Journal of the Engineering Mechanics Division,ASCE,Proc.Paper 6634Vol.95,No.EM3,PP.763-786,June(1969)
    [232]Burdette,E.G.and H.K.Hilsdorf.Behavior of Laterally Reinforced Concrete Colums[J].Journal of the Structural Division,ASCE,Proc.Paper7905,Vol97,No.st2,pp.587~602,February,(1971)
    [233]Chen,W.F.and T.Atsuta.Further studies of inelastic beam-column problems.[J].Joumal of the structural Division.ASCE,Proc.Paper 7922,Vol.97,No.ST2,pp.529-544,Febuary,(1971)
    [234]W.F.Chen,T.Atsuta.周绥平等译.梁柱分析与设计[M].北京:人民交通出版社.1997.
    [235]Saunsers P T.灾变理论入门四.凌复华译.上海:上海科学技术文献出版社,1983
    [236]凌复华.突变理论-历史、现状和展望.力学进展,1984,14:4-7
    [237]李琼,李正文,蒲勇.沉积盆地的突变特征及尖点突变模型的应用研究[J].成都理工学院学报.2001,28(1):64-69
    [238]周辉,冯夏庭,谭云亮等.矿震系统的胞映射-突变预测模型[J].中国有色金属学报.2002,12(1):155-160
    [239]刘保县,鲜学福,姜德义.煤与瓦斯延期突出机理及其预测预报的研究[J].岩石力学与工程学报.2002,21(5):647-650
    [240]刘泽亮,程凌,孟庆刚.基于突变理论的上市公司业绩评价[J].青岛大学学报.2002,17(2):16-19
    [241]高明仕,窦林名,张农等.煤(矿)柱失稳冲击破坏的突变模型及其应用[J].中国矿业大学学报,2005,34(4):433-437
    [242]秦四清.斜坡失稳的突变模型与混沌机制[J].岩石力学与工程学报,2000,19(4):486-492
    [243]L.H.Chai,M.Shoji.Boilingcurves-bifureationandeatastrophe Intemational Joumal of Heat and Mass Transfer.2001(44):pp4175-4179
    [244]Andras Lengyel,ZhongYou.Bifureations of SDOF meehanisms using Catastrophe theory.International Journal of Solids and Struetures.2004(41):pp 559-568
    [245]Yasufumi Kume,Nozomi Sato.Biomechanical study on the postures in Manual lifting tasks using cusp surface analysis.Int.J.Produetion Economics.1999(60-61):pp411-420
    [246]周辉,周爱民,李庶林等.承压水上井筒底板隔水层加固厚度的突变分析[J]. 矿业研究与开发,2003,23(1):22-24
    [247]姜德义,任松,刘新荣等.岩盐溶腔顶板稳定性突变理论分析[J].岩土力学,2005,26(7):1099-1104
    [248]赵明华,蒋冲,曹文贵.岩溶区嵌岩桩承载力及其下伏溶洞顶板安全厚度的研究[J].岩土工程学报,2007,29(11):1618-1622
    [249]刘军.突变理论在岩石力学中的应用及发展趋势[J].自然杂志,2000,22(5):264-267
    [250]费鸿禄,唐春安,徐小荷.突变理论研究单轴加载失稳与实验验证[J].中国有色金属学报,1995,5(4):31-34
    [251]潘岳.岩石破坏过程的折迭突变模型[J].岩土工程学报,1999,21(3):299-30
    [252]刘军,秦四清,张淖元.缓倾角层状岩体失稳的尖点突变模型研制[J].岩土工程学报,2001,23(1):42-44
    [253]康仲远.岩体准静态运动失稳的CUSP型突变模型[J].地震学报,1984,6(3):352-360
    [254]杨修信,殷有泉.压纽性断层地震过程的CUSP型突变分析[J].中国科学(B 辑),1994,24(6):656-663
    [255]徐曾和,徐小荷,唐春安.坚硬顶板下煤柱岩爆的尖点突变理论分析[J].煤炭学报,1995,20(5):485-491
    [256]徐曾和,徐小荷.柱式开采岩爆发生条件与时间效应的尖点突变[J].中国有色金属学报,1997,7(2):17-23
    [257]白晨光,黎良杰,于学馥.承压水底板关键层失稳的尖点突变模型[J].煤炭学报,1997,22(2):149-154
    [258]李江腾,曹平.非对称开采时矿柱失稳的尖点突变模型[J].应用数学和力学,2005,26(8):1003-1008
    [259]郭建军.夏甸金矿矿柱及围岩稳定性分析与应用[D].泰安:山东科技大学,2005
    [260]M.Oda.A fabric tensor for discontinuous geological materials,Soils Fdns.198222(4):96-108
    [261]杨延毅.节理裂隙岩体损伤断裂力学模型及其在岩体工程中的应用[D].北京:清华大学,1990
    [262]李江腾.硬岩矿柱失稳及时间相依性研究[D].长沙:中南大学,2005
    [263]严隽耄.车辆工程[M].北京:中国铁道出版社,1999
    [264]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,2002
    [265]宋一凡.公路桥梁动力学[M].北京:人民交通出版社,1999
    [266]Ladislav,Fryba,齐法琳.铁路桥梁动力学[M].北京:科学出版社,2007
    [267]肖新标,沈火明.移动荷载作用下的桥梁振动及其TMD控制[J].振动与冲击,2005,24(2):58-61
    [268]李宏男,李忠献,祁皑等.结构振动与控制[M].北京:中国建筑工亚出版社,2005
    [269]中国工程建设标准化协会建筑振动专业委员会.建筑振动工程手册[M].北京:中国建筑工业出乎办社,2002
    [270]郭长城.建筑结构振动计算[M].北京:中国建筑工业出版社,1982
    [271]沈茂山,魏德敏.弹性拱振动失稳的突变模型[J].应用数学和力学,1990,11(12):1099-1102
    [272]许强,黄润秋.地震作用下结构非线性响应的突变分析[J].岩土工程学报,1997,19(4):25-29
    [273]左宇军,李夕兵,马春德等.动静组合载荷作用下岩石失稳破坏的突变理论模型与试验研究[J].岩石力学与工程学报,2005,5
    [274]]闫长斌,徐国元.动荷载诱发上下交叠硐室间顶柱失稳的突变理论分析[J].工程力学,2007,24(4):46-51
    [275]R.克拉夫,J.彭津.结构动力学[M].北京:高等教育出版社,2006
    [276]Saunders P T.An Introduction to Catastrophe Theory[M].Cambridge,U.K.:Cambridge University Press,1980.
    [277]曹志远,杨晟田.厚板动力学理论及其应用[M].北京:科学出版社,1983
    [278]Hencky,H.uber die Berucksichtigung der Schubverzerrungen in ebenen Platten,Ing-Arch.16(1947),1,S.72
    [279]Reissner,E.The effect of transerse shear deformation on the bending of elastic plates,JAM.12(1945),P.69
    [280]杜庆华.构造上引起的正交各向异性平板的弹性理论[J].清华大学学报,1962,9(4)
    [281]Mindlin,R.D.Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates,JAM,18(1951),P.31
    [282]胡海昌.各向同性夹层板反对称小挠度的若干问题[J].力学学报,1963,6
    [283]刘波.FLAC原理、实例与应用指南[M].人民交通出版社,2005,9
    [284]Gemcom Surpac user's manual[M].Surpac Inc,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700