用户名: 密码: 验证码:
高层建筑筒体结构理论分析及拟动力试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合国家自然科学基金项目(50478092、50438020),主要进行两方面研究:第一,以高层建筑筒中筒结构计算方法为研究对象,基于连续介质力学、柱壳弹性理论以及结构分析有限条元法理论,分别对高层建筑筒中筒结构静力、动力、整体稳定及二阶分析等方面进行全面系统的研究,提出了一种高层建筑筒中筒结构静力、动力、整体稳定及二阶分析计算的新方法;第二,完成了一座15层的高层钢-混凝土混合结构拟动力试验研究,并采用有限元软件对其进行非线性分析。主要研究成果如下:
     (1)提出了任意平面形状高层建筑筒体结构在弯曲和扭转联合作用下三维静力分析的改进条元法,扩展了传统有限条元法应用范围。该方法根据柱壳理论构造了一种柱壳曲条,选取条元位移函数:条元内位移沿条宽方向,切向位移采用一次Langrange插值,法向位移和截面翘曲位移采用三次Hermite插值,能较好地反应筒体受力的“剪切滞后”效应;采用一族能较好地逼近弯剪型变形曲线的正交多项式作位移基函数,克服了传统有限条元法采用悬臂梁振型函数或三角函数作位移基函数导致基底剪应力为零的缺点。
     (2)提出了任意平面形状高层建筑筒体结构动力特性分析的改进条元法。该方法考虑弯扭耦联振动,推导了柱壳曲条相容质量矩阵和楼板相容质量矩阵。采用竖向无质量自由度静力凝聚法,使动力分析自由度大为减少。其自由度总数与筒体结构高度无关,只与位移函数按基函数展开时所取的项数有关。
     (3)提出了任意平面形状高层建筑筒体结构整体稳定及二阶分析的改进条元法。该方法在条元总势能中,计入竖向荷载产生荷载势能,由势能驻值原理,推导了柱壳曲条的几何刚度矩阵。
     (4)通过试验得出了7种不同地震作用工况下混合结构的顶部位移时程曲线、楼层最大位移包络图、楼层最大层间位移角图及底部剪力一顶部位移滞回曲线。大震阶段顶部位移达到结构高度的1/60,说明混合结构具有良好的极限变形能力。
     (5)按7度设防,在7度基本、7度罕遇地震作用下,结构处于弹性工作状态,无明显破坏特征;在8、9度罕遇地震作用下,连梁开裂,楼板及底层筒体出现裂缝,但钢框架未发生屈服,结构仍具有较大承载力;在地震波峰值加速度达到1.0g、1.6g地震作用下,连梁开裂严重,出现交叉斜裂缝,呈剪切型破坏,核心筒底部与基础连接处出现水平通缝,部分底层钢柱屈服,但结构并未完全破坏,仍具有一定的承载能力。因此,只要设计合理,钢—混凝土混合结构具有良好的抗震性能,能实现“小震不坏、中震可修、大震不倒”的设计目标。
     (6)通过试验得出了7种不同地震作用工况下混合结构水平力分担曲线。此类结构在弹性阶段,心筒承担大部分的水平力,随着心筒开裂,内力发生重分布,钢框架承担水平力增加,且随着地震加剧,钢框架承担水平力比例不断增大,钢框架起到了抗震第二道防线的作用。
     (7)采用有限元软件对混合结构在7种不同地震作用工况下破坏过程进行了数值模拟,得到了顶部位移时程曲线、水平力分担曲线和结构损伤破坏过程,其规律与试验结果吻合良好,试验结果验证了有限元分析的正确性。因此,对一些大型复杂结构可用有限元理论模拟地震作用下结构的破坏过程。
In this thesis,the research work supported by national natural science foundation of China under Grant(50478092,50438020) has been carried out,which includes two aspects.With the computational method as the research object,the tube-in-tube structure of tall building is studied systematically regarding static analysis,dynamic analysis,overall stability and second-order analysis,based on continuous media mechanics,elastic theory of column shells and finite strip method of structural analysis.The corresponding computational method is developed.Additionally,a pseudo-dynamic experimental research of a 1/10 scale 15-storey steel-concrete hybrid structure has been done and nonlinear analysis of steel-concrete hybrid structure has also been completed.The main accomplishments are given in the following:
     (1) An improved finite strip method of three-dimensional static analysis of tall building tubular structure with arbitrary peripheral shape subjected to bending and torsion is developed,which extend the application area of traditional finite strip method.According to the theory of column shells,a column shell curvilinear strip is constructed in this method.The displacement functions are selected as follows:along the direction of strip width,the tangential displacement uses one-order Langrange interpolation, the normal displacement and section warping displacement use cubic Hermite interpolation,which can well take into account the shear-lag effect of tall building tubular structures.The orthogonal polynomials approximated well to deformation curves of bending-shear type are employed as the displacement basic function,which overcomes the disadvantage of the classic finite strip method that the stresses at the section of base are zero due to the employment of vibration function for a cantilever beam or trigonometric function as the displacement basic function.
     (2) An improved finite strip method is developed for analyzing dynamic properties of tall building tubular structure with arbitrary peripheral shape.The consistent mass matrixes of column shell curvilinear strip and floor slab are derived based on coupled vibration of bending and torsion in this method.The degree of freedom in dynamic analysis is greatly reduced by using the so-called static condensation technique without considering the vertical mass.The total number of degree of freedom is independent of the height of the tubular structure,but is dependent of the number of terms taken from the expansion of the displacement function about basic function.
     (3) An improved finite strip method of the calculations of overall stability and second-order analysis of tall building tubular structure with arbitrary peripheral shape is developed.Taking the potential energy of load action into account in the calculation of the total potential energy,the geometric stiffness matrix of the curvilinear shell strip is developed based on the principle of minimum potential energy.
     (4) The experimental results of the top displacement time history,the maximal floor displacement,inter-story displacement angle and bottom shear force-top displacement hysteretie loops of the hybrid structure under seven different earthquake actions have been obtained.The maximal top displacement arrives at one-sixtieth of the height of tall building steel-concrete hybrid structure under heavy earthquake,which shows the good limited deformation capacity of tall building steel-concrete hybrid structure
     (5) The test results indicate that the hybrid structure,with designed seismic resistance grade 7,remains in elastic stage and has no obvious failure characteristics under 7-degree basic intensity and 7-degree of rare earthquake.Cracks appear on the coupling beams,the floor slabs and the bottom layer of the core tube under the rare earthquake of magnitude of 8 degree and 9 degree,but the steel frame does not yield and the structure has good bearing capacity.At the peak acceleration of 1.0g and 1.6g of earthquake inputs,the cracks develop very quickly on the coupling beams, the horizontal cracks develop across the bottom surface of the core tube and some of the steel columns yield,while the steel-concrete hybrid structure still has some bearing capacity.Therefore,it can be concluded that with reasonable design,the steel-concrete hybrid structure will have good seismic behavior under earthquake actions,which can satisfy the requirements of"three-level performance objectives".
     (6) The sharing curves of horizontal force of hybrid structure under seven different earthquake actions have been obtained from test.The experimental results indicate that a large fraction of horizontal force is undertaken by the core tube when the structure is in the elastic range,and upon cracking of the core tube,which results in the internal force redistribution,the portion of sharing by steel frame increases.With the intensity of earthquake becomes larger and larger,the proportion of horizontal force undertaken by the steel frame increases constantly,and the steel frame acts as the second seismic resistant system.
     (7) The finite element program ABAQUS is applied to study the numerical simulation of failure process of steel-concrete hybrid structure under seven different earthquake actions.The analytical results of the top displacement time history,the sharing curves of horizontal force and the process of damage-failure have been obtained,which correlate well with the experimental results.The finite element analysis is verified by the test results,which indicates that the finite element analysis method can be used to simulate the failure process of some large and complex structures.
引文
[1][加]B.S.史密斯,[英]A.库尔,编著.陈瑜,龚炳年等译校.高层建筑结构分析与设计.北京:地震出版社.1993
    [2]王荫长编著.高层建筑简体结构的计算.北京:科学出版社.1998
    [3][英]Y.K.CHEVNG著.谢秀松,王贻菘,李兰芳,方佩芝译.结构分析的有限条元法.北京:人民交通出版社.1985
    [4]包世华著.新编高层建筑结构.北京:中国水利水电出版社.2001
    [5]沈蒲生编著.高层建筑结构设计.北京:中国建筑工业出版社.2006.
    [6]陈刚,李家宝.广义位移的有限条元及其在高层建筑结构分析中的应用.建筑结构学报,1988,9(3):15-25.
    [7]胡绍隆,徐建平.用有限条法计算高层建筑简体结构.建筑结构,1983,13(5):7-16
    [8]朱幼麟.筒中筒结构的简化计算,建筑结构学报,1984,5(2):9-21
    [9]刘开国.高层建筑结构的能量变分解.建筑结构学报,1982,3(3):23-24
    [10]龙驭球,辛克贵.多边形截面框筒结构的能量变分解.建筑结构报,1985,6(3):10-16
    [11]上海建筑科学研究所,上海工业建筑设计院.框筒模型的试验研究.1984
    [12]周岱,董石麟.高层建筑框筒结构的简化计算法.浙江大学学报(自然科学版),1998,32(3):251-260.
    [13]丁勇,黄本才.变截面高层框筒结构内力和位移简化计算方法.同济大学学报(自然科学版),1999,27(3):282-286.
    [14]蔡松柏,石灿琪,王选民.高层框筒结构正交各向异性等效模型的解析解.湖南大学学报(自然科学版),1997,24(4):92-97.
    [15]曹希尧,李家宝,李存权.框筒结构两种典型简化分析方法的综合比较.湖南大学学报(自然科学版),1997,24(1):87-92.
    [16]徐彬,夏锋,梁启智.考虑剪力滞后框筒结构位移解析解.昆明理工大学学报,1998,23(6):75-79.
    [17]赵琼海.框筒结构的能量变分解,广州大学学报(综合版),2000,14(3):65-69.
    [18]吴秀水.考虑剪切变形的薄壁杆件分析,工程力学,1993
    [19]左振波,左振明,左春仁.高层建筑巨型框架结构应用及其受力特征.大连大学学报,2003,24(2):35-37.
    [20]杜国君,平板网架结构分析的超级有限元法.计算结构力学及其应用. 1995,12(2):249-252.
    [21]曹志远,吴梓玮.平板网架结构分析的超级条元法.应用力学学报,1996,13(1):133-136.
    [22]李君,张耀春.超级元在巨型钢框架结构分析中的应用.哈尔滨建筑大学学报,1999,32(1):38-42.
    [23]刘文丽,施行,马翠岩,高层建筑结构分析的有限元—有限条混合法,辽宁工程技术大学学报(自然科学版),1999,18(3):296-298.
    [24]李从林,程耀芳.几种高层建筑结构简化分析统一的连续—离散法方法.建筑结构,1997
    [25]赵建昌,李丛林,高层建筑空间协同分析的连续—离散化方法.兰州铁道学院学报,1994,13(1):27-33.
    [26]周竖.罗健,高层建筑三维空间协同工作体系弯扭耦联简化分析.土木工程学报,1989,22(2):11-19.
    [27]李丛林,赵建昌.变刚度框架—剪力墙—薄壁筒斜交结构考虑部分楼板变形的广义框架法.工程力学,1994,11(4):83-93.
    [28]包世华,张亿果.变截面框架—剪力墙—薄壁筒斜交结构考虑楼板变形的计算.工程力学,1992,9(2).
    [29]叶荣华.框架—剪力墙体系在任意水平力作用下的一种简捷解法.建筑结构学报,1994,15(2):35-42.
    [30]赵鸣,屠成松.筒体结构内力与变形的拟平面法.四川建筑科学研究,2000,26(4):11-13.
    [31]陈丽,孙静,考虑地基、基础联合作用的框架结构有限元分析.西安建筑科技大学学报,2000,32(3):291-293.
    [32]蒋欢军,吕西林.用一种墙体单元模型分析剪力墙结构.地震工程与工程振动,1998,18(3):40-48.
    [33]朱杰江,吕西林,容柏生.复杂体型高层结构的推覆分析方法和应用.地震工程与工程振动,2003,23(2):28-36.
    [34]赵永杰,罗兆辉,刘颖.开洞核芯筒的弯扭分析.天津大学学报(自然科学与工程技术版),2002,35(4):482-486.
    [35]杨允表,朱启根.四面开洞核心筒体扭转特性的位移分析法.工程力学,1999,16(2):11-41.
    [36]刘开国.变截面高层框筒结构的矩阵传递法.力学与实践,2004,26(4):34-37.
    [37]吴幼明,罗旗帜.能量变分原理推导考虑剪切变形的梁单元刚度矩阵.佛山科 学技术学院学报(自然科学版),2003,21(1):35-38.
    [38]刘开国.超高层圆锥形框筒结构分析.建筑钢结构进展,2005,7(4):33-49.
    [39]刘开国.变截面高层框筒结构分析的最小二乘配点法.建筑钢结构进展,2006,8(1):31-34.
    [40]程懋堃.关于框筒结构的设计.建筑结构学报,1998,19(2).
    [41]陈岳辉,刘斌.框筒结构中角柱刚度对结构内力分布影响的研究.结构工程师,1998(2):14-18.
    [42]张文福,姚芳.三角形高层框筒结构在水平荷载作用下剪力滞后的有限元分析.四川建筑科学研究,2005,31(1):45-47.
    [43]崔鸿超.框筒(筒中筒)结构空间工作分析及简化计算.建筑结构学报,1982,21(11):32-41.
    [44]梁启智编著.高层建筑结构分析与设计.广州:华南理工大学出版社.1992.
    [45]吴景祥主编.高层建筑结构.北京:中国建筑工业出版社.1987.
    [46]方善镐编.多层与高层建筑结构.南京:东南大学出版社.1989.
    [47]赵西安,徐培福编著.高层建筑结构的选型构造及简化计算.北京:中国建筑工业出版社.
    [48]赵西安,胡世德.国内已建成的最高100栋建筑.土木工程学报 1997,30(4):75-78.
    [49]赵西安.我国高层建筑结构计算方法的进展.工程力学,1990,7(3):66-72.
    [50]王凤金.高层建筑结构力学分析的进展.力学与实践,1994,16(1):101-105.
    [51]梁启智.高层建筑连续化方法(上,下).建筑结构学报,1984,5(4):1-11.1984,5(5):57-62.
    [52]秦荣.高层建筑结构分析的新方法.工程力学,1991,8(4):41-50.
    [53]范重,龙驭球.高层建筑结构分析的样条单元法.建筑结构,1994,24(3):17-25.
    [54]曹国兴,王荫长.高层建筑结构分析的样条子结构法.西安冶金建筑学院学报,1986,(2):13-22.
    [55]王荫长.筒式高层建筑结构简化分析.西安冶金建筑学院学报,1984,(3):95-104.
    [56]周竖.筒中筒结构弯扭耦联简化分析.建筑结构学报,1990,11(5):51-58.
    [57]童岳生.框架-剪力墙结构在水平荷载作用下弯矩迭代计算.西安冶金建筑学院学报,1993,(2):123-130
    [58]周汉斌,王磊.框架-剪力墙结构简化分析的一种探讨.工程力学,1989,6(1):66 -74.
    [59]辛克贵.薄壁结构分析的半离散解法.工程力学,1995,(增刊),59-70.
    [60]梁启智,曾令付.高层建筑三维分析广义坐标法.土木工程学报,1990,21(1):23-33.
    [61]曹志远.超级有限元的发展与应用.第三届全国计算力学会议论文集.北京:科学技术出版社.1992:188-192.
    [62]王寿康,杨立.几种高层建筑结构统一算法,建筑结构学报,1992,13(1):60-70.
    [63]王寿康,张毛心,杨立.单肢及双肢剪力墙结构分析.建筑结构学报,1997,18(4):37-43.
    [64]王立忠.框架-剪力墙结构协同工作的渐进解法.工程力学,1988,5(3):45-49.
    [65]蒋寿文,欧阳诚恩.框剪结构的3θ方程解法.工程力学,1988,5(2):65-75.
    [66]张大名,李发国.高层简体结构的计算.土木工程学报,1989,20(4):10-16
    [67]金健三.任意荷载作用下钢结构体系高层建筑框架-剪力墙结构分析的边值法.工程力学,1996,13(4):115-120.
    [68]程万年.高层剪力墙结构空间内力分析连续化方法.固体力学学报,1984,(1):18-24.
    [69]吕令毅.高层开洞简体的约束扭转.土木工程学报,1994,25(2):38-46.
    [70]樊小卿.高层建筑框架、框-剪结构分析的传递矩阵法.建筑结构学报,1989,10(1):9-19.
    [71]王寿康.变截面剪力墙体系的空间分析,建筑结构学报,1990,11(3):30-37.
    [72]徐彬.高层建筑结构分析的奇异函数方法.[博士学位论文],广州:华南理工大学,2000.
    [73]李俊兰.钢筋混凝土核心筒抗震性能研究.[博士学位论文],上海:同济大学,2002.
    [74]段小甘.高层建筑简体结构动力特性的有限条法分析.建筑结构学报,1988,9(4):62-69.
    [75]刘铮.筒中简高层结构的动力计算.西安冶金建筑学院学报,1981,7(4):11-21.
    [76]陈敖宜.高层建筑简体结构振动特性的样条函数分析.第九届全国高层建筑学术交流论文集,1986:738-745.
    [77]李恒增,徐新济,李晞来.高层框筒和筒中筒结构动力特性的简化分析.同济大学学报,2002,30(8):916-921.
    [78]李恒增,翁大根,徐新济.矩形筒中筒结构动力特性的简化分析.同济大学学 报,1996,24(6):719-725.
    [79]简建勇,梁枢果,高远志.简体-框架结构的动力特性的简化分析.武汉大学学报(工学版),2001,34(5):80-83.
    [80]赖永星,陈准,邢国兴.双筒剪力墙结构动态特性分析.工业建筑,2002,32(1):17-19.
    [81]刘宗贤,曹志远.多层与高层工业与民用建筑结构自振特性分析.建筑结构学报,1994,15(4):62-76.
    [82]包世华,杨茂森,易升创.变截面高层简体结构的水平振动.土木工程学报,1996,29(2):57-64.
    [83]包世华,段小甘.筒中筒结构动力特性的简化分析.土木工程学报,1987,20(3).
    [84]王振宇,刘晶波,汪勇,徐凯,裘建东.超高层多简巨型柱框架体系动力特性与地震反应研究.建筑结构学报,2003,24(1).
    [85]方鄂华,钱稼茹.我国高层建筑抗震设计的若干问题.土木工程学报,1999,32(1):3-8.
    [86]李云贵,邵弘,田志昌,黄吉峰,陈岱林.多层、高层建筑结构弹塑性动力、静力分析,建筑结构学报,2002,23(5):56-62.
    [87]龚耀清,包世华,龙驭球.半无限大弹性地基上变截面筒中筒高层建筑结构的自由振动.工程力学,1999,16(3):8-14.
    [88]包世华,袁驷.高层建筑结构考虑楼板变形时水平振动的常微分方程求解器解法.建筑结构学报,1995,16(4):39-48.
    [89]龚炳年,郝锐坤,赵宁.钢-混凝土混合结构模型动力特性的试验研究.建筑结构学报,1995,16(3):37-43.
    [90]陈兰,梁启智.钢梁对双肢剪力墙动力特性影响的分析.华南理工大学学报(自然科学版),1998,26(1):109-115.
    [91]黄坤耀,孙炳楠,楼文娟,于钢,沈金.非对称双塔连体结构的动力特性和地震响应分析.工业建筑,2001,31(8):27-29.
    [92]范重,吴学敏.带有双塔楼高层建筑结构动力特性分析.建筑结构学报,1996,17(6):11-17.
    [93]包世华,王建东.大底盘多塔楼连体结构的振动计算和动力特性.建筑结构,1997,27(6):40-44.
    [94]杨鉴,魏琏.高层建筑扭转耦连自由振动的计算.建筑结构学报,1985,6(6).
    [95]邬喆华,孙炳南,楼文娟,唐锦春,周棵.不对称连体双塔结构动力分析.浙江大学学报(工学版),2003,37(5):560-565.
    [96]刘晶波,汪勇.主-裙楼结构体系的动力分析.建筑结构学报,2002,21(2),36-43.
    [97]吕西林,李学平.超限高层建筑工程抗震设计中的若干问题.建筑结构学报,2002,23(2):13-18.
    [98]刘晶波,李征宇,石荫,王滨夫,黄宇,文辉.大跨高层连接体建筑结构动力分析.建筑结构学报,2004,25(1),45-52.
    [99]娄宇.大底盘上双塔和连续高层建筑的振动分析.建筑结构,1999,29(4):9-12.
    [100]熊峰,刘洪.非线性有限条元分析框支剪力墙结构.四川大学学报(工程科学版),2000,32(1):12-16.
    [101]李国强,周向明,丁翔.钢筋混凝土剪力墙非线性分析模型.世界地震工程,2000,16(2):13-18.
    [102]胡启平,史三元.变刚度框-剪结构的自振特性分析.工程力学(增刊):405-407
    [103]李桂青,曹宏.多阶变截面杆弯曲自由振动的计算.建筑结构学报,1986,7(2):49-54.
    [104]李延和,薛祖卫.状态递归法在建筑抗震分析中的应用.建筑结构学报,1993,14(4):17-23.
    [105]刘宇贤,曹志远.多层与高层工业与民用建筑结构自振特性分析.建筑结构学报,1998,19(5):8-16.
    [106]钱伟长著.变分法及有限元.北京:科学出版社,1980.
    [107]沈聚敏,周锡元,高小旺,刘晶波编著.抗震工程学.北京:中国建筑工业出版社,2002.
    [108]韦斌凝.基于新的样条子域的高层建筑结构分析的QR法新格式[博士学位论文],南宁,广西大学,2005.
    [109]秦荣著.计算结构动力学.南宁,广西师范大学出版社,1997.
    [110]秦荣.高层建筑弹塑性分析新方法.土木工程学报,1994,27(6).
    [111]易开创,包世华,张锡生.简体结构连续化模型的弹性动力时程分析.工程力学,1996,13(2).
    [112]沈蒲生,王海波.剪力墙结构非线性地震反应分析.土木工程学报,2003,36(5):11-16.
    [113]汪梦蒲.钢筋混凝土高层结构非线性地震反应分析现状.世界地震工程,1998,14(2):1-8.
    [114]丁翔,高层建筑钢—混凝土混合结构非线性抗震性能理论与试验研究[博士学位论文],上海:同济大学,2001.
    [115]张诗德.结构动力分析中动态有限条法.固体力学学报,1998,(2).
    [116]刘大海,杨翠如,钟锡根编著.高层建筑抗震设计.北京:中国建筑工业出版社,1999.
    [117]丁学成.高层圆形筒体结构拟壳动力分析.第九届全国高层建筑学术交流论文集,第三卷.1986:746-755
    [118]徐次达.样条配点法解板壳动力响应问题.计算结构力学及其应用,1985,2(1).
    [119]程季达.高层抗震结构的近似计算方法.土木工程学报,1985,18(4).
    [120]杨鉴.高层建筑扭转藕联自由振动的计算.建筑结构学报,1985,6(6).
    [121]辛克贵,钱良中.高层筒体结构的整体稳定及二阶位移分析.清华大学学报(自然科学版),2003,43(10):1386-1389.
    [122]刘滨,包世华.高层筒体结构的整体稳定及二阶位移分析.建筑结构学报,1990,11(1):1-9.
    [123]梁启智,谢理.框剪结构二阶分析.建筑结构学报,1985,6(5):21-25.
    [124]王建东,包世华.高层筒体结构二阶分析.工程力学,1995,12(3):31-38.
    [125]刘开国.高层框筒及筒中筒结构的整体稳定计算.工程力学,1988 5(1):32-36.
    [126]刘开国.结构简化计算原理及其应用.北京:科学技术出版社,1996.
    [127]辛克贵,姜美兰.薄壁杆件稳定分析的样条有限杆元法.清华大学学报,2001,41(415):236-239.
    [128]辛克贵,王书纯.考虑剪切变形薄壁杆件的稳定分析.工程力学,2000,17(1):47-56.
    [129]王全风,李华煜.任意横截面形状薄壁杆件的稳定.土木工程学报,1996,29(6):14-24.
    [130]吴秀水,辛克贵,姜美兰.横向荷载作用下薄壁杆件稳定分析的有限杆元法.工程力学,2001,18(1):47-55.
    [131]陈加猛,梁启智.高层筒中筒结构的整体稳定简化分析.华南理工大学学报(自然科学版),1998,26(3):32-37.
    [132]陈加猛,梁启智,张晓红.高层筒中筒结构二阶分析.华南理工大学学报(自然科学版),1998,26(8):78-84.
    [133]梁启智,潭争争。高层建筑双肢剪力墙的二阶分析。工程力学,1986,3(3):55-61.
    [134]牛海清,朱召泉.二阶效应对钢框架结构分析的影响.河海大学学 报,2002,30(4):103-106.
    [135]舒兴平,沈蒲生.平面钢框架结构二阶效应的有限变形理论分析.钢结构,1999,14(1):5-9.
    [136]李恒增,徐新济,冯虹.高层框筒和筒中简结构的整体稳定分析.上海力学,1999,20(4):388-395.
    [137]徐彬,梁启智.高层框筒结构二阶分析变分摄动法.华南理工大学学报(自然科学报),2000,28(2):99-105.
    [138]刘坚,李开禧.薄壁构件二阶分析的新方法.重庆建筑大学学报,2000,22(4):71-75.
    [139]周坚.高层建筑空间协同工作体系的二类稳定问题及二阶效应.1994,建筑结构学报,15(1):53-66.
    [140]王寿康,张毛心.厚度有突变的联肢剪力墙整体稳定.建筑结构学报,1996,17(1):40-45.
    [141]包世华,杨茂森,易升创.变截面高层简体结构的有限元线法整体稳定和二阶分析.计算结构力学及其应用.1995,12(4).
    [142]龚耀清,包世华.超高层建筑空间巨型框架的稳定计算.工程力学,2004,21(6):36-40.
    [143]陈兰,汤海波,梁启智.高层钢框架-支撑结构二阶随机风振响应分析.华南理工大学学报(自然科学报),2002,30(6):86-90.
    [144]陈兰,汤海波,梁启智.高层钢框架-支撑结构二阶非线性随机地震响应分析.地震工程与工程振动,2002,22(3):170-174.
    [145]郑延银,赵惠麟.高层建筑支撑钢框架结构二阶位移的实用计算.东南大学学报(自然科学版),2000,30(4):43-47.
    [146]沈祖炎,沈勤斋.高层有支撑钢刚架二阶弹塑性分析的改进p-Δ法.同济大学学报,1995,23(1):8-14.
    [147]叶文洪,梁启智.考虑二阶效应时框-剪结构的简化分析.工程力学,1999,16(1):26-34.
    [148]龙驭球,包世华.结构里学教程(上、下).北京:高等教育出版社.1988.
    [149]曹国兴.高层建筑结构计算的样条函数法,[硕士学位论文],西安:西安冶金建筑学院,1986.
    [150]杨其伟.筒中筒结构稳定分析,[硕士学位论文],西安:西安冶金建筑学院,1986.
    [151]中华人民共和国国家标准.建筑抗震设计规范.北京:中国建筑工业出版 社,2001.
    [152]刘开国.高层框架及筒中筒结构稳定计算.高层建筑抗震设计讨论会论文集,1987,广州:pp:105-107.
    [153]Ha K.H,Fazio P.M.Orthotropic Membrane For Tail Building Anaiysis.ASCE,Structured Division,1978,104(9):1495-1505.
    [154]Kanok-Nuklchai W,Lee S.Y,Kavasudhi P.A versatile finite strip model for three-dimensional tall building.Earthquake Engineering and Structural Dynamic,1983,11(2):149-166.
    [155]W Y Li,X S Wu.A semi-discrete method for shear log anaiysis of thin-wailed members.Proc.of the Asian Pacific conference on computationai Mechanics[C].Hong Kong,1991:73-79.
    [156]Luo Song Fa,He Feng Kang,Liu Ya Chun.Anaiysis of Tube Structures With the Spline Finite-point Method.Proceedings of the third internationai conference on Tall Buildings,December 1984,Hong Kong & Guangzhou,PP:655-660.
    [157]Long Yu-Qiu,Xin Ke-Qui.Energy Method and Modified Finite Element Method for the Framed-Tube Structures of Hollow Polygonai Section.Proceedings of the Third Internationai Conference on Tail Buildings,December 1984,Hong Kong & Guangzhou,PP:724-729.
    [158]Wang Yinchang.A simplified Analysis Method for Tubular Tail Building structures,proceedings of the Third Internationai Conference on Tail Buildings,December 1984,Hong Kong & Guangzhou,pp:547-550
    [159]Hu Shaolong,Xu jianping.Analysis of Tube Structure In Tall Building By The Equivalent Finite Strip Method.Proceedings of the Third International Conference on Tall Buildings,December 1984,Hong Kong & Guangzhou,pp:705-711
    [160]P.S Han,P.Lukkunaprasist.Finite Strip Anaiysis of Frame Tube Structures.Proceedings of the Third International Conference on Tall Buildings.December 1984,Hong Kong & Guangzhou,pp:236-242.
    [161]Guo Dajing,Lin Zhuhai,Gu Sheng,He Feng Kang,Luo songfa.The Anaiysis of Tall Building Structures With Modified Finite Strip Method.Proceedings of the Third Internationai Conference on Tall Buildings.December 1984,Hong Kong & GuangZhou,pp:691-698
    [162]Zhao Zuwu,Yin Changrui.Analysis of Shear Walls By Finite Strip Method With Zero Modulus Regions. Proceedings of The Third International Conference On Tall Buildings, December 1984, Hong Kong & Guangzhou, pp: 443-446.
    [163] Luo Songfa, He Feng kang, Zhang Zhi hong. Analysis of Tall Building Considering Space Compatibility By Finite Strip Method. Proceedings of The Third International Conference On Tall Buildings, December 1984, Hong Kong & Guangzhou, pp: 699-704.
    [164] Luo Songfa, He Feng kang, Liu Yachun. Analysis of Tube Structures With The Spline Finite-point Method. Proceedings of The Third International Conference on Tall Buildings, December 1984, Hong Kong & Guangzhou, pp: 655-660.
    [165] Qin Rong. Spline Subdomain. Method for Analysis of Tall Building Structures. Proceedings of The Third International Conference On Tall Buildings, December 1984, Hong Kong & Guangzhou, pp: 557-561.
    [166] Wang Q F, Liw Y. Spline Finite Member Element Method For Buckling of Thin-walled Members With Any Cross Sections In Pure Bending. Computer Methods In Applied Mechanics and Engineering, 1996,136: 259-271.
    [167] A Coull, B Bose. Simplified Analysis of Framed-tube Structures. J. of Structural Division, ASCE, 1975, 101(ST11): 2223-2240.
    [168] F Laudiero, M Savoia. Shear Strain Effects In Flexure and Torsion of Thin-walled Structures. 1990, 10(2):87-119.
    [169] K K Koo, Y K Cheuny. Mixed Variational Formulation For Thin-walled Beams With Shear Lag. J. of Energy Mech, ASCE, 1989, 115(10):2271-2286.
    [170] W Y Li, K G Xin. Analysis of Thin-walled Members By Complementary Energy Method Using Spline Function. J. of Thin-walled Structures, 1992, 14(4): 327-342.
    [171] Y K Cheuny, D. Y. Zheng. Sheer Wall Analysis By Continuous Finite Strip Method. The Fifth International conference on Tall Building, December 1998, Hong Kong,PP:519-524.
    [172] Liang Qizhi, Xu Bin. Application of Kantorovich-MWR Method In Second-order Analysis of Framed-Tube Structures. The Fifth International Conference on Tall Building, December 1998, Hong Kong, PP: 356-361.
    [173] Fu Ganqing, Liang Qizhi. Analysis of The Overall Stability of Tube-in-tube Structure. The Fifth International Conference on Tall Building, December 1998, Hong Kong, PP : 598-602.
    [174] Bao shihua, Wang Jiandong. Overall Stability of Multi-tall Building Structures By Ode Solver. The Fifth International Conference on Tall Building, December 1998, Hong Kong, PP : 592-597.
    [175] Goodsir W. J. , Paulay. T, A Study of The Inelastic Seismic Response of Reinforced Concrete Couple Frame-shear Wall Structures. Bulletin of the New Zealand National Society For Earthquake Engineering, 1977, 9, Vol. 16, No. 3, PP: 185-200.
    [176] R. S. Al-Mahaidi, A. H. Nilson. Coupled-Shear Wall Analysis By Lagrange Multipliers,J. Struct., Div., ASCE, ST11,1975,pp: 2359-2366.
    [177] Gluck. J. Lateral Load Analysis Multi-story Structures Comprising Shear Walls With Sudden Changes In Stiffiness. J. Am. Comc. Inst. 66, September 1969, PP: 729-736.
    [178] Coull. A., Choudhury. J. R. Stresses Deflections In Coupled Shear Walls. J. ACI, 1967, PP: 65-72.
    [179] De La Llera, J. C., Chopra, A. K. Understanding The Inelastic Seismic Behavior of Asymmetric Plan Buildings. J. Earthquake Engineering & Structural Dynamics, 1995,24: 549-572.
    [180] De La Llera, J. C., Chopra, A. K. Understanding the Inelastic Seismic Behavior of Asymmetric plan Buildings. J. Structural Engineering, 1996, 122(6): 597-606.
    [181] De La Llera, J. C., Vasquez, Chopra, A. K., Almazan J. L. A Macro-element Model For Inelastic Building Analysis. Earthquake Engineering & Structural Dynamics, 2000,29: 1725-1757.
    [182] Yosuk Kim, Wai-Fun Chen. Pratical Analysis for Partially Restrained Frame. Journal of structural Engineering, 1998,124(7), 736-748.
    [183] M. E. Gurtin. Variational Principles for Linear Initial Value Problems. Quarterly Applied Mathematics, 1964, (22): 252-256.
    [184] J. S. Hwang, K. C. Chang, M. H. Tsai. Composite Damping Ratio of Seismically Isolated Regular Bridges. Engineering Structures, Science Ltd, 1997, 19(1): 55-62.
    [185] A. S Veletsos, C. E Ventura. Modal Analysis of Non-Classically Damped Systems. Earthquake Engineering and Structural Dynamics, 1986,14: 217-243.
    [186] J. S. Hwang, J. M. Chiou. An Equivalent Linear Model of Rubber Seismic Isolation Bearing.Engineering Structure,1996,18(7):528-536.
    [187]Miranda.E.Approximate Seismic Lateral Deformation Demands in Multistory Buildings.Struct.Engry.,ASCE,1999,125(4):417-425.
    [188]Miranda,E.,Reyes C..Approximate Lateral Drift Demands in Multistory Building With Non-uniform stiffness.Struct.Engry.,ASCE,2002,128(7):840-849.
    [189]Kvawinkler,H.,Seneviratna,G.D.P.K.Pros and Cons of A Pushover Analysis of Seismic Performance Evaluation.Engineering Structure,1998,20:452-464.
    [190]Khan F.R.,Amin N.R.Analysis And Design Of Frame Tube Struetutres For Tall Concrete Buildings.Struct.Eng.,1973,51(3):85-92.
    [191]Kwan A.H.K..Simple Method For Approximate Analysis of Frame Tube Structure.Struct.Engry.,ASCE,1994,120(4).
    [192]Lee K.K..Simple Analysis of Frame-Tube Structure With Multiple Internal Tubes.Struct.Engry.,2001,127(4).
    [193]Singh Y.,Nagpal A.k..Negative Shear Lag In Frame-Tube Buildings.St.ruet.Engry.,ASCE,1994,120(1)
    [194]Stephen P.Timoshenko,James M.Gere.Mechanics of Materials.Nek York:Chapman and Hall.1976.
    [195]A.Ghali,A.M.Neville.Structural Analysis.New York:Chapman and Hall.1976.
    [196]Liang Qizhi,Hart Xiaolei.Three-dimensional Structural Analysis of High-rise Building Consisting Framed-Supported Shear Walls.International Conference On Education,Practice and Promotion of Computational Methods in Engineering Using Small Computers,Maeau,1990,vol.2:449-456.
    [197]Liauw T.C.and Leung K.W.Torsion Analysis of Core Wall Structure by Transfer Matrix Method.Struct.Engr,1975.53,No.4,Apr.,187-194.
    [198]Liauw T.C.Torsion of Multi-storey Spatial Core Walls.Proc.Instn Civ.Engrs,Part 2,1978,65,Sept.601-609.
    [199]Liauw T.C.and Luk W.K.Torsion of Core Walls of Non-uniform Section.J.Struct.Div.Am.Soc,Civ.Engrs,1980,106.ST9,Sept,1921-1931.
    [200]Liauw T.C.and Luk W.K.Torsion of Spatial Core Wall Structrues by Finite Difference Method.Aust.,1980,22,May.125-131.
    [201]刘小强,吴惠弼 高层钢框架二阶效应的实用简化计算[J].工程力学1993. (2):72-78
    [202]刘建新 高层建筑结构p-Δ效应实用计算方法[J].建筑结构1995.(2):15-17
    [203]刘小强等 框架结构p-Δ效应计算[J].建筑结构1995.(2):19-22
    [204]李刚,周仁根框架结构整体稳定分析的等效轴力法[J].建筑结构1997.(7):11-14
    [205]Higgins T.R.column stability under plastic support.AISC,Engineering Journal,vol.2,1965
    [206]杨弗康、李家宝主编 结构力学下:下册,高等教育出版社1983.7
    [207]陈惠发著 周绥平译 钢框架稳定设计 上海世界图书出版公司 1999.8
    [208]张韶晖,黄鹏.高层建筑钢-混凝土混合结构的工程应用初探[J].广东土木与建筑,2003,(3):6-8
    [209]李国强.当代建筑工程的新结构体系[J].建筑学报,2002,(7):22-26
    [210]黄海,阎兴华,张艳霞.钢-混凝土混合结构在我国超高层建筑中的应用与研究[J].北京建筑工程学院学报,2002,18(4):53-57
    [211]李国强,张洁.我国高层建筑钢结构的发展状况[J].工程力学,1998,(增刊):697-702.
    [212]李国强.我国高层建筑钢结构发展的主要问题[J].建筑结构学报,1998,(2):24-32
    [213]蔡益燕,钟善桐.我国高层建筑钢结构发展方向初探[A].98中国建筑结构工程暨学术会议[C].北京:企业管理出版社.1998,12-17
    [214]Nakachi T.etc.,Experimental Study on Deformation Capacity of Reinforced Concrete Core Walls after Yielding,11~(th) WCEE,Paper NO.1747.
    [215]Makoto Maruta etc.,Structural Capacities H-shaped RC Core Wall Subjected to Lateral Load and Torsion,12~(th) WCEE,Paper NO.1028,Feb,2000.
    [216]Atsushi HABASAKI etc.,Multi-directional Loading Test for RC Seismic Shear Walls,12~(th) WCEE,Paper NO.454,Feb,2000.
    [217]Subhash C.Goel.United states-Japan cooperative earthquake engineering research program on composite and hybrid structures.Journal of Structural.Engeering,ASCE/FEB:2004(2)157-158
    [218]Keniehi Sugaya etc.,Experimental Study on Carrying Shear Force Ratio of 12-Stroey Coupled Shear Wall,12~(th) WCEE,Paper NO.2152,Feb,2000.
    [219]龚炳年,郝锐坤,赵宁.钢-混凝土混合结构模型试验研究[J].建筑科 学,1994,(1):10-14
    [220]龚炳年,郝锐坤,赵宁.钢-混凝土混合结构模型动力特性的实验研究[J].建筑结构学报,1995,16(3):37-43
    [221]李国强,周向明,丁翔.高层建筑钢-混凝土混合结构模型模拟地震振动台试验研究[J].建筑结构学报,2001,22(2):2-7
    [222]吕西林,李俊兰.钢筋混凝土核心筒体抗震性能试验研究[J].地震工程与工程振动,2002,22(3):42-50
    [223]阎兴华,黄海.高层钢-混凝土混合结构抗震性能试验研究[J].工程力学,2003,(增刊):647-651
    [224]吕西林,邹昀,卢文胜,赵斌.上海环球金融中心大厦结构模型振动台抗震试验[J].地震工程与工程振动,2004,24(3):57-63
    [225]朱杰江,吕西林,邹昀.上海环球金融中心模型结构振动台试验与理论分析的对比研究[J].土木工程学报,2005,38(10):18-26
    [226]龚治国,吕西林,卢文胜等.混合结构体系高层建筑模拟地震振动台试验研究[J].地震工程与工程振动,2004,24(4):99-105
    [227]武敏刚,吕西林.混合结构振动台模型试验研究与计算分析[J].地震工程与工程振动,2004,24(6):103-108
    [228]梁博.钢框架-混凝土简体混合结构抗震性能振动台试验研究:[D].西安:西安建筑科技大学,2005
    [229]M.Hakuno,M.Shidowara and T.Hara,Dynamic Destructive Test of a Cantilevers Beam,Controlled by an Analog-Computer,Transactions of the Japan Society of Civil Engineering No.171,November1969
    [230]K.Takanashi et al.,Seismic Failure Analysis of Structures by Computer-Pulsator On-Line Systerm,Journal of the Institute Science,University of Tokyo,Vol.26,No.11,December 1974
    [231]H.Tanaka,A Computer-Actuator On-Line System for Non-Liner Earthquake Response Analysis of Structure,J.Inst.of Industrial Science,Vo.27,No.12,Univ of Tokyo,Tokyo,Japan,1975
    [232]K.Takanashi and M.Nakashim,Japanese Activities on On-Line Testing,Journal of Engineering Mechanics,ASCE,Vol.113,No.7,July1987
    [233]M.Nakashim and H.Takai,Use of Substructure Techniques in Pseudodynamic Testing,BRI Research Paper,No.111,March 1985
    [234]S.N.Demitzalds and S.A.Mahin,Development of Substurcturing Techniques for On-Line Computer Controlled Seismic Performance Testing, Report No. UCB/EERC -85/04
    [235] M.Nakashim et al., Feasibility of Pseudodynamic Test Using Substructuring Techniques, Proceeding of Ninth World Conference on Earthquake Engineering, August, 1988, Tokyo-Kyoto, Japan (Vol.Ⅳ)
    [236] C.R.Thewalt and S.AMahin, Hybrid Solution Techniques for Generalized Pseudodynamic Testing Report No. UCB/EERC -87/09, University of California, Berkeley, California
    [237] P.B.Shing and M.T.Vannan et al., Implicit Time Integration for Pseudodynamic Test, EESD, Vol.20, No.6, June 1991
    [238] Y. Yamazaki et al., Correlation Between Shading Table Test and Pseudodynamic Test on Steel Structural Models, BR1 Research Paper, No. 119,1986
    [239] Y.Kitagawa et al., Correlation Study on Shaking Table Tests and Pseudodynamic Testes by R.C.Models, Proceedings of with World Conference on Earthquake Engineering, San Francisco, California U.S.A., 1984, Vol.Ⅵ, 667-674
    [240] P.B.Shing and S. A.Mahin, Rate of Loading Effects on Pseudodynamic Test, J. of Structural Engineering, Vol.114, No.11, 1988, 2403-2420
    [241] M.Nakashima et al., Development of Real-time Pseudodynamic Testing, Earthquake and Structural Dynamics, Vol.21, No.1, 1992, 79-92
    [242] K.OHI and K.Tadarashi, An Improvement of On-line Computer Test Control Method, Proceeding of Ninth World Conference on Earthquake Engineeing, August 1988, Tokyo-Kyoto, Japan (Vol.Ⅳ)
    [243] P.B.Shing and S.A.Mahi, Cumulative Experimental Errors in Pseudodynamic Tests, Earthquake Engineering and Structural Dynamic, Vol.15, No.4, May 1987
    [244] P.B.Shing and S.A.Mahi, Experimental Errors Effects in Pseudodynamic Testing, Journal of Engineering Mechanics, Vol.116, No.4, April 1990, 805-821
    [245] Ralf Peek and Wanon-Ho Yi, Error Analysis for Pesudodynamic Test Mothod Ⅰ: Analysis, Journal of Engineering Mechanics, Vol.116, No.7, July 1990, 1618-1637
    [246] Ralf Peek and Wanon-Ho Yi, Error Analysis for Pesudodynamic Test Mothod Ⅱ: Applicaton, Journal of Engineering Mechanics, Vol.116, No.7, July 1990, 1638-1658
    [247] M.Nakashima and H.Kato, Experimental Error Growth Behavior and Error Growth Control in On-Line Computer Test Control Method,BRI Research Paper,No.123,March 1987
    [248]陈瑜.在电液伺服结构试验机上实现的结构拟动力试验.中国建筑科学研究院建筑结构研究所,1982
    [249]赵西安.用计算机.试验机联机系统进行结构拟动力试验的方法[J].建筑科学,1985,(2)
    [250]陈瑜.建筑结构双向拟动力试验程序的控制[J].建筑科学,1990,(1)
    [251]艾利明.框架柱双向地震反应的研究[J].建筑科学,1990,(2)
    [252]郝锐坤等.高层大开间预应力板墙结构模型试验研究[J].建筑科学,1990,(3)
    [253]印文铎、冯世平、沈聚敏.两层钢筋混凝土框架结构拟动力地震反应试验研究[J].土木工程学报,1990,23(3)
    [254]朱荣华、沈聚敏.砖填充墙钢筋混凝土框架结构拟动力地震反应试验研究及理论分析[J].建筑结构学报,1996,17(4):27-34
    [255]邱法维、国明超、李暄.采用微机开发的拟动力试验[J].地震工程与工程振动,1994,(3)
    [256]邱法维.联机结构实验中的子结构技术及其应用[J].实验力学,1995,(4)
    [257]邱法维.隐式时间积分方法的拟动力试验[J].世界地震工程,1995,(3):44-48
    [258]邱法维、吕西林、卢文生.结构拟动力实验方法及其应用研究[M].土木工程防灾国家重点实验室课题总结报告,1995.10
    [259]邱法维.采用隐式积分方法和子结构技术的拟动力实验[J].土木工程学报,1997,(2):27-33
    [260]石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].机械工业出版社,2006:166-171
    [261]Hibbitt,Karlsson&Sorensen,TNC.ABAQUS Analysis User's Manual.2005
    [262]J.Lee,G L.Fenves.A Plastic-Damage Concrete Model for Earthquake Analysis of Dams.Earthquake Engineering and Structural Dynamics,1998,27:937-950
    [263]Hibbitt,Karlsson&Sorensen,INC.ABAQUS Example Problems Manual.2005
    [264]Hibbitt,Karlsson&Sorensen,INC.ABAQUS Benchmarks Manual.2005
    [265]Hibbitt,Karlsson&Sorensen,TNC.ABAQUS Verification Manual.2005
    [266]ABAQUS,Inc.Failureo fa Prestressed Concrete Containment Vessel.ABAQUS Technology Brief,2004
    [267]J.Lubliner,J.Oliver,S.Oiler,etal.A Plastic-Damage Model for Concrete.International Journal of Solids and Structures,1989,25(3):299-326
    [268]J.Lee,G L.Fenves.Plastic-Damage Model for Cyclic Loading of Concrete Structures.Journal of Engineering Mechanics,1998,124(8):892-900
    [269]Hibbitt,Karlsson&Sorensen,INC.ABAQUS Theory Manual.2005
    [270]张文元.ABAQUS动力学有限元分析指南.中国图书出版社,2005
    [271]刘晶波,杜修力.结构动力学.机械工业出版社,2005
    [1]陆铁坚,余志武,李芳。高层简体结构整体稳定及二阶位移分析的改进条元法。计算力学学报,2006,23(1)。
    [2]陆铁坚,贺子瑛,余志武,。钢-混凝土组合梁与混凝土柱节点的抗震性能试验研究。建筑结构学报,2008,29(1)。
    [3]陆铁坚,李芳,余志武。在地震动水平与摇摆分量作用下高层结构随机地震反应分析。中南大学学报,2006,37(3)。
    [4]陆铁坚,蒋友良,余志武。桥梁三维造型及其视景仿真。中南大学学报,2005,36(3)。
    [5]陆铁坚,余志武,蒋友良。高层建筑简体结构三维静力分析的改进条元法。中南大学学报,2004,35(1)。
    [6]陆铁坚,余志武。框架破坏瞬时的变位和变位对破坏荷载影响的计算。工业建筑,2004,34(4)。
    [7]陆铁坚,余志武,蒋丽忠。任意平面形状简体结构动力特性分析的改进条元法。中南工业大学学报,2003,34(3)。
    [8]陆铁坚,肖林红。剪力连接度对组合梁-钢筋混凝土柱节点抗震性能的影响。工业建筑,2007,37(12)。
    [9]陆铁坚,吴继亮,张建军。半刚性连接钢框架内力及侧移的近似计算。铁道科学与工程学报,2008,5(3)。
    [10]陆铁坚,李丽梅,林国章。用ANSYS分析高层钢-混凝土混合结构的地震反应。铁道科学与工程学报,2007,4(3)。
    [11]陆铁坚,许军。高层钢框架-钢筋混凝土核心筒混合结构破坏过程的数值模拟。建筑科学与工程学报,2008,25(1)。
    [12]陆铁坚,刘桂平,余志武。高层钢-混凝土混合结构抗震性能评估。工程抗震与加固改造,2008,30(2)。
    [13]陆铁坚,余志武。高层框架在基础随机位移下的随机振动反应分析。工程抗震,2003,2。
    [14]陆铁坚。巨型钢框架结构稳定。建筑结构,2003,33(10)。
    [15]陆铁坚,李芳,余志武。高层框架在随机水平荷载下的随机反应分析。铁道科学与工程学报,2004,2。
    [16]陆铁坚,蒋友良,余志武。用弯矩迭代法计算高层钢框架P-Δ效应。长沙铁道学院学报,2003,21(4)。
    [17]陆铁坚,余志武。带支撑多层钢框架结构的内力和位移计算。长沙铁道学院学报,2002,20(3)。
    [18]陆铁坚,李芳,余志武。多质点剪切型高层结构在水平与摇摆联合作用下线性弹性随机振动反应分析。防灾减灾研究进展,2005,北京:科学技术出版社。
    [19]陆铁坚,林国章,余志武。长沙八一桥加固设计方法研究。工程抗震与加固改造,2007,29(2)。
    [20]陆铁坚,肖林红。反复荷载下组合梁.钢筋混凝土柱节点有限元分析。工业建筑,2007,37卷增刊。
    [21]陆铁坚,秦索娟,余志武。钢.混凝土混合结构拟动力试验研究。已投稿待发表。
    [22]陆铁坚,秦索娟。高层钢.混凝土混合结构地震作用下的能量反应分析。已投稿待发表。
    [23]陆铁坚,许军,余志武。高层钢.混凝土混合结构水平力分担理论及试验研究。已投稿待发表。
    [24]陆铁坚,刘桂平,余志武。侧向荷载分布方式对混合结构pushover分析结果的影响。已投稿待发表。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700