用户名: 密码: 验证码:
套管损坏的力学计算与判定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
套管损坏问题是世界范围亟待解决的难题。国内外许多学者对套管损坏问题进行了多方面的研究,但是均无法从根本上解决套管损坏问题。通过套管损坏机理的分析可以得出套管损坏问题实质是套管损坏力学计算与判定问题。套管损坏力学计算与判定不仅与原始地应力分布状态、地层岩体和流体渗流场的流固耦合作用存在紧密的关系,而且还涉及到储层产生的应力重新分布直接对套管、水泥环产生外挤应力作用的载荷计算与该载荷下的套管损坏的屈服强度判定问题。本文在全面分析国内外的套管损坏井现状、套管损坏原因、机理和套管损坏井类型以及套管损坏井影响因素的基础上,着重研究了套管损坏井区域的应力场;引入流固耦合理论建立地应力及流体压力数学模型;建立反映套管损坏井在复杂地质条件下的力学模型,应用非线性力学分析的有限单元法进行求解计算;建立外挤载荷作用下的套管和水泥环应力计算模型,分析套管强度影响因素,建立产生套管附加应力的数学模型;建立套管屈服强度的力学判定计算模型。该论文的研究合理地解释套管损坏的机理,为套管设计提供理论依据,为建立套管损坏判定标准奠定坚实的基础。
     对影响套管损坏的地质和工程因素进行分析得出泥岩吸水蠕变和岩体的膨胀、岩体地层出砂、高压注水以及断层活动和地层活动为套管损坏主要地质影响因素;井网部署、固井完井作业以及套管材质强度为主要的工程影响因素。
     建立了垂直地应力和水平地应力计算模型和井眼周围应力分布的数学模型。
     建立套管损坏井周围二维和三维的流固耦合数学-力学模型,运用有限元法求解得出流体地层压力发生变化时,初始状态的岩体的变形和应力变化比较显著,随着时间的推移逐渐趋于平稳,即初始阶段是导致套管损坏井产生的主要阶段;应用三维线弹性流固耦合模型和弹塑性流固耦合模型进行有限元模拟计算得出了储层和套管的应力变化和变形,计算结果与实际情况吻合较好。
     建立射孔作用条件下的套管-水泥环应力模型,分析了射孔下套管和水泥环的应力分布规律,以及孔眼形态对应力的影响。
     油层出砂在套管周围砂岩形成局部空洞而产生附加应力,本文建立油层出砂条件下套管-水泥环的应力模型,运用力学模型分析了油层出砂导致套管易损坏的原因。
     泥岩蠕变过程中,泥岩产生位错而滑动,建立泥岩蠕变损伤本构模型,分析了泥岩蠕变导致套管损坏的原因。
     建立泥岩地层条件下的套管力学本构模型。分析水泥环对套管抗挤强度的影响程度,有限元计算结果表明,水泥环的弹性模型减小,套管在相同外载条件下的应力增大。
     建立套管抗挤强度的力学判定模型,考虑到在套管下放之后、未固井之前,自由悬持于钻井液中的套管在自身重力、浮力等应力的作用下,发生轴向拉伸和径向压缩,在太和-建增抗挤强度标准的基础上推导了新的套管屈服力学判定标准。
Casing failure is a problem to be solved in the world. A lot of scholars researched on the problem of casing failure in many fields at home and abroad,but they can’t resolve it fundamentally.Through analyzing the mechanism of casing failure,we know the essence of casing failure is the calculation and decision of casing failure mechanics.Since the calculation and decision of casing failure mechanics are not only related with the distribution of original earth stress,formation body and the fluid-solid coupling action of fluid vadose field,but also related with the loading calculation of casing-cement mantle’s external stress because of reservoir stress redistributed and the decision of casing failure’s yield strength under the loading. The article analyses the present situation of casing damaged wells,casing failure reasons and mechanism,the types and affecting factors of casing damaged wells comprehensively.It highlights the stress field of the area around the casing damaged wells,and establishes earth stress and fluid pressure’mathematical model on the base of fluid-solid coupling theory.It establishes mechanical model that reflects casing damaged wells under the complex geologic condition, and calculates used of FEM analysed by nonlinear mechanics.It establishes the calculated model of casing-cement mantle’s stress under the external stress,analyses the affecting factors of casing strength,and establishes the mathematical model gived casing’s extra stress and the calculated model of the mechanical decision of casing failure’s yield strength.The article expounds the mechanism of casing failure reasonably, offers theoretical criterion for designing casing and lays the compact foundation for the establishment of casing failure’s criterion.
     Analyzing the geologic and engineering factors that affect casing failure, we know that mudstone’s hygroscopic afterflow,rock’s bloating,rock’s sand production,high pressure water injection,fault activity and formation activity are main geological factors of casing failure;well network deployment,cementing-completion operation and casing strength are main engineering factors.
     The calculated models of the erect and horizontal crustal stress and the mathematical model of the stress distribution in the area of wellbore are established.
     Two and three-dimensional fluid-solid coupling mathematics-mechanics models in the area of casing damaged wells are established. When fluid-formation pressure changed computed by FEM,the changement of strain and stress of initial body is distinguished,and smoothes out along with time-lapse,that means the original phase is main phase in which casing damaged wells buildup.The changement of strain and stress of reservoir and casing is calculated by three-dimensional linear elastic and elasticoplastic fluid-solid coupling model.The results agree well with the actual situation.
     A model of casing-cement sheath stress is established by perforating, the distribution rule of casing-cement sheath stress and the affection of perforation form on stress are analysed in such case.
     Sand inflowing in reservoirs helps formatting local empty in the sand around casing and forms additional stress.A model of casing-cement sheath stress is established under sand inflowing in reservoirs, using the stress model the cause of casing failure in such case is analyse.
     In the process of mudstone creeping, mudstone bits error and slips, the constitutive model of mudstone creeping is established,the cause that mudstone creeping make casing broken is analysed.
     Casing mechanic constitutive model of mudstone formation conditions is established. The influence of cement sheath on casing is analysed, FEM calculation results show that, the elastic modulus of cement cylindrical decreases,the stress of casing increases at the same condition.
     The mechanical estimation models of casing collapse resistance is established, we consider that after the casing set down, before cemented, the casing hanging in a drilling fluid will be stretched axially and compressed radially because of the axial stress caused by its gravity and buoyancy and the radial and circumferential stress caused by its inside and outside force. Based on Yitaihe-jianceng collapse resistance criterion we fetch the new casing yield mechanical criterion.
引文
[1]姜守华编译.油井套管机理综述[J].国外石油工程,2001,(12):19-27.
    [2]艾池.套管损坏机理及理论模型与模拟计算[J].大庆石油学院,2003,(5):4-150.
    [3]张百龙,李儒,马世伦.国外油田套管损坏情况和防治措施[J].大庆石油学院情报室(内部刊物),1987.
    [4] Terzaghi K. Theoretical soil mechanics. Now York: Thio Wiley,1943: pp.33-55.
    [5] BiotMA. General Theory of Three-dimension-consolidation.Jour.Appl. Phys.1942,12: pp.1550-164.
    [6] Verruijt A. Elastic Storage of Aquifers [A]. In: Flow through Porous Media.Edited by De wiest R. J. M., New York: Tiho Wiley 1969: pp.331-340.
    [7] Fredrich J. T., et al., Reservoir compaction, surface subsidence, and casing damage. JPT. Decemer 1998, 68-70.
    [8] R.Szilard.The Ory and Analysis of Plates Classical and Numerical Methods. Prentice-Ha11, Inc.1994:pp.113-175.
    [9] Da Silva F. V., Casing collaps analysis associated with reservoir compaction and overburden subsidence. SPE 20953, Oct. 22-24, 1990. 533-538.
    [10]王仲茂,李文阳.油田注水开发区套管变形机理及预防[J].石油钻采工艺,1989, 2:32-36.
    [11]吉林油田分公司采油工艺研究院.吉林油田套变情况报告[J].(内部材料)2002年10月,1-29.
    [12]刘义坤,王立军.萨中地区成片套管损坏区合理注水井压力的计算[J].大庆石油学院学报,2000,1:25-27.
    [13]陈会军.泥岩的本构方程及油水井套管剪切破坏机理的研究[D].哈尔滨工程大学博士论文,2002:1-20.
    [14]李卫中.曙光油田超稠油井套管损坏的机理和防治[J].钻采工艺,2003,2:55-56.
    [15]张先普,陈继明.我国油田套管损坏的原因探讨[J].石油钻采工艺,1996,(5):35-39.
    [16]大庆油田有限责任公司勘探开发研究员.大庆油田套管损坏原因及预防措施研究.2001年油田开发技术座谈会.大庆,2002年1月.
    [17]孟祥玉,滕新兴.胜利油田套管损坏的现状及建议[J].石油钻采工艺,1994,(2).
    [18]蔡国庆,王先荣.高压注水对油田套管的损坏及防治分析[J].石油机械,2001,(3):32-35.
    [19]张效羽.岩盐层套管损坏机理及寿命预测的研究[D].西南石油学院博士论文.1996:1-10.
    [20]李永东,贾斌,唐立强.刚性-粘弹性材料准静态Ⅱ型界面裂纹的近似解[J].哈尔滨工程大学学报.2000,21(2):58-63.
    [21]李永东.油水井套管损坏的断裂力学机理的研究[D].哈尔滨工程大学博士论文.2001:31-34.
    [22]李永东,贾斌,唐立强.刚性-粘弹性材料Ⅱ型界面裂纹准静态扩展的渐近解[J].北京:2000年8月,22-24.“力学2000”论文集.
    [23]赵兴华,蒋智翔.弹性波形厚壳应力和变形的渐进分析.清华大学科技报告,1973:1-16.
    [24]刘习贤.关于分布积分法的数学札记[J].长江职工大学学报,1995,2:22-25.
    [25]陈正华.分部积分公式在积分恒等式中的应用[J].湘潭师范学院学报(自然科学版),2003,1:50-55.
    [26] Chatenever A and Calhoun J C Jr. Visual examinations of fluid behavior in porous media. Trans.AIME,1952,195:pp.149-156.
    [27] Wison D A."Fluid distributions on porous systems" ,a motion picture produced by Amoco Production, Co., Chicago, IL (1952): pp.240-260.
    [28]艾池.套管损坏机理及理论模型与模拟计算[D].大庆石油学院(博士论文),2003,5:4-150.
    [29]刘义坤,王立军.萨中地区成片套损区合理注水井压力的计算[J].大庆石油学院学报,2000,1:25-27.
    [30]杨民瑜,郭军.套损层位异常压力的形成及预测方法[J].大庆石油地质与开发,2001,6:45-48.
    [31] Da Silva F. V., Casing collaps analysis associated with reservoir compaction and overburden subsidence. SPE 20953, Oct. 22-24, 1990,533-538.
    [32]杨平阁,付玉红.辽河油田热采井套损机理分析与治理措施[J].石油钻采工艺,2003,S1:45-49.
    [33]胡博仲,徐志良.大庆油田油水井套管损坏机理及防护措施[J].石油钻采工艺,1998,(5):95-98.
    [34]王永东,徐国民.套损井综合管理系统的开发及应用[J].石油勘探与开发,2002,3:34-39.
    [35]周晓玲,郭雷.萨中开发区注聚区块套管损坏原因[J].大庆石油地质与开发,2002,4:55-58.
    [36]练章华.套管破坏的计算机仿真软件研究[J].天然气工业,1998,(2):35-38.
    [37]练章华.套管空间受力问题的计算机仿真分析[J].西南石油学院学报,1995,(3):102-107.
    [38]梁冰,孙可明,薛强.地下工程中的流固耦合问题的探讨[J].辽宁工程技术大学学报(自然科学版),2001,2:21-24.
    [39]杨庚宇,鲁菜凤.两类弹塑性本构模型的有限元法分析比较[J].山东科技大学学报,2000,(3):1-4.
    [40]张吉园,张志永,邢仲星.多模型Biot固结有限元分析[J].四川建筑科学研究,2000,(1):47-50.
    [41]孙宝伟,谷祖德.燃爆技术在胜利油田套管损坏综合治理中的应用[J].石油钻采工艺,1994,(6):29-33.
    [42]贾云翔,金岩松.杏北油田大修的实践与认识[C].1999年油田开发技术座谈会,大庆,2001年1月.
    [43]王玉普.以经济效益为中心,配套发展核心技术,努力适应新形式下油田可持续发展的需要[C].1999年油田开发技术座谈会,大庆,2000年1月.pp81-89.
    [44]赵永胜,王松波.努力控制套损速度,确保油田可持续发展[C].1999年油田开发技术座谈会,大庆,2000年1月.
    [45]王自明,杜志敏.油藏热流固耦合渗流问题的有限元方法[J].西南石油学院学报,2002,2:15-18.
    [46] Gambolati q Equation for One-Dimensional Vertical Flow of Groundwater I: The Rigorous Theory[J]. Water Resource Res. 1973, 9(4): pp.1002-1028.
    [47] Dai, C., Modeling of blocky rock masses using the cosserat method, Int. J. Rock Mech. Min. Sci. &Geomech. Absr.33、4/ 01-9.
    [48] R.Szilard.The Ory and Analysis of Plates Classical and Numerical Methods.Prentice-Ha11,Inc.1994:pp.113-175.
    [49]舒干等.套管损坏机理研究[J].江汉石油学院学报,1999,(1):60-63.
    [50] Drucker D C and W Prager. Soil mechanics and plastic analysis or limit design.Quart Appel Math.,1952, l0:pp.157-165.
    [51] Helm.D C Three-dimensional consolidation theory in terms of thevelocity of solids. Geotechnique. 987,37(3):369-392.
    [52] Giraud A, F Homand and G Rousset.Thermoelastic and thermoplastic response of a double-layer porous space containing a decaying heat source. Int.J Num. Anal Methods Geomeech,1998,Vol22:133-149.
    [53] Giraud A, F Homand and G Rousset.Thenmoelastic and thermoplastic response of a double-layer porous space containing a decaying heat source. Int.J Num. Anal Methods Geomeech.1998, 22:pp.133-149.
    [54] Lang, W. J., The properties of clay-water systems under pressure, PhD dissertition, The U. of Illinois, Urbana.
    [55] Desai, C. S. and Zaman, M. M., Thin layer element for interfaces and joints, J Num. Anal. Mech. Geomech. 1984,(8):19-43.
    [56]艾池,李士斌.大庆油田泥岩浸水速度实验研究[J].石油钻采工艺,2002,(3):1-3.
    [57]王仲茂等.油田油水井套管损坏的机理及防治[M].北京:石油工业出版社,1994,70-80.
    [58]吉小明,白世伟.与应变状态相关的岩体双重孔隙介质流-固耦合的有限元计算[J].岩石力学与工程学报,2003,10:35-39.
    [59]刘建军,冯夏庭.水力压裂三维数学模型研究[J].岩石力学与工程学报,2003,12:16-20.
    [60]张广伟,国郅.葡萄花油田北部套管损坏与注水压力关系及预防措施的研究[C].2001年油田开发技术座谈会,大庆,2002年1月.
    [61]幻李量,赵卫国.多裂缝渗流场的边界元解法[J].重庆大学学报(自然科学版),2000, S2:58-61.
    [62]杨庚宇,鲁菜凤.两类弹塑性本构模型的有限元法分析比较[J].山东科技大学学报,2000,(3):1-4.
    [63]田仲强,王奎升.不稳定注水模拟实验及其在不同类型砂岩油藏中的应用[J].石油大学学报(自然科学版),2000,5:28-33.
    [64]董平川,郎兆新.油井开采过程中油层变形的流固耦合分析[J].地质力学学报, 2000,2:3-9.
    [65]刘建军,耿万东.地下水渗流的固液耦合理论及数值方法[J].勘察科学技术,2000,4:22-25.
    [66]刘建军,杜广林.裂缝性砂岩油藏流-固耦合数学模型[J].新疆石油学院学报,2002,3:32-36.
    [67] Steiger R. P., Advanced triaxial swelling tests on preserved shale cores, Rock Mechanics in the 1990s.
    [68]李昱.油水井套管损坏因素及机理分析[J].断块油气田,1996,(6):55-59.
    [69]张保平,单文文等.泥页岩水化膨胀的实验研究[J].岩石力学与工程学报, 2000,19(增):910-912.
    [70]程时清,张盛宗.径向非均质油藏低速非达西渗流试井分析[J].重庆大学学报(自然科学版),2000,S1:67-69.
    [71] Kwon S., Description of the shear stress distribution around an excavation at WIPP, The AusIMM Proceeding.
    [72]李培超.多孔介质流-固耦合渗流数学模型研究[J].岩石力学与工程学报,2004,16:17-19.
    [73]储健,俞立,苏宏业.鲁棒控制理论及应用[M].杭州:浙江大学出版社,2000.
    [74] Tony Collins, Analysis of fatigue resistance of rotary shouldered connection, IADC/SPE74564, 2002.02:26-28.
    [75]盛金昌,速宝玉.裂隙岩体随机渗流模型及数值分析[J].重庆大学学报(自然科学版),2000,S1:23-26.
    [76]陈庆中,张弥.应力场、渗流场、流场耦合系统问题[J].工程力学,2000,2:23-25.
    [77]盛金昌,速宝玉.裂隙岩体渗流一弹塑性应力耦合分析[J].岩石力学与工程学报,2000,3:34-37.
    [78]黄远智.非线性规划理论在裂隙岩体渗流反馈分析中的应用研究[J].北京大学学报(自然科学版),2000,5:43-56.
    [79]张毅,宋治.辽河油田套管掉井泄漏事故分析[J].焊管,1997,(1):78-81.
    [80]Г.Б.Проводников,胥宏峰.套管设计的可靠性对套损影响的研究[J].国外油田工程,2002,7:10-14.
    [81]梁冰,孙可明,薛强.地下工程中的流─固耦合问题的探讨[J].辽宁工程技术大学学报(自然科学版),2001,2:21-24.
    [82]林永学,于忠厚等.三轴应力状态下页岩水化破坏实验研究[J].石油钻探技术,1996,(1):22-23.
    [83]康红庆,王兴刚等.杏北地区油层部位套损影响因素及防治方法研究[C].1999年油田开发技术座谈会,大庆,2000年1月.
    [84]陈凤,刘文苹,吴虞等.大庆油田射孔完井过程中的油层保护技术[J].中外能源,2006,(11):42-44.
    [85]冯晓九,宋天舒,李宏亮.多射孔对套管-水泥环结构强度的影响[J].黑龙江科技学院学报,2006,16(5):324-327.
    [86]黄世军,程林松,赵凤兰等.射孔完井水平井近井地带流动模型研究[J].油气井测试,2007,16(3):12-15.
    [87]陈锋,杨春和,白世伟.盐岩储气库蠕变损伤分析[J].岩土力学,2006,27(6):945-949.
    [88]陈卫忠,王者超,伍国军等.盐岩非线性蠕变损伤本构模型及其工程应用[J].岩石力学与工程学报,2007,26(3):467-472.
    [89]杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报,2002,21(11):1602-1604.
    [90]高小平,杨春和,吴文等.盐岩蠕变特性温度效应的实验研究[J].岩石力学与工程学报,2005,24(12):2054-2059.
    [91]何汉坤,杨启明,李鸿新等.出砂因素对采油井套管损坏力学分析[J].河南石油,2004,18(2):50-52.
    [92]赵洪山,管志川.严重出砂井中采油套管损坏的力学分析[J].石油钻采工艺,2005,27(5):85-88.
    [93]杨秀娟,杨丽,贾善坡等.热采井出砂套管损坏机理的有限元分析[J].石油矿场机械,2005,34(2):19-23.
    [94]姜泽菊,安申法,赵延茹等.稠油热采井注汽及油层出砂对套管的影响[J].石油机械,2005,33(7):17-20.
    [95]车承志,易志坚,何小兵等.柔性纤维硅断裂韧性的试验研究[J].重庆交通学院学报,2006,25(4):62-64.
    [96]王彦军,罗云,曹景萍.纤维水泥增强增韧实验[J].大庆石油学院学报,2005,29(5):24-28.
    [97]葛涛,谭可可,唐廷等.钢纤维水泥基复合材料力学性试验[J].混凝土,2006,(9):62-64.
    [98]贾若,徐守余.基于有限元的塑性岩层套管损坏分析[J].工程地质计算机应用,2007,(1):22-24.
    [99]徐国江,袁志宏.注水压力、小层压力对套管损坏影响的探讨[C].1999年油田开发技术座谈会,大庆,2000年1月.
    [100]冯晓九,宋天舒,李宏亮.多射孔对套管-水泥环结构强度的影响[J].黑龙江科技学院学报,2006,16(5):324-327.
    [101]黄世军,程林松,赵凤兰等.射孔完井水平井近井地带流动模型研究[J].油气井测试,2007,16(3):12-15.
    [102]刘积松.濮城油田注水井套管损坏趋势预测[J].断块油气田,1994,(2):35-39.
    [103]孟祥玉等.胜利油田套管损坏综合治理评述[J].石油钻采工艺,1999,(1):39-42.
    [104] Worthington M. H., Fault properties from seismic Q, Geophys. J. Int., 2000, 143: 937-944.
    [105]刘洁,宋惠珍.井眼附近地应力分布的三维数值模拟[J].地质力学学报,1999,(1):59-61.
    [106]孙岩,李本亮.论层滑、倾滑和走滑系统[J].地质力学学报,1999,5(3):53-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700