用户名: 密码: 验证码:
兰坪盆地流体大规模成矿过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西南三江中段兰坪盆地因产有包括金顶超大型铅锌矿床及其外围一系列矿床而成为引人注目的巨型矿集区。虽然大规模成矿作用发生在中新生代沉积地层当中,但这里的大型矿床与以沉积岩为主岩的MVT矿床、SST矿床、Sedex型矿床均不可类比,成矿机制独特。在对兰坪盆地铅锌铜大型矿集区内矿床的众多研究中不难发现,后生特点明显,热液成矿特征显著,由此可见,兰坪盆地铅锌铜大型矿集区内矿床形成机制认识的关键性问题之一就是流体的问题。笔者正是在注意到兰坪盆地成矿作用的独特性以及流体对认识成矿作用的重要性的基础上,通过对区域成矿地质背景的分析,选取盆地内的两个超大型矿床作为研究对象,以揭示其流体成矿作用机制。
     金顶矿床以白垩系和第三系陆相碎屑岩为主岩,拥有2亿吨矿石,平均品位Zn6.08%、Pb1.29%(1500万吨金属),是目前中国最大的Zn-Pb矿床,也是世界上形成时代最新且唯一陆相沉积岩容矿的超大型Zn-Pb矿床。不同于世界上人们公认的沉积岩容矿基本类型,金顶矿床也许代表了沉积岩容矿Zn-Pb矿床的一个新类型。位于金顶超大型铅锌矿床北部30公里的白秧坪Cu-Ag-Co多金属矿床,是继金顶之后在兰坪盆地发现的又一个大型甚至超大型多金属矿床。因此,如能将金顶矿床的成矿流体研究与白秧坪矿床的流体研究结合起来,相互对比,彼此借鉴,就可以明显地推进兰坪盆地的成矿学研究。
     本研究是在前人研究所积累丰富地质资料的基础上,通过系统详尽的矿相学研究,在查清矿石中矿物共生、伴生和世代关系以及不同矿化阶段矿物共生组合特点的基础上,以不同矿化阶段所形成的典型矿物组合及流体包裹体为对象,通过对流体包裹体的岩相学特征、冷热台研究以及流体包裹体的气液相成分、稀土微量元素的研究,来了解成矿流体的基本性质及演化。通过对流体包裹体的H、O同位素、He、Ne、Ar、Xe同位素,矿石硫化物硫、铅同位素以及碳酸盐矿物碳、氧同位素的研究来帮助进一步判断成矿流体的性质及来源,并结合区域地质构造背景对兰坪盆地大规模成矿过程进行了研究。主要取得以下几个方面的进展:
     1.首次对金顶矿区不同矿化阶段流体包裹体中的稀土和微量元素进行了测试,发现从成矿早阶段到成矿晚阶段,成矿流体SREE逐步升高,轻重REE分异越趋显著,系统从还原性演化为氧化性,微量元素组合趋于复杂,流体中成矿元素不断富集,而且在早-中阶段的流体成矿可能是快速的,中-晚阶段趋缓,深、浅部两种不同性质流体的混合可能是流体成矿的基本过程。
     2.对金顶和白秧坪矿床成矿主阶段热液矿物内流体包裹体的惰性气体同位素组成进行了研究,发现成矿流体是壳幔不同性质流体系统混合的结果。
     3.利用Basin2~(TM)软件对兰坪盆地的流体压力进行模拟,发现盆地沉积和压实产生的流体超压可以忽略,区域构造推覆体最多仅能产生170×10~5Pa的流体超压,由流体包裹体获得的高达1364×10~5 Pa的流体超压不可能是由沉积压实以及推覆体产生的,结合其深部背景研究以及地球物理研究认为成矿流体超压很可能是深部富CO_2含矿流体注入引起的,进一步证明了兰坪盆地成矿流体是一种壳幔混合流体。
     4.对兰坪盆地的流体成矿过程进行了研究,认为深、浅部两种不同性质流体的混合是流体成矿的基本过程。
     5.鉴于金顶超大型铅锌矿床有别于MVT、SST和SEDEX型铅锌矿床的独特特征,提出铅锌矿床的新类型——“金顶型”。
The Lanping basin, Yunnan, SW-China, is famous for the giant Jinding deposit and the new-discovered Baiyangping Cu-Co-Ag super-large deposit. Differing from known major types of sediment-hosted Zn-Pb deposits in the world, including SST, MVT and Sedex, the metallogenetic mechanisms of Zn-Pb deposits in the Lanping basin are unique, although the large-scale mineralization occurred in the Mesozoic-Cenozoic strata. Because of the remarkable characteristics of epigenetic alterations and hydrothermal mineralization of the deposits in the large Pb-Zn-Cu ore concentration area, Lanping basin, the key point is about fluid for making clearly the metallogenetic mechanisms. Based on these, through the analysis of regional ore-forming geological setting, this article takes the two super-large deposits as the examples for revealing the fluid metallogenetic mechanisms.
     With a reserve of~200 Mt ore grading 6.08% Zn and 1.29% Pb (i.e. a metal reserve of~15 Mt) hosted in Cretaceous and Tertiary terrestrial rocks, the Jinding deposit is the largest Zn-Pb deposit in China, and also the youngest sediment-hosted and the only continental sediment-hosted super-large Zn-Pb deposit in the world. Differing from known major types of sediment-hosted Zn-Pb deposits in the world, the Jinding represents a new type of sediment-hosted Zn-Pb deposits. The Baiyangping Cu-Ag-Co polymetallic deposit is another super-large deposit found in the north of Jinding in the Lanping basin. So, it can improve the metallogeny study of the Lanping basin, with the comparation of metallogenetic fluids between the Jinding and Baiyangping deposits.
     Based on the abundant geological data collected, through the detailed study on mineragraphy for checking out the symbiotic, associated and generation relationship of the minerals and mineral assemblage in the different mineralization stages, we studied the petrography, homogeneous temperature, salinity, gas and luqid components, and rare element compositions of fluid inclusions, in order to recognizing the basic charateristics and evolution of the ore-forming fluids. Then, combing the regional geological structure setting with the H-O、He-Ne-Ar-Xe isotopes of fluis inclusions, S、Pb isotopes of sulfide ores and C-O isotopes of carbonate minerals, we have studied the metallogenic process in the Lanping basin.The major advances are as follows.
     Ⅰ. Rare element compositions of fluid inclusions in the various mineralization stages of the Jinding ore district shows that from the early to late mineralization stage of the fluid mineralization processes, SREE and LREE / HREE increased in the ore-forming fluid respectively, and the fluid system became more oxidizing. The rare element assemblage of the ore-forming fluid became more complex, the metallogenic element was richer in the ore-forming fluid. The fluid mineralization may be quick during the early-middle stage and slower during the middle-late stage. A mixing of a deep- and a shallow- fluid may be the essentials for the large-scale mineralization in the Jinding.
     Ⅱ. The compositions of noble gas isotopes of fluid inclusious in the hydrothermal minerals of the main mineralization stage of the Jinding and Baiyangping deposits indicates that metallogenetic fluids were the mixiture of two different fluids with different characteristics from the crust and mantle.
     Ⅲ. The mineralizing system was strongly injected by a deep overpressure fluid based on observations of hydraulic fractures, fluid inclusion data and the basin fluid modeling. The fluid pressures of (513~1364)×10~5 Pa are revealed in CO_2-rich fluid inclusions. The basin fluid dynamic modeling results indicate that the overpressures could not have been produced by normal sediment compaction, a fluid overpressure of 170×l0~5Pa could have been made by the thrusting nappe. An injection process of mantle-derived fluids are likely responsible for the building-up of the high overpressures. The mixing of two types of fluids in a structural-lithologic trap may have been the key dynamic process for the large-scale mineralization in Lanping basin.
     Ⅳ. With the study on the fluid metallogenetic process of the Lanping basin, we find out that the mixing of a deep- and a shallow- fluid may be the essentials for the large-scale mineralization.
     Ⅴ. Because of the unique characteristics of the Jinding super-large Zn-Pb deposit, which is different from the MVT、SST and SEDEX type Zn-Pb deposits, it may be a new type of Zn-Pb deposit named "Jinding type".
引文
[1]刘丛强.流体作用地质地球化学[A].欧阳自远.世纪之交矿物学岩石学地球化学回顾与展望[C].北京:原子能出版社,1998:284-289
    [2]卢焕章.成矿流体[M].北京:北京科学技术出版社,1997:1-168
    [3]覃功炯,朱上庆.金顶铅锌矿床成因模式及找矿预测[J].云南地质,1991,10(2):145-190
    [4]涂关炽等著.中国超大型矿床(1)[M].北京:科学出版社,2000:1-583
    [5]薛春纪.云南兰坪盆地第三纪成矿系列研究[D].中国地质科学院博士后出站报告,2000
    [6]薛春纪,陈毓川,杨建民等.金项铅锌矿床地质-地球化学[J].矿床地质,2002,21(3):270-277
    [7]颜文,李朝阳.一种新类型铜矿床的地球化学特征及其热水沉积成因[J].地球化学,1997,26(1):54-63
    [8]阙梅英,程敦模,张立生等.兰坪.思茅盆地铜矿床[M].北京:地质出版社,1998:1-46
    [9]薛春纪,陈毓川,王等红等.滇西北金顶和白秧坪矿床:地质和He,Ne,Xe同位素组成及成矿时代[J].中国科学(D辑),2003,33(4):315-322
    [10]胡瑞忠,钟宏,叶造军等.金顶超大型铅锌矿床氦、氩同位素地球化学[J].中国科学(D辑),1998,28(3):208-213
    [11]Xue C.J.,Chen Y.C.,Wang D.H.,et al.Geology and isotopic composition of helium,neon and metallogenic age of the Jinding and baiyangping ore deposits northwest Yunnan,China[J].Sciences in China(series D),2003,46:789-800
    [12]朱上庆,覃功炯,陈式房等.金顶超大型陆相碎屑岩铅锌矿床[R].攀登项目(A_(30-04))专题研究报告.1995
    [13]M Deb and W D Goodfellow.Sediment-Hosted Lead-Zinc Sulphide Deposits.Attributes and Models of Some Major Deposits in India,Australia and Canada[M].Narosa Publishing House,2004,1-367
    [14]D F Sangster.Mississippi valley-type and Sedex lead-zinc deposits:a comparative examination[J].Transaction- Instiution of Mining and Metallurgy.(Sect.B:Applied Earth Sciences),1990,99:21-42
    [15]D Large and E Walcher.The Rammelsberg massive sulfide Cu-Zn-Pb-Ba-deposit,Germany:an example of sediment-hosted,massive sulfide mineralization[J].Mineralium Deposita,1999,57:1-7
    [16]Xue C.J.,Zeng R,Liu S.W.,et al.Geologic,Fluid Inclusion and Isotopic Characteristics of the Jinding Zn-Pb Deposit,Western Yunnan,China:A Review[J].Ore Geology Reviews,2007,31:337-359
    [17]Kyle J.R.,Li N.Jinding:A giant Tertiary sandstone-hosted Zn-Pb deposit,Yunnan,China[J].SEG Newsletter,2002,(50):1,9-16
    [18]Xue C.J.,Liu S.W.,Chen Y.C,et al.Giant mineral deposits and their geodynamic setting in the Lanping basin,Yunnan,China[J].Acta Geologica Sinica,2004,78(2):368-374.
    [19]覃功炯.关于金顶构造活动型冲积扇的认识[J].地质研究,1981,(1):11-26
    [20]施加辛,易凤煌,文其錞.兰坪金顶铅锌矿床的岩矿特征及成因[J].云南地质,1983,2(3):179-195
    [21]白嘉芬,王长怀,纳荣仙.云南金顶铅锌矿床地质特征及成因初探[J].矿床地质,1985,4(1):1-9
    [22]高怀忠.关于金顶铅锌矿床地层及沉积相问题的几点见解[J].地球科学,1989,14(5):457-465
    [23]高广立.论金顶铅锌矿床的地质问题[J].地球科学,1989,14(5):468-475
    [24]吴淦国,吴习东.云南金顶铅锌矿床构造演化及矿化富集规律[J].地球科学,1989,14(5):477-486
    [25]孙勇,许绍倬.云南金顶铅锌矿床成矿溶液运移通道的古水文地质分析[J].地球科学,1989,14(5):487-494
    [26]赵兴元.云南金顶铅锌矿床稳定同位素地球化学研究[J].地球科学,1989,14(5):495-501
    [27]胡明安.有机质的热液成熟作用在云南金顶铅锌矿床形成过程中的意义[J].地球科学,1989,14(5):503-512
    [28]高建华.滇西金顶铅锌矿床和蒸发岩建造成因关系的初步探讨[J].地球科学,1989,14(5):513-522
    [29]赵兴元.云南金项铅锌矿床成因研究[J].地球科学,1989,14(5):523-530
    [30]胡明安.试论岩溶型铅锌矿床的成矿作用及其特点--以云南金顶矿床为例[J].地球科学,1989,14(5):531-537
    [31]潘中华.金顶铅锌矿区硬石膏岩的特征[J].地球科学,1989,14(5):544-552
    [32]尹汉辉,范蔚茗,林舸.云南兰坪.思茅地洼盆地演化的深部因素及幔.壳复合成矿作用[J].大地构造与成矿学,1990,14(2):113-124
    [33]王京彬,李朝阳.金顶超大型铅锌矿床REE地球化学研究[J].地球化学,1991,19(4):359-365
    [34]周维全,周全立.兰坪铅锌矿床铅和硫同位素组成研究[J].地球化学,1992,20(2):141-148
    [35]张乾.云南金顶超大型铅锌矿床的铅同位素组成及铅来源探讨[J].地质与勘探,1993,29(5):21-28
    [36]张乾.云南金顶铅锌矿床成因研究[J].地质找矿论丛,1991,6(2):47-58
    [37]叶庆同,胡云中,杨岳清.三江地区区域地球化学背景和金银铅锌成矿作用[M].北京:地质出版社,1992:21-264
    [38]李朝阳.滇西地区陆相热水沉积成矿作用[J].铀矿地质,1993,(9):25-23
    [39]罗君烈,杨友华、赵准等.滇西特提斯的演化及主要金属矿床成矿作用[M].北京:地质出版社,1994:149-239
    [40]王江海,颜文,常向阳等.陆相热水沉积作用-以云南地区为例[M].北京:地质出版社,1998:79-89
    [41]温春齐,蔡建明,刘文周等.金顶铅锌矿床流体包裹体地球化学特征[J].矿物岩石,1995,15(4):78-84
    [42]Li N.Depositional controls and genesis of the Jinding sandstone-hosted Zn-Pb deposit,Yunnan province,Southwest China[D].for the degree of Ph.D.The University of Texas at Austin,1998
    [43]Xue C.J.,Wang D.H.,Chen Y.C.,et al.Helium,argon,and xenon isotopic compositions of ore-forming fluids in Jinding-Baiyangping polymetallic deposits,Yunnan,Southwest China[J].Acta Geologica Sinica,2000,74(3):521-528
    [44]田洪亮.兰坪白秧坪铜银多金属矿床地质特征[J].云南地质,1997,16(1):105-108
    [45]陈开旭,何龙清,杨振强等.云南兰坪三山.白秧坪铜银多金属成矿富集区的碳氧同位素地球化学[J].华南地质与矿产,2000,4:1-8
    [46]龚文君,谭凯旋,李小明等.兰坪白秧坪铜银多金属矿床流体地球化学特征及成矿机制探讨[J].大地构造与成矿学,2000,24(2):175-181
    [47]魏君奇.云南河西铜多金属矿S,Pb同位素地球化学[J].华南地质与矿产,2001,3:36-39
    [48]朱大岗,孟宪刚,冯向阳等.云南白秧坪多金属成矿区构造特征及其控矿作用[J],地质地球化学,2002,30(1):28-33
    [49]邵兆刚,孟宪刚,冯向阳.云南白秧坪矿化集中区成矿构造动力学分析[J].地球学报,2002,23(3):201-206
    [50]薛春纪,陈毓川,杨建民等.滇西北兰坪铅锌银铜矿田含烃富CO_2成矿流体及其地质意义[J].地质学报,2002,76(2):244-253
    [51]王峰,何明友.云南白秧坪银多金属矿床微量元素地球化学特征[J].沉积与特提斯地质,2003,23(4):103-107
    [52]杨伟光,喻学惠,李文昌等.云南白秧坪银多金属矿集区成矿流体特征及成矿机制[J].现代地质,2003,17(1):27-33
    [53]王峰,何明友.兰坪白秧坪铜银多金属矿床成矿物质来源的铅和硫同位素示踪[J].沉积与特提斯地质,2003,23C2):82-85
    [54]邵兆刚,孟宪刚,冯向阳等.云南白秧坪-华昌山矿带构造特征及其控矿作用[J].地质力学学报,2003,9(3):246-253
    [55]王彦斌,曾普胜,李延河等.云南金顶和白秧坪矿床He,Ar同位素组成及其意义[J].矿物岩石,2004,24(4):76-80
    [56]李志明,刘家军,秦建中等.滇西兰坪盆地多金属矿床碳、氧、氢同位素组成及其地质意义[J].吉林大学学报(地球科学版),2004,34(3):360-366
    [57]李志明,刘家军,胡瑞忠等.兰坪盆地白秧坪铜钴多金属矿床中钴的成矿地球化学[J].矿物学报,2004,24(2):197-205
    [58]陈开旭,姚书振,何龙清等.云南兰坪白秧坪银多金属矿集区成矿流体研究[J]地质科技情报.2004,23(2):45-50
    [59]陈开旭,何龙清,魏君奇等.云南白秧坪矿化集中区矿石矿物特征及银、钴赋存状态的初步研究[J].矿物学报,2004,24(1):61-67
    [60]刘家军,何明勤,李志明等.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义[J].矿床地质,2004,23(1):1-10
    [61]张尔新.兰坪白秧坪铜银多金属矿集区西矿带矿床成因[J].云南地质,2005,24(3):282-289
    [62]何龙清,陈开旭,魏君奇等.云南白秧坪地区东矿带矿床地质地球化学特征及成因分析[J].矿床地质,2005,24(1):61-70
    [63]李志明,刘家军,秦建中等.兰坪盆地白秧坪铜钴银多金属矿床成矿物质来源研究[J].地质与勘探,2005,41(1):1-6
    [64]范世家,王安建,刘汉斌等.论兰坪盆地白秧坪铜(钴)矿床成因的氮氩同位素证据[J].地质论评,2006,52(5):628-635
    [65]邵兆刚,孟宪刚,冯向阳等.云南白秧坪-华昌山矿带构造特征及其控矿作用[J]地质力学学报,2003,9(3):246-253
    [66]冉崇英,雷文礼,李峰等.滇中滇西地区铜多金属成矿条件及综合成矿预测科研总结报告[R].昆明:昆明工学院地质系,1991
    [67]李兴振,刘文均.西南三江地区特提斯构造演化与成矿(总论)[M].地质出版社,1981:42-155
    [68]范承钧,张翼飞.云南西部地质构造格局[J].云南地质,1993,12(2):101-110
    [69]张泰身,和浪涛.兰坪-思茅盆地“中轴断裂”及其对金矿区域成矿的控制[J].大地构造与成矿学,2000,24(增刊):63-66
    [70]杨伟光.云南兰坪白秧坪银铜多金属矿集区成矿作用的地质-地球化学条件和成矿机制[D].中国地质大学博士论文,2002,
    [71]薛春纪,杨建民,陈毓川等.兰坪白秧坪铜银钴多金属成矿学特征[A].陈毓川.中国喜马拉雅期内生成矿作用[C].北京:地震出版社,2000:51-62
    [72]葛良胜、杨嘉禾、郭晓东等.滇西北地区(近)东西向隐伏构造带的存在及证据[J].云南地质,1999,18(2):155-167
    [73]陈炳蔚、李永森、曲景川等.三江地区主要大地构造问题及其与成矿的关系[M].北京:地质出版社,1991:58-66
    [74]张成江,倪师军,腾彦国.兰坪盆地喜马拉雅期构造-岩浆活动与流体成矿的关系[J].矿物岩石,2000,20(2):35-39
    [75]钱祥贵,吕伯西.滇西三江地区新生代碱性火山岩岩石学特征及成因[J].云南地质,2000,19 (2):152-170
    [76]董方浏,莫宣学,侯增谦等.云南兰坪盆地喜马拉雅期碱性岩~(40)Ar/~(39)Ar年龄及地质意义[J].岩石矿物学杂志,2005,24(2):103-109
    [77]尹汉辉,范蔚茗,林苛.云南兰坪-思茅地洼盆地演化的深部因素及幔—壳复合成矿作用[J].大地构造与成矿学,1990,4(2):113-124
    [78]吕伯西,钱祥贵.滇西新生代碱性火山岩、富碱斑岩深源包体岩石学研究[J].云南地质,1999,18(2)127-143
    [79]肖荣阁、陈卉泉,袁见齐.云南中新生代地质与矿产[M].北京:海洋出版社,1993:124-162
    [80]陶晓风,朱利东,刘登忠等.滇西兰坪盆地的形成及演化[J].成都理工学院学报,2002,29(5):521-525
    [81]朱创业,夏文杰,伊海生等.兰坪-思茅中生代盆地性质及构造演化[J].成都理工学院学报,1997,24(4):23-30
    [82]薛春纪,陈毓川,杨建民等.滇西兰坪盆地构造体制和成矿背景分析[J].矿床地质,2002,21(1):36-43
    [83]何明勤,刘家军,李朝阳等.兰坪盆地铅锌铜大型矿集区的流体成矿作用机制—以白秧坪铜钴多金属地区为例[M].北京:地质出版社,2004:2-105
    [84]李小明,胡宝清.初论兰坪盆地构造流体与成矿作用的时空格架及可能的成矿模式[J].大地构造与成矿学,2001,25(2):187-193
    [85]中国科学院地球化学研究所.高等地球化学[M].北京:科学出版社,1998:243-283
    [86]卢焕章,李院生.矿床地球化学[M]北京:地质出版社,1997:109-134
    [87]张德会.成矿流体地球化学研究的若干进展[A].欧阳自远.世纪之交矿物学岩石学地球化学回顾与展望[C].北京:原子能出版社,1998,290-294
    [88]刘丛强,黄智龙,李和平等.地幔流体及其成矿作用[J].地学前缘,2001,8(4):231-243
    [89]孙丰月,石准立.试论幔源C-H-O流体与大陆板内某些地质作用[J].地学前缘,1995,2(12):167-174
    [90]肖化云,刘丛强,黄智龙.金刚石包裹体中的古地幔信息[J].地球科学进展,2001,16(2):244-250
    [91]庞保成,林畅松,罗先熔等.右江盆地微细浸染型金矿成矿流体特征与来源[J].地质与勘探,2005,41(1):13-17
    [92]朱和平,王莉娟,刘建明.不同成矿阶段流体包裹体气相成分的四极质谱测定[J].岩石学报,2003,19(2):314-319
    [93]苏文超,漆亮,胡瑞忠等.流体包裹体中稀土元素的ICP-MS分析研究[J].科学通报,1998,43(10):1094-1098
    [94]卢焕章,范宏瑞,倪培等.流体包裹体[M].北京:科学出版社,2004:20-25
    [95]范建国,倪培,苏文超等.辽宁四道沟热液金矿床中石英的稀土元素特征及意义[J].岩石学报,2000,16(4):587-590
    [96]李厚民,沈远超,毛景文等.石英、黄铁矿及其包裹体的稀土元素特征—以胶东焦家式金矿为例[J].岩石学报,2003,19(2):267-274
    [97]边千韬.地球壳幔结构构造与超大型矿床形成关系初议(以云南地区为例)[A].涂光炽等.中国超大型矿床(Ⅰ)[M].北京:科学出版社,2000:545-569
    [98]Chi G.X.,Qing H.R.,Xue C.J.,et al.An Overpressured fluid system associated with the giant sandstone-hosted Jinding Zn-Pb deposit.western Yunnan.China[A].Mao J and Bierlein FP (eds).Mineral Deposit Research:Meeting the Global Challenge[C],Springer,Berlin,2005:93-96
    [99]Xue C.J.,Chen Y.C.,Yang J.M.,et al.The CO_2-rich and hydrocarbon-beating ore-forming fluid and their metallogenic role in the Lanping Pb-Zn-Ag-Cu ore-field.Northwestern Yunnan.China[J].Acta Geologica Sinica,2002,76:244-25
    [100]Xue C.J.,Zeng R,Liu S.W.,et al.Mineralization stages and fluid processes in the giant Jinding deposit,weastern Yunnan,China[A].Ma JW and Frank P Bierlein(eds).Mineral Deposit Research:Meeting the Global challenge[C].Berlin:Springer.2005:203-206
    [101]White D.E.Diverse origins of hydrothermal ore fluids[J].Economic Geology,1974,69:954-973
    [102]Dilles J.H.,Solomon G.C.,Taylor H.P.,et al.Oxygen and hydrogen isotope characteristics of hydrothermal alteration at the Ann-Mason porphyry copper deposit,Yerington,Nevada[J].Economic Geology,1992,87:44-63
    [103]Campbell A,Rye D,Petersen U.A hydrogen and oxygen isotope study of the San Cristobal mine,Peru:Implication of the role of water to rock ratio for the genesis of wolframite deposits[J].Economic Geology,1984,79:1818 -1832.
    [104]刘家军,李朝阳,潘家永等.兰坪-思茅盆地砂页岩中铜矿床同位素地球化学[J].矿床地质,2000,19(3):223 234
    [105]Craig H.Isotopic variations in meteoric waters[J].Science,1961,133:1702-1703
    [106]Taylor H.P.,Jr.The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J].Economic geology,1974,69:843,883
    [107]胡瑞忠.成矿古流体氦、氩同位素地球化学[A].欧阳志远.世纪之交矿物岩石地球化学的回顾与展望[C].北京:原子能出版社,1998:210-216
    [108]Stuart F.M.,Burnard P.G.,Talor R.P.Resolving mantle and crustal contributions to ancient hydrothermal fluids:He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralization,South Korea[J].Geochim Cosmochim.Acta.1995,59:4663-4673
    [109]Dunai T.,Touret J.L.R.Helium,neon and argon isotope systematics of European lithospheric mantle xenoliths:implications for its geochemical evolution[J].Geochim.Cosmochim.Acta.1995,59:2767-2783
    [110]Hilton D.R,Hammerschmidt K.Teufel S.Helium isotope characteristics of Andean geothermal fluids and lavas[J].Earth Planet Sci.Lett.1993,120:265-282
    [111]Baptiste P.J.,Fouquet Y.Abundance and isotopic composition of helium in hydrothermal sulfide from the East Pacific Rise at 13°N[J].Geochim.Cosmochim.Acta.1996,60:87-93
    [112]Robert O F,,B.Mack Kennedy,Masahiro Aoki Michaet,et al.Correlation of gold in siliceous sinters with ~3He/~4He in hot spring waters of Yellowston National Park[J].Geochim.Cosmochim.Acta.1994,58:5401-5419
    [113]Patterson D.B.,Farly K.A.,Mcinnes B.I.A.Helium isotopic composition of the Tabar-Lihir-Tanga-Feni island arc,Paoua New Guinea[J].Geochim.Cosmochim.Acta.1997,61:2485-2496
    [114]Harrison D,Bernard P,Turner G.Noble gas behavior and composition in the mantle:constraints from the Iceland Plume[J].Earth Planet Sci.Lett.1999,171:199-207
    [115]Thomas S,Claude JA.Terrestrial xenology[J].Earth Planet Sci.Lett.1982,60:389-406
    [116]David E F.Helium,argon,and xenon in crushed and melted MORB[J].Geochim Cosmochim.Acta.1997,61:3003-3012
    [117]Takashi H,Ichiro K,Keisuke N.Noble gas study of HIMU and EM oceanic island basalt in the Polynesian region[J].Geochim.Cosmochim.Acta.1999,63:1181-1201
    [118]Philippe S,Thomas S,Claude J A.Neon isotope in submarine basalt[J].Earth Planet Sci.Let.1988,91:73-88
    [119]Kennedy B.M.,Hiyagon H,Reynolds J H.Crustal neon:a striking uniformity[J].Earth Planet Sci.Lett.1990,98:277-286
    [120]Ballentine C.J.,O'Nions R.K.The nature of mantle neon contributions to Vienna Basin hydrocarbon reservoirs[J].Earth Planet Sci.Lett.1991,113:533-567
    [121]Lollar B.S.,O'Nions R.K.,Ballentine C J.Helium and neon isotope systematics in carbon dioxide-rich and hydrocarbon-rich gas reservoirs[J].Geochim.Cosmochim.Acta.1994,58:5277-5290
    [122]Swindle T.D.,Grier J A,Burkland M K.Noble gas in orthopyrozenite ALH84001:A different kind of martian meteorite with an atmospheric signature[J].Geochim.Coamochim.Acta.1995,59:793-801
    [123]Ballentine C.J.,O'Nions R.K.,Coleman M.A magnus opus:helium neon and argon isotopes in a North Sea Oil FIELD[J].Geochim.Cosmochim.Acta.1996,60:831-849
    [124]Stuart EM.,Turner G.The abundance and isotopic composition of noble gas in ancient fliud[J].Chemical Geology,1992,101:97-109
    [125]Lollar B.S.,Ballentine C.J.,O'Nions R.K.The fate of mantle-derived carbon in a continental sedimentary basin:Integration of C/He relationships and stable isotope signatures[J].Geochim.Cosmochim.Acta.1997,61:2295-2307
    [126]Podosek F.A.,Bernatowicz T.J.,Kramer F E.Adsorption of xenon and krypton on shales[J].Geochim.Cosmochim.Acta.1980,45:2401-2415
    [127]Norman D.I.,Musgrave J.A.N_2-He-Ar compositions in fluid inclusions:indicators of fluid source[J].Geochim.Cosmochim.Acta.1994,58:1119-1132
    [128]Troll T.W.,Kurz M.D.,Jenkins W.J.Diffusion of cosmogenic ~3He in olivine and quartz:implications for surface exposure dating[J].Earth Planet Sci.Lett.1991,103:241-256
    [129]薛春纪,王登红,杨建民等.兰坪金顶-白秧坪成矿流体中发现地幔He-壳幔流体成矿证据[J].地球学报,1999,20(增刊):385-389
    [130]胡瑞忠,毕献武,邵树勋等.云南马厂箐铜矿床氮同位素组成研究[J].科学通报,1997,42:1542-1545
    [131]Mamyrin B.A.,Tolstikhin I.N.Helium isotopes in nature[J].Amsterdam,1984,221-237
    [132]王炳成,徐金芳,郑文深等.氩同位素及胶东某些金矿床的成因[J].山东地质,1994,10(2):24-33
    [133]Zartman R.E.,Doe B.R.Plumbotectonics-the mode[J].Tectonophysics,1981,75:135-162
    [134]刘英俊.元素地球化学[M].北京:科学出版社,1984:216-234
    [135]刘建明,刘家军.盆地流体及成矿作用评述[A].欧阳志远.世纪之交矿物岩石地球化学的回顾与展望[C].北京:原子能出版社,1998:384-389
    [136]薛春纪,陈毓川,杨建民等.云南兰坪盆地成矿流体性质:氧、碳同位素制约[J].矿床地质,2002,21(增刊):1064-1067
    [137]Hoefs J.Stable Isotope Geochemistry(4~(th) ed)[A].Berlin:Springer Verlag[C].1997:65-168
    [138]Taylor H.P.,Frechen J,Degens E.T.Oxygen and carbon isotope studies of carbonatites from the Laacher see District,West Germany and Alno District Sweden[J].Geochim.Cosmochim Acta,1967,31:407-431.
    [139]Demeny A,Ahijado A,Casillas R,et al.Crustal contamination and fluid/rock interaction in the carbonatites of Fuerteventura Canary Islands,Spain:C,O,H isotope study[J].Lithos,1998,44:101-115.
    [140]Irwin H,Curtis C D,Coleman M.Isotopic evidence of diagenetic carbonates formed during burial of organic-rich sediments[J].Nature,1977,269(5625):209-213
    [141]O'Neil J R.Oxygen isotope fractionation in divalent metal carbonates[J].J.Chem.phys,1969,51:5547-5551
    [142]Taylor H P.Oxygen and hydrogen isotope relationship in hydrothermal mineral deposits[A].In:Barnes H L.Eds.Geochemistry of Hydrothermal ore Deposits(2~(th) ed.)[C].New York:John whey &Sons,1979:236-377
    [143]卫克勤.大气降水地球化学[A].于津生,李耀松.中国同位素地球化学研究[C].北京:科学出版社,1997:541-565
    [144]Bethke C M,Lee M K,Quinodoz H,Kreiling W N.Basin modeling with Basin2,A guide to using Basin2,B2plot,B2video,and B2view[M].University of Illinois,Urbana,225 p.1993.
    [145]Kaufman J.Numerical models of fluid flow in carbonate platforms:implications for dolomitization.Journal of Sedimentary Research,A64[J],1994,128-139.
    [146]云南地质矿产局,云南省区域地质志[M],北京:地质出版社,1990,106-278
    [147]He M.Q.,Liu J.J.,Li Ch.Y.,etc.~(40)Ar-~(39)Ar Dating of quartz from ore in the Baiyangping Cu-Co Polymetallic ore-concentrated Area,Lanping Basin,yunnan,Chinese[J].Journal of Geochemistry,2004,23(4):342-348
    [148]桑海清,裘冀,王兰英.石英~(40)Ar-~(39)Ar阶段加热法定年的实验技术改进及意义[J]矿物岩石地球化学通报,2001,20(4):444-447
    [149]李兴振,江新胜,孙志明等,西南三江地区碰撞造山过程[M].北京:地质出版社,2002:173-206
    [150]Qing H.,Mountjoy E.W.Origin of dissolution vugs,caverns and breccias in the Middle Devonian Presqu'ile Barrier,Host of Pine Point Mississippi valley-type Deposits[J].Economic Geology,1994,89:858-876
    [151]Chi G,Savard M.M.Basin fluid flow models related to Zn-Pb mineralization in the southern margin of the Maritime basin.Eastern Canada[J].Economic Geology,1998,93:896-910
    [152]Sangster D.F.,Vaillancourt P.Geology of the Yava sandstone-hosted deposit,cape Breton Island,Nova Scotia,Canada[A].Sangster,A.(Ed.).Mineral deposit studies in Nova Scotia:Geological Survey of Canada[C],1990,90:203-244
    [153]Rickard D.T.,Willden M.Y.,Marinder N.E.,et al.Studies on the genesis of the Laisvall sandstone lead-zinc deposit,Sweden-A reply[J].Economic Geology,1981,76:2052-2065
    [154]Bjorlykke B.,Sangster D.F.An overview of sandstone lead deposits and their relation to red copper and carbonate-hosted lead-zinc deposits[J].Economic Geology,1981,75:178-213
    [155]Large D.,The evolution of sedimentary basins for massive sulfide mineralization[A].Frielin,G.,Herzig,P.(Eds.).Base Metal Sulfide Deposits[C].Springer-Verlag,Berlin,1988:1-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700