用户名: 密码: 验证码:
薄基岩采动破断及其诱发水砂混合流运移特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溃砂或水砂突涌是薄基岩厚松散含水层条件下采掘时含砂量较高的水砂混合流体溃入井下工作面并造成财产损失及人员伤亡的一种矿井地质灾害。溃砂或水砂突涌产生的机理与影响因素与一般意义上的矿井水害不同,应作为一种独立的矿井地质灾害种类来对待。
     本文围绕“薄基岩采动破断及其诱发水砂混合流运移特性研究”这一科学问题,以山东太平煤矿厚松散含水层薄基岩含煤地层为地质原型,分析了矿区地质、水文地质与工程地质条件及薄基岩特征,明确了薄基岩的涵义,建立了工程地质模型,分析了煤层采动薄基岩破断的机理,归纳总结了薄基岩厚松散层下开采水砂流涌出通道形成的三类工程地质模式;设计并制作了水砂混合流运移及突涌试验模型,模拟了采矿覆岩体裂隙通道中水砂混合流在运移与突出过程中的启动、运移和稳定的全过程,研究了煤层开采水砂混合流运移特性与动力机制。本文取得的主要创新成果有:
     (1)揭示了不同岩性组合薄基岩的采动破断机理。薄基岩厚覆盖层下采煤属于特殊地质条件下的开采问题。在详细研究和总结研究采区的主要地质特征的基础上,通过模型试验和数值模拟,获得了研究区开采覆岩破坏的基本规律以及“三带”的发育特征。工程地质力学模型和相似材料模型试验结果揭示了含煤地层不同岩性组合薄基岩采动破断机理;有限元数值模拟显示了覆岩(土)中的应力与应变分布情况;离散元模拟分析得到了覆岩运动规律及工作面周期性的来压现象。结果表明,在薄基岩条件下,导水裂隙带容易贯通基岩,直接波及到覆盖层底部的含水层,导致工作面突水涌砂。
     (2)设计并制造了水砂混合流运移及突涌模型。该模型能够模拟出地下采矿覆岩体通道中水砂混合流在运移与突出过程中的启动、运移和稳定的过程,方便用于研究水砂混合流运移中周围岩体与水砂混合流的动力耦合关系。
     (3)通过模型实验,研究了水砂混合流在采动裂隙通道中的运移与通道大小、颗粒尺寸、出砂口大小等的定量关系。通过设置不同水砂混合物成分、不同水压力、不同裂隙通道宽度的模型试验,定量化地研究了水砂混合物运移及涌出的多种地质信息,得到了不同模型试验水砂混合流运移通道中不同位置监测的水压力变化曲线,同时得到了裂隙通道水砂流速度与通道宽度的关系,即同一种水砂流运移速度随裂隙通道的宽度增加而降低,在裂隙宽度相同的情况下,水砂流运移速度又随颗粒逐渐变细而增大;观测得到了水砂流通道溢出口出砂量与时间的变化关系,即涌出物的含砂量随时间延长而减少,刚开始水砂涌出物中含砂量大,含砂量较大的状态持续时间短;随着试验时间推移,渗透变形破坏的不断完成,涌出物的含砂量也渐渐减小,最后至塌陷漏斗形成后,涌出物中含砂量渐变为零。
     (4)研究了不同通道类型水砂流运移特征,提出了水砂流运移的三个阶段及三种水砂突出类型。根据煤层采动引起覆岩破坏形成的垮落带、导水裂缝带通道情况,将水砂混合流运移通道侧壁面分为平直光滑无充填的、粗糙起伏无充填的及有充填软弱泥质物质的三类,并针对这几种形态进行了模型试验。试验以0.05MPa和0.1MPa水压力条件下的不同通道裂缝宽度、不同倾角、不同通道侧壁形态为例,揭示了孔隙水压力在裂隙通道中不同位置的变化特征。突水涌砂在采空区是瞬间发生的,在裂隙通道内,根据孔隙水压力的变化,将水砂混合流运移过程分为相互关联的三个阶段:上升阶段、稳定阶段及突出阶段。总结了水砂混合流突出阶段的水压力变化曲线的特征,划分出了三种水砂突出类型:直泻式突出型、跳跃式突出型和缓坡式突出型。由此,探索了水砂混合流运移特征及动力机制。
The mixed water and sand flow inrush is a common type of geological hazards in underground coal mines adjacent to unconsolidated aquifers, which should be regarded as an independent type of mining hazard due to its special mechanism, influencing factors and treatment methods.
     This paper focuses on the overburden failure in the thin bedrock and the characteristics of the mixed water and sand flow induced by coal mining, choosing Taiping coalmine as a geological prototype. The mine geology, structural formation, hydrogeology, engineering geology and characteristics of the thin bedrocks were analyzed. The meaning of the thin bedrock was clearly defined. Based on the geological prototype, an engineering geological model can be taken to explore the rupture pattern and the failure features when mining under the thin bedrock. Three engineering geological modes of the mixed water and sand flow transfer induced by coal mining under the thin bedrock and thick unconsolidated aquifers were concluded and summarized. A test model of the mixed water and sand flow transfer and inrush was designed and used to simulate the startup, transfer and inrush process of the mixed water and sand flow in the overburden fractured channel. The transfer characteristics and dynamic mechanism of the mixed water and sand flow induced by mining were researched. The main achievements of this paper are as follows.
     (1) The failure features induced by mining of the thin bedrocks with the various lithological structures were investigated. The main geological characteristics and safety mining problem of the study area were researched and summarized in detail. The overburden failure and development characteristics of“three zones”in the study area were obtained through model tests and numerical simulations. The engineering geomechanics model and scaled model test results revealed the failure law in the thin bedrock with different lithological structures. The distribution of stress and strain was obtained through the finite element numerical simulation. The overburden movement and the periodic roof pressure of overburden were analyzed by the discrete element model. The water flowing fractured zone easily transfixes bedrocks under the condition of the thin bedrock and directly sweeps the Quaternary bottom aquifers. It would cause the water and sand inrush into underground workings.
     (2) The test model of the mixed water and sand flow transfer and inrush was designed and manufactured. The model can be used to simulate the startup, transfer and inrush process of the mixed water and sand flow in the overburden fractured channel. The water-rock stress coupling of the cracked surrounding rocks and the mixed water and sand flow was then conveniently researched.
     (3) The quantitative relationships among fractured channel width, particle size, outlet size and the mixed water and sand flow transfer in the overburden fractured channel were researched by the test model. Geological information of the mixed water and sand flow transfer for the various compositions of the flow, water pressure and the channel feature was quantitatively studied. The water pressure variation curves in the different positions were gained from different model tests. The relations between the channel width and the velocity of the mixed water and sand flow in the fractured channel were analyzed, showing that the velocity of the same mixed water and sand flow decreased with the increase of the fractured channel width. In the condition of same fractured channel width, the velocity of the mixed water and sand flow increased with the decrease of the particle size. The relationship between time and sand production volume of the mixed water and sand flow channel overflows was obtained from observational results, namely the sand content of gushing material decreased with time prolonged. Just at the very beginning the sand content of gushing material was large. With the test time and the process of seepage deformation and failure, the sand content of gushing material decreased gradually. Finally, the collapse doline formed and the sand content of gushing material became almost zero.
     (4) The characteristics of the mixed water and sand flow in the various types of fractured channels were researched. Three stages of the mixed water and sand flow transfer and three types of the mixed water and sand inrush were brought forward. Based on the caving zone and water flowing fractured zone channel of overburden failure by mining, the transfer channel sidewalls of the mixed water and sand flow were divided into three types; the straight and smooth with no filling, rough and stepped with no filling and filling with soft mud substance. The model tests were carried out through the three types. The variation characteristics of water pressure in different position of the fractured channel were revealed by considering the variations of the width, inclination angle, and sidewall types of the fractured channel under the water pressure of 0.05MPa and 0.1MPa. The results show that the water and sand inrush took place instantly in the mined area. Based on the characteristics of water pressure variations, the transfer process of the mixed water and sand flow in the fractured channel was divided into three interdependent stages: the increasing stage, stability stage and outburst stage. According to the characteristics of the water pressure variations during the mixed water and sand flow inrush, the mixed water and sand flow outburst was divided into three basic types: the direct injection outburst type, the saltatory outburst type and the gentle slope outburst type. Therefore, the transfer characteristics and dynamic mechanism of the mixed water and sand flow were explored.
引文
[1]隋旺华.矿井抢险救灾呼唤快速通道钻掘[J].探矿工程(岩土钻掘工程),2006(3):4.
    [2]宋振琪,蒋金泉,高延法.我国矿山压力和岩层拌制理论与技术发展面临的关键问题[J].煤炭学报,1997,22(Suppl):34-38.
    [3]黄庆享,钱鸣高,石平五.浅埋煤层顶板周期来压结构分析[J].煤炭学报,1999,24(6):581-585.
    [4]黄庆享.浅埋煤层的矿压特征与浅埋煤层定义[J].岩石力学与工程学报,2002,21(8):1174-1177.
    [5]侯忠杰.厚土层薄基岩浅埋煤层“支架一围岩”关系实验研究[J].湖南科技大学学报(自然科学版),2007,22(1):9-12.
    [6]许家林,蔡东,傅昆岚.邻近松散承压含水层开采工作面压架机理与防治[J].煤炭学报,2007,32(12):1239-1243.
    [7]涂敏,桂和荣.厚松散层及超薄覆岩厚煤层防水煤柱开采试验研究[J].岩石力学与工程学报,2004,23(20):3494-3497.
    [8]杨伟峰,隋旺华.薄基岩条带开采工程地质力学模型试验研究[J].中国矿业大学学报,2004,33(2):170-173.
    [9]杨伟峰,隋旺华.薄基岩条带开采覆岩与地表移动数值模拟研究[J].煤田地质与勘探,2004,33(3):18-21.
    [10]胡炳南,赵有星,张华兴.厚冲积层与薄基岩条带开采地表移动参数与实践效果[J].煤矿开采,2006,11(1):56-58.
    [11]郭惟嘉,陈绍杰,李法柱.厚松散层薄基岩条带法开采采留尺度研究[J].煤炭学报,2006,31(6):747-751.
    [12]国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M].北京:煤炭工业出版杜,2000.
    [13]刘天泉,仲惟林,焦传武等.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社.1981.
    [14]刘天泉.露头煤柱优化设计理论与技术[M].北京:煤炭工业出版社,1998.
    [15]何国清,杨伦,凌赓娣等.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1991.
    [16]狄乾生,隋旺华,黄山民.开采岩层移动工程地质研究[M].北京:中国建筑工业出版社,1992.
    [17]疏开生.微山湖下采煤的试验与研究[J].煤炭科学技术.1992(7):44-49.
    [18]杨武军.大型地表水体一微山湖下采煤的研究[J].矿业科学技术.1992(4):2-20.
    [19]王奎.白泥场煤矿太湖潮滨试采分析及湖区开采可行性探讨[J].煤矿开采.1992(4):36-41.
    [20]李佩全.淮南矿区水体下采煤的实践与认识[J].中国煤炭.2001,27(4):30-32.
    [21]袁亮.复合水体下急倾斜煤层开采试验研究[J].淮煤科技.1998(4):6-12.
    [22]薛忠臻,张文.龙口矿区近海含水层下采煤实践[J].煤矿开采.2000(2):13-14.
    [23]于进广,陈风祥,汪永茂.中等含水层下留设防砂煤柱的安全开采机理[J].淮南工业学院学报.2001,21(2):15-17.
    [24]廖学东.中等富水含水层下留设防砂煤柱开采的试验[J].辽宁工程技术大学学报.1998,17 (6):572-577.
    [25]廖学东,疏开生.松散含水层下采煤合理煤岩柱高度的确定[J].淮南矿业学院学报.1998 (2):29-33.
    [26] Shen B . Principles of Treating Unconsolidated Aquifers and an Engineering Instance[J].Journal of Coal Science and Engineering,1995(1):98-103.
    [27]郭忠平.厚冲积含水层下悬移支架放顶煤开采可行性探讨[J].山东矿业学院学报,1995 (4):353-357.
    [28]范广忱.软岩含水砂砾层下采煤实践[J].煤炭科学技术,1999,27(8):21-24.
    [29]马明,李凤荣.松散层水体下采煤的实践[J].矿山压力与顶板管理,2000(1):37-40.
    [30]康永华.巨厚含水砂层下顶水综放开采试验[J].煤炭科学技术,1998,26(9):35-38.
    [31]张文,薛忠臻.对龙口矿区第四系含水层下采煤的认识[J].煤炭科学技术,1999,27(10):27-29.
    [32]申宝宏,孔庆军,许延春等.厚含水松散层下留设防水煤岩柱综放开采方法适应性研究[J].煤炭科学技术,2000,28(10):35-38.
    [33]宣以琼,杨本水,尹纯刚,等.巨厚含水松散层下放顶煤开采提高回采上限的可行性研究[J].淮南工业学院学报,1999,19(1):45-48.
    [34]张世凯.厚松散层薄基岩开采涌水规律及预计[J].河北煤炭,1999(2):1-2.
    [35]桂和荣.芦岭矿810采区第四系含水层渗透稳定性研究[J].煤炭科学技术,2002,30(2):32-34.
    [36]康永华.覆岩破坏规律的综合研究技术体系[J].煤炭科学技术,1997,25(11):40-43.
    [37]张文艺.应用神经元网络预测覆岩破坏高度[J].矿山压力与顶板管理,1998(3):69-70.
    [38]许延春,徐秉业.用系统理论和方法解决“三下”采煤复杂问题[J].煤炭科学技术,2001,29(1):21-24.
    [39]于克军,骆循,张兴民.煤层顶板“两带”高度微地震监测技术[J].煤田地质与勘探,2002,30 (1):47-51.
    [40]程久龙,于师建.覆岩变形破坏电阻率响应特征的模拟实验研究[J].地球物理学报,2000,43 (5):699-705.
    [41]程久龙,朱鲁,黄胜伟等.覆岩破坏地震波场特征数值计算[J].山东矿业学院学报,1998,17 (1):144-148.
    [42]谭志祥.断层对“两带”的影响模拟研究[J].矿山压力与顶板管理,1999,(2):74-76.
    [43]李晓昭.地下工程控稳控水优势面及其数值分析[博士后研究报告] [D].南京大学,1998.
    [44]罗国煜等.城市环境岩土工程[M].南京:南京大学出版社.2000:253-256.
    [45]王经明等.煤层底板突水的智能化监测[J].微型机与应用,1998(1):46-47.
    [46]杜晓军.煤矿突水快速分析与判别系统[J].河北煤炭,1999(sup):44-46.
    [47]隋旺华.开采沉陷土体变形工程地质研究[M].徐州:中国矿业大学出版社,2000.
    [48]隋旺华,董青红,蔡光桃等.采掘溃砂机理与预防[M].北京:地质出版社,2009.
    [49]隋旺华,董青红.近松散层开采孔隙水压力变化及其对水砂突涌的前兆意义[J].岩石力学与工程学报,2008,27(9):1908-1916.
    [50]隋旺华,蔡光桃,董青红.近松散层采煤覆岩采动裂缝水砂突涌临界水力坡度试验[J].岩石力学与工程学报,2007,26(10):2084-2091.
    [51]杨伟峰.薄基岩采动破断规律与安全开采分析[J].工程地质学报,2008,16(Suppl.):570-573.
    [52]杨伟峰,隋旺华.软弱风化复合顶板采动破坏规律与安全开采分析[J].中国矿业,2008,17(5):61-63.
    [53] Romm E S.Flow Characteristics of Fractured Rocks.Moscow:Nedra,1966.
    [54] Levy T.Fluid Flow in a Porous Medium with Unidirectional Fissures[J].CR Acad Sci Ser II,1990,310(6):658-690.
    [55] Bai M,Lin DZ and Roegiers JC.Study of Flow and Transport in Fracture Network Using Percolation Theory[J].Appl.Math.Model,1998,22(4-5):277-291.
    [56]王洪涛,聂永丰.耦合岩体主干裂隙和网络状裂隙渗流分析及应用[J].清华大学学报,1998,38(12):23-26.
    [57] Lage JL.Contaminant Transport Through Single Fracture with Porous Obstructions[J].J Fluids Eng,1997,119(1):180-187.
    [58]陈胜宏.块状结构岩体渗流分析方法的探讨[J].水利学报,1991,10:27-31.
    [59]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [60] Jaflre J.Flux Calculation at the Interface between Two Rock Types for Two-phase Flow in Porous Media[J].Transport Porous Media,1995,21:195-207.
    [61] Snow D T.Anisotropic Permeability of Fractured Media[J].Water Resources Research,1969,5(6):31-36.
    [62] Snow D T. Anisotropic Permeability and Storage upon Changes of Fluid Pressure[J]. Quarterly of the Colorado School of Mines, 1968, 63(1): 16-29.
    [63] Barrenblatt G I,Zehltov Iu P,Kochina I N.Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks[J].Prikl. Mat. Mekh.,1960,24:1286-1303
    [64] Warren T E,Root P J.The Behaviour of Naturally Fractured Reservoirs[J].Soc. Pet. Engg. J., 1963, (3):245-255.
    [65] Streltsova TD.Hydrodynamics of Groundwater Flow in a Fractured Formation[J].Water Resources Research,1976,12:405-414.
    [66] Huyakorn P S.Finite Element Techniques for Modeling Ground Water Flow in Fractured Aquifers[J].Water Resources Research,1983,19(5):854-863.
    [67]王恩志,王洪涛等.双重裂隙系统渗流模型研究[J].岩石力学与工程学报,1998,17(4):623-626.
    [68]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社,2004.
    [69]白矛,D. Elsworth,刘天泉.采动引起的岩体变形及地下水流动的数值分析——稳定流研究[J].煤炭学报,1998,23(3):289-294.
    [70]白矛,D. Elsworth,刘天泉.采动引起的岩体变形及地下水流动的数值分析——非稳定流研究[J].煤炭学报,1998,23(4):376-381.
    [71] Biot,M.A.General Theory of Three Dimensional Consolidation[J].J.Appl.Phys,1941,(12):155-164.
    [72] Biot, M.A. Theory of Elastic Waves in a Fluid-Saturated Porous Solid[J]. J. Acous. Soc. Americ, 1956, (28):168-191.
    [73] Terzaghi K.Theoretical Soil Mechanics[M].Wiley,New York,1943.
    [74] Lubinski A. Theory of Elasticity for Porous Bodies Displaying a Strong Pore Structure[J]. Proc. 2nd U. S. National Congress of Applied Mechanics,1954:247-256.
    [75]徐曾和.渗流的流固耦合问题及应用[博士学位论文][D].沈阳:东北大学,1998.
    [76]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社,1997.
    [77] Aifantis,E.C.On the problem of diffusion in solids[J].Acta Mechanics.1980,(37):265-296
    [78] Jean-Claude Roegiers,T.Liu,M.Bai.Proc.of Int Symp.on Coupled Phenomena in Civil[J].Mining and Petroleum Engineering.Sanya-Nov,1999.
    [79]段小宁,李鉴初.应力场与渗流场相互作用下裂隙岩体水流运动的数值模拟[J].大连理工大学学报,1992,32:712-717.
    [80]杨天鸿.岩石破裂过程渗透性质及其应力耦合作用研究[博士学位论文][D].沈阳:东北大学,2001.
    [81] Leo CJ,Booker JR.Time Stepping FEM for Analysis of Contaminant Transport in FracturedPorous Media[J].Int. J. Numer. Anal. Methods Geomech.1996,20:847-864.
    [82]高海鹰,夏颂佑.三维裂隙岩体渗流场与应力场耦合模型研究[J].岩土工程学报,1997,19(2):102-105.
    [83]王嫒,徐志英.裂隙岩体渗流与应力耦合分析的四自由度耦合法[J].水利学报,1998,(7):55-59.
    [84]陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994,13(4):299-308
    [85]许学汉,王杰.煤矿突水预测预报研究[M].地质出版社,1992.
    [86]梁燕,潭周地,李广杰.弱胶结砂层突水、涌砂模拟试验研究[J].西安公路交通大学学报,1996,16(1):19-22.
    [87]汤爱平,董莹,谭周地,等.振动作用下矿井突水涌砂机理的研究[J].地震工程与工程震动,1999,19(2):132-135.
    [88]张敏江,张丽萍,姜秀萍.弱胶结砂层突涌机理及预测研究[J].金属矿山,2002,16(10): 48-50.
    [89]隋旺华.煤层开采沉陷土体变形机理及预测[博士学位论文] [D].徐州:中国矿业大学,1992.
    [90] Suleyman Akalin,Water Temperature Effective on Sand Transport by Size Fraction in the Lower Mississippi River [Dissertation] [D].Colorado State University,2002.
    [91] Brigida Inmaculada Meza Diaz.Experimental Investigation of Sand Production into a Horizontal Well Slot [Dissertation] [D].Edmonton,Alberta,2001.
    [92] Ramachandran,Kulasingam.Effects of Void Redistribution on Liquefaction-induced Deformations [Dissertation] [D].Berkeley:University of California,2000.
    [93] K.B.Singh,T. N. Singh.Ground Movement over Longwall Workings in the Kampee Coalfield[J].India,Engineering Geology,1998,50(1-2):125-139.
    [94] A. Glerum,Molennaarlaan.Developments in Immersed Tunneling in Holland[J].Tunneling and Underground Space Technology,1995,10(4):455-462.
    [95] S.M.Reza Imam.Modeling the Constitutive Behavior of Sand for the Analysis of Static Liquefaction [Dissertation] [D].Edmonton:University of Alberta,1999.
    [96] Nathalie Boukpeti. Modeling Static Liquefaction in Granular Deposits [Dissertation][D]. Twin Cities: University of Minnesota, 2001.
    [97] Gerber,Travis Max.P-y Curves for Liquefied Sand Subject to Cyclic Loading Based on Testing of Full-scale Deep Foundations [Dissertation][D].Provo:Brigham Young University,2003.
    [98]武汉水利电力学院.河流泥沙工程学[M].水利电力出版社,1980.
    [99]杨达志.泥沙输送理论与实践[M].中国水利电力出版社,2000.
    [100]钱宁.高含沙水流运动[M].清华大学出版社,1986.
    [101]韩其为,何明民.泥沙起动规律及起动流速[M].科学出版社,1999.
    [102]钱宁,万兆惠.高含沙水流运动研究述评[J].水力学报,1985,5:27-34.
    [103]中国水利学会泥沙专业委员会.泥沙手册[M].中国环境科学出版社,1989.
    [104]张改玲,董青红,隋旺华等.红层与煤系复合结构覆岩采动破坏分析及其应用[J].工程地质学报,2004,12(1):41-44.
    [105]杨伟峰.薄基岩条带开采覆岩与地表移动变形机理的研究及优化设计[硕士学位论文][D].徐州:中国矿业大学硕士论文,2003.
    [106]方新秋,黄汉富,金桃,等.厚表土薄基岩煤层开采覆岩运动规律[J].岩石力学与工程学报,2008,27(Supp.1):2700-2706.
    [107]沈光寒等.矿井特殊开采的理论与实践[M].北京:煤炭工业出版社,1992.
    [108]《中国煤矿防治水技术经验汇编》编委会.中国煤矿防治水技术经验汇编[M].北京:煤炭工业出版社,1992.
    [109]方新秋,黄汉富,金桃,等.厚表土薄基岩煤层综放开采矿压显现规律[J].采矿与安全工程学报,2007,4(3):326-330.
    [110]魏秉亮.神府矿区突水溃砂地质灾害研究[J].中国煤田地质,1996,8(2):28-30.
    [111]曾先贵,李文平.综放开采近断层导水断裂带发育规律研究[J].采矿与安全工程学报,2006, 23(3): 306-310.
    [112]张国祥,金永洙.舒兰矿区含水砂岩层下疏干开采[J].东北煤炭技术,1990,(增):138-144.
    [113]张玉军,康永华,刘秀娥.松软砂岩含水层下煤矿开采溃砂预测[J].煤炭学报,2006,31(4):429-432.
    [114]周健,张刚,胡展飞.软土基坑突水判断方法模型试验研究[J].岩石力学与工程学报,2006,25(10):2115-2120.
    [115]袁文忠.相似理论与静力学模型试验[M].成都:西南交通大学出版社,1998.
    [116]徐挺.相似理论与模型试验[M].北京:中国农业机械出版社,1982.
    [117] Goodings D J. Application of Centrifuge Modelling to Geotechnical Design[J]. Leiden:A.A.Balkema Publishers, 1985.
    [118] Wasp, E. J., J. C. Ande and J. P. Kenny. Deposition Velocities, Transition Velocities and Special Distribution of Solids in Slurry Pipelines[J]. Proc. Hydrotransport 1970.
    [119] Francis S. Kendorski Effect of Full-Extraction Underground Mining on Ground and Surface Waters A 25-Year Retrospective International Conference on Ground Control in Mining[J]. Morgantown, WV(US); 2006, 25th.
    [120] Mahendra Singh , Bhawani Singh, Jaysing Choudhari. Critical Strain and Squeezing Of Rock Mass in Tunnels[J]. Tunnelling and Underground Space Technology 22 (2007) 343-350.
    [121] B. SHEN. The Mechanism of Racture Coalescence in Ompression-Experimental Study And umerical Simulation[J]. Engineering Fracture Mechanics, 1995, 51(1): 73-85.
    [122] K. C. Fan; M. C. Tom Kuo; C. J. Chen; C. J. Chiang Evaluation of Natural Recharge of Chingshui Geothermal Reservoir in Taiwan Stanford Geothermal Program[J]. 31st Workshop on Geothermal Reservoir Engineering, 2006, Stanford, California, USA, 31st.
    [123]李文平.巨厚坚硬岩层下煤层开采“动力突水”初步研究[J].工程地质学报,2008,16(Suppl.):446-450.
    [124]唐大雄,刘佑荣.工程岩土学(第二版)[M].北京:地质出版社,1999.
    [125]钱宁,万兆惠.泥沙运动力学[M].科学出版社,1983.
    [126] Novak, P. and C. Nalluri. Correlation of Sediment Incipient Motion and Deposition in Pipes and Open Channels with Fixed Smooth Beds[J]. Proc., Hydrotransport 3, 1974, E4: 45-56.
    [127] Durand, R. Basic Relationship of the Transportation of Solid in Pipes—Experimental Research[J]. Proc., Minnesota Intern. Hyd. Conv., 1953: 89-103.
    [128] Gibert, R. Transport Hydraulique et Refoulement des Mixtures en Conduites[J]. Annales des Ponts et Chausses, 130 Annee, 1960, (3): 307-373.
    [129] Govier, G. W. and M. E. Charles. The Hydraulics of the Pipeline Flow of Solid-Liquid Mixtures[J]. The Engin. J., 1961, 44(8): 50-57.
    [130] Worster, R. C. and D. F. Denny. The Hydraulic Transport of Solid Material in Pipes[J]. Paper Present at a General Meeting of the Inst. Mech. Engrs. London, 1955: 12.
    [131] Newitt, D. M. et al. Hydraulic Conveying of Solids in Vertical Pipes[J]. Inst. Chem. Engrs, 1961, 39(2): 93-100.
    [132] Zandi, I. and G. Govatos. Heterogeneous Flow of Solids in Pipeline[J]. J. Hyd. Div., Proc., Amer. Soc. Civil Engrs., 1967, 93: 145-159.
    [133] Noorishad J. , et al. A finite-element method for coupled stress and fluid flow analysis in fracture rock masses[J]. Int J. Rock Mech. Sci. & Geomech. Abstr, 1985, 22(4): 251-281.
    [134] Oda M. Permeability tensor for discontinuous rockmass[J]. Geotechnique, 1985.
    [135] Oda M. An Equivalent Model for Coupled Stress and Fluid Flow Analysis in Jointed Rock Masses[J]. Water Resource. Res., 1986, 22(13): 1845-1856.
    [136]仵彦卿,张卓元.岩体水力学[M].成都:西南大学出版社.1995.
    [137]仵彦卿.岩体渗流场与应力场耦合的等效连续介质模型[J].水文地质与工程地质,1997,(3):10-14.
    [138]仵彦卿.岩体渗流场与应力场耦合的裂隙网络模型[J].水文地质与工程地质,1997,(5):41-45.
    [139]仵彦卿.岩体渗流场与应力场耦合的双重介质模型[J].水文地质与工程地质,1998,(1):43-46.
    [140] Louis C. Rock Hydraulics in Rock Mechanics[M]. Edited by Muller L. New York: Vorlay Wien, 1974.
    [141] Snow D.T. Rock fracture spacing: Opening and Porosity[J]. Soil Mech. Found. Div Proc. ASCE, 1968, 94 (SM1), 73-91.
    [142] Gale G. E. The effects of fracture type (induced versus natural) on the stress fracture closure permeability relationships[J]. In: Proc. 23th Symp. On Rock Mech., Berkeley, California, 1982.
    [143] Kranz R. L. etc. The permeability of whole and jointed Barre granite[J]. Int. J. Rock Mech. Min. Sci & Geomech Abstr.1979, 16(4): 225-234.
    [144]周创兵,熊文林.岩石节理的渗流广义立方定理[J].岩土力学,1996,17(4):1-7.
    [145]速宝玉,詹美礼,王媛.裂隙渗流与应力耦合特性的试验研究[J].岩土工程学报,1997,19(4):73-77.
    [146]庄宁.裂隙岩体渗流应力耦合状态下裂纹扩展机制及其模型研究[博士学位论文][D].上海:同济大学,2006.
    [147]易顺民,朱珍德.裂隙岩体损伤力学导论[M].科学出版社.2005.
    [148]周健,姚志雄,张刚.基于散体介质理论的砂土管涌机制研究[J].岩石力学与工程学报,2008,27(4):749-756.
    [149] Bear J. Dynamics of fluids in porous media [M]. New York:Dover Publication, 1972.
    [150] Jacob B. Hydraulics of groundwater [M]. [S.l.]:Mc Grao-Hill, 1979.
    [151] Ergun S. Fluid flow through packed columns [J].Chemical Engineering Progress,1952,48(2):89-94.
    [152]蔡光桃.采煤冒裂带上覆松散土层渗透变形研究[硕士学位论文][D].徐州:中国矿业大学,2005.
    [153]董青红.近松散层下开采水砂突涌机制及判别研究[博士学位论文][D].徐州:中国矿业大学,2006.
    [154]蔡荣.近风化带开采覆岩破坏与保护层作用研究及其应用[硕士学位论文][D].徐州:中国矿业大学,2003.
    [155]张改玲,杨伟峰,陈德俊,赵庆杰.疏降松散含水层防治采煤水砂突涌的几个关键问题[J].全国第五次地质灾害防治学术大会论文集,2006,479-480.
    [156]代晓东.厚冲积层薄基岩小采空区地表移动变形观测研究工作[J].矿山压力与顶板管理,2003,(3):84-86.
    [157]高召宁,石平五,姚令侃.中小煤矿在浅埋薄基岩下开采灾害防治研究[J].采矿与安全工程学报,2006,23(2):210-214.
    [158]张世凯,近水平煤层厚含水砂层薄基岩下开采试验研究[J].煤炭科学技术,1999,27(8):10-13.
    [159]卢鑫,张东升,范钢伟,等.厚砂层薄基岩浅埋煤层矿压显现规律研究[J].煤矿安全,2008,(9):10-12.
    [160]王永申,姜升,王乐杰.厚松散层薄基岩理藏条件煤层的防砂岩柱安全尺寸论证[J].水力采煤与管道运输,2006,(2):6-7.
    [161]冯洪渊,高新春,厚松散层薄基岩煤层矿压显现规律[J].郑州煤炭管理干部学院学报,2000,15(3):93-96.
    [162]张惠,田银素.薄基岩大采高综采面矿压显现规律[J].矿山压力与顶板管理,2004,(3):69-71.
    [163]王世东,沈显华,牟平.韩家湾煤矿浅埋煤层富水区下溃砂突水性预测[J].煤炭科学技术,2009,37(1):92-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700