用户名: 密码: 验证码:
极薄保护层钻采上覆突出煤层变形与透气性分布规律及在卸压瓦斯抽采中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在理论分析的基础上,利用相似材料模拟试验、数值模拟和现场试验相结合的研究方法,系统研究了极薄保护层钻采过程中上覆煤岩体移动变形、被保护煤层采动裂隙发育及分布特征、被保护煤层地应力变化及煤层顶底板变形、煤层透气性变化及分布、被保护煤层卸压瓦斯流动规律及在卸压瓦斯抽采中的应用,其研究成果对解决类似采矿地质条件下的煤与瓦斯突出防治及深部安全开采问题有重要实际意义。
     研究表明,崔庙煤矿二1煤层具有强突出危险性,二1煤层消除突出危险性必须将瓦斯压力降至0.32MPa以下或者瓦斯含量降至8m3/t以下。针对崔庙煤矿特殊的采矿地质条件和二1煤层具有低透气性、高瓦斯和强突出危险性的特点,提出采用螺旋钻采煤机钻采极薄保护层一9煤层结合上覆二1煤层卸压瓦斯强化抽采的区域性瓦斯治理方法。
     利用煤层采动瓦斯渗透性模拟试验台对极薄保护层钻采上覆被保护煤层地应力、煤层变形和煤层透气性变化及分布进行试验研究。结果表明,在极薄保护层钻采过程中上覆煤岩体产生整体弯曲下沉,没有冒落带和明显的断裂带。被保护煤层位于弯曲下沉带,由于采动作用在煤层中产生大量顺层张裂隙,被保护煤层与保护层之间没有形成明显的垂直连通裂隙。被保护煤层地应力大大降低,在充分卸压区实测煤层顶底板膨胀变形为10.5mm,相对变形为1.31‰。通过相似模拟试验验证了气体在煤层中的流动规律符合达西定律,并研究得出极薄保护层钻采前后被保护煤层透气性变化及分布特征。
     数值模拟研究表明,被保护煤层在受保护区域地应力平均为3.4MPa,比原岩应力下降32%。在充分卸压区煤层顶底板膨胀变形为11mm,相对变形为1.4‰。随着保护层工作面向前钻采,被保护煤层顶底板变形呈现压缩、快速膨胀、膨胀变形减小到稳定的变化规律。同时研究表明,极薄保护层采高对被保护煤层的卸压膨胀变形有很大影响。
     采用RFPA数值模拟软件对极薄保护层钻采上覆被保护煤层透气性变化和卸压瓦斯流动及瓦斯抽采规律进行模拟。研究表明,极薄保护层钻采后被保护煤层透气性急剧增大,比原始煤体透气性增大407倍。在煤层中形成了卸压瓦斯“解吸-扩散-渗流”的活化流动条件,卸压瓦斯在被保护煤层的顺层张裂隙中流动。同时研究表明瓦斯抽采穿层钻孔周围的瓦斯压力随极薄保护层工作面推进距离和抽采时间的增大而有明显降低。
     现场试验研究表明,采用极薄保护层钻采结合卸压瓦斯强化抽采的区域性瓦斯治理方法后,在试验区二1煤层的瓦斯压力由0.75MPa降为0.15MPa,瓦斯含量由13m~3/t降为4.66m~3/t,煤层顶底板膨胀变形为12mm,相对变形为1.5‰,煤层的透气性系数由0.047m~2/MPa~2·d增加到18.928m2/MPa~2·d,提高了403倍,瓦斯抽采率达到64%,二1煤层已经全面消除煤与瓦斯突出危险。同时研究表明,理论分析、相似材料模拟试验、数值模拟和现场试验研究得到的结论具有很好的一致性。
Based on the theory analysis, with the colligation analysis method of the similar material simulation test, the numerical simulation and the field test, movement and deformation of the overlying coal-rock mass, the mining-induced fractures growth and distribution feature of the protected coal seam, the change of ground stress and deformation of the protected coal seam, the permeability change and permeability distribution of the coal seam, the rule of pressure relief gas flow, and its application in pressure relief gas drainage are studied systematically. The results have an important significance for solving problems of outburst prevention and deep safe mining in the similar mining geological conditions.
     The results show that, coal seam No.21 is the strong outburst dangerous coal seam in Cuimiao Coal Mine and the gas parameters of eliminating outburst must be controlled below 0.32MPa or 8m3/t. According to the special mining geological conditions and coal seam No.21 with low permeability, high gas concentration, and strong outburst risk, we present the regional gas control technique of the extra-thin protective coal seam drilling combined with pressure relief gas drainage of the protected coal seam used by the coal auger.
     Ground stress, deformation, and permeability change and permeability distribution of the overlying protected coal seam induced by drilling the extra-thin protective coal seam are studied used by the seam mining and gas permeability simulation test-bed. The results show that, the overlying coal-rock mass is integrally bending and sinking, without forming any caving zone and the obvious fault zone. The protected coal seam is in the bending zone, a large number of bed separation crannies are created induced by mined, and the obvious vertical joint crannies are not created between the protected coal seam and the protective coal seam. Ground stress of the protected coal seam decreases in a great degree. Measured expansion deformation value in the full stress-relaxed area of the protected coal seam is 10.5mm and the relative expansion deformation is 1.31‰. Gas flow regularity accords with Darcy law in the protected coal seam, which is verified by the test, and then the rule of permeability change and permeability distribution of the protected coal seam is studied.
     The numerical simulation results show that, the average value of ground stress in the full stress-relaxed area of the protected coal seam is 3.4MPa, which decreases 32% compared with the original ground stress. The expansion deformation is 11mm and the relative expansion deformation is 1.4‰. The deformation of the protected coal seam is characterized by 1) compression, 2) rapid expansion, and 3) reaching a stable expansion value. The results show that, mining height of the extra-thin protective coal seam has a great influence on the ground stress and expansion deformation of the protected coal seam.
     The change rule of the seam permeability, pressure relief gas flow, and gas drainage rule of the protected coal seam are studied used by RFPA. The results show that, the extra-thin protective coal seam drilling makes the seam permeability improve rapidly, increasing by 407 times compared with the original permeability. The pressure relief gas flow condition is formed which is desorption, diffusion, and percolation. Gas flows in the open crannies along the protected coal seam. Gas pressure around a penetration borehole through the protected coal seam obviously decreases with the increase of mining distance and the drainage time.
     The results of the field test show that, used by the method of the extra-thin protective coal seam drilling combined with pressure relief gas drainage, the gas pressure of coal seam No.21 decreases from 0.75MPa to 0.15MPa, the gas content decreases from 13m~3/t to 4.66m~3/t, the expansion deformation is 12mm, and the relative expansion deformation is 1.5‰. The permeability coefficent increases from 0.047m~2/MPa~2·d to 18.928m~2/MPa~2·d, increasing by 403 times, the gas drainage rate is up to 64%, and the outburst risk of the protected area in coal seam No.2_1 is eliminated. In addition, the results obtained by the method of the theory analysis, the similar material simulation, and the numerical simulation are well fit to the results of the field test.
引文
[1]国家安全生产监督管理总局调度统计司.2007年全国安全生产事故统计分析报告[R].2008.
    [2]周世宁.关于《煤矿安全生产》的汇报.周世宁院士向温家宝总理的汇报.2005.
    [3]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [4]付建华.中国近年煤与瓦斯灾害情况分析[J].煤矿瓦斯灾害防治理论研究与工程实践[M].徐州:中国矿业大学出版社,2005,103-107.
    [5]国家煤矿安全监察局.煤矿安全技术“专家会诊”资料汇编[R].2005.
    [6]国家安全生产监督管理总局调度统计司.2008年全国安全生产事故统计分析报告[R].2009.
    [7]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [8]国家安全生产监督管理局、国家煤矿安全监察局.煤矿安全规程[M],北京:煤炭工业出版社,2007.
    [9]国家煤矿安全监察局.瓦斯治理经验五十条[M].北京:煤炭工业出版社,2005.
    [10]国家安全生产监督管理局、国家煤矿安全监察局.国有煤矿瓦斯治理规定(第21号令),2005.
    [11] AQ 1026-2006,煤矿瓦斯抽采基本指标[S].2006.
    [12]钱鸣高,刘听成.矿山压力及其控制[M].北京:煤炭工业出版社,1984.
    [13]陈祥恩,李德海,勾攀峰.巨厚松散层下开采及地表移动[M].徐州:中国矿业大学出版社,2001:94.
    [14]钱鸣高,缪协兴等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [15]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965,2(1):24-36.
    [16]周世宁.用电子计算机对两种测定煤层透气系数方法的检验[J].中国矿业学院学报,1984,2(3):46-51.
    [17]郭勇义.煤层瓦斯一维流场流动规律的完全解[J].中国矿业学院学报,1984,2(2):19-28.
    [18]谭学术.矿井煤层真实瓦斯渗流方程的研究[J].重庆建筑工程学院学报,1986,(1):106-112.
    [19]魏晓林.有钻孔煤层瓦斯流动方程及其应用[J].煤炭学报,1988,13(1):85-96.
    [20]余楚新,鲜学福.煤层瓦斯流动理论及渗流控制方程的研究[J].重庆大学学报,1989,12(5):1-9.
    [21]孙培德.煤层瓦斯流动方程补正[J].煤田地质与勘探,1993,21(5):61-62.
    [22] Peide Sun. Coal gas dynamics and it applications. Scientia Geologica Sinica, 1994, 3(1): 66-72.
    [23] Peide Sun. Study on the mechanism of interaction for coal and methane gas. Journal of Coals Science & Engineering, 2001, 7(1): 58-63.
    [24]彼特罗祥.煤矿沼气涌出[M].宋世钊译.北京:煤炭工业出版社.1983
    [25]黄运飞,孙广忠.煤─瓦斯介质力学[M].北京:煤炭工业出版社,1993
    [26]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报,1987,(4):74-82.
    [27]罗新荣.煤层瓦斯运移物理模型与理论分析[J].中国矿业大学学报,1991,20(3):36-42.
    [28] Xinrong Luo, QixiangYu. Physical Simulation and Analysis of Methane Transport in Coal Seam. Journal of China University of Min & Tech., June 1994, 4(1): 24-31.
    [29]罗新荣.可压密煤层瓦斯运移方程与数值模拟研究[J].中国安全科学学报,1998,8(5):19-23.
    [30] L.N.Germanovich. Deformation of Nature Coals. Soviet Mining Science, 1983, (5): 377-381.
    [31]王佑安,朴春杰.用煤解吸瓦斯速度法井下测定煤层瓦斯含量的初步研究[J].煤矿安全,1981,(11).
    [32]王佑安,朴春杰.井下煤的解吸指标及其与煤层区域突出危险性的关系[J].煤矿安全,1982,(7) .
    [33]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986,11(3):62-70.
    [34]杨其銮.关于煤屑瓦斯扩散规律的试验研究[J].煤矿安全,1987,(2):9-16.
    [35]聂百胜,何学秋,王恩元.瓦斯气体在煤层中的扩散机理及模式[J].中国安全科学学报,2000,10(12):24-28.
    [36]聂百胜,何学秋,王恩元.瓦斯气体在煤孔隙中的扩散模式[J].矿业安全与环保,2000,27(5):13-16.
    [37]郭勇义,吴世跃.煤粒瓦斯扩散规律及扩散系数测定方法的探讨[J].山西矿业学院学报,1997,(1):16-19.
    [38]郭勇义,吴世跃.煤粒瓦斯扩散规律与突出预测指标的研究[J].太原理工大学学报,1998,29(2):138-142.
    [39] Snghfi.A.煤层瓦斯流动的计算机模拟及其在预测瓦斯涌出和抽放瓦斯中的应用[J].第22届国际采矿安全会议论文集.北京:煤炭工业出版社,1987.
    [40]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报,1987,12(4):74-82.
    [41]段三明,聂百胜.煤层瓦斯扩散-渗流规律的初步研究[J].太原理工大学学报,1998,29(4):14-18.
    [42]吴世跃.煤层瓦斯扩散渗流规律的初步探讨[J].山西矿业学院学报,1994,(3):259-263.
    [43]吴世跃,郭勇义.煤层气运移特征的研究[J].煤炭学报,1999,24(1):65-70.
    [44]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [45] Somerton W H. Effect of stress on permeability of coal[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr, 1975, 12(2): 151-158.
    [46] Gawuga J. Flow of gas through stressed carboniferous strata [D]. University of Nottingham. Ph.D. Thesis, 1979.
    [47] Khodot. V.V. Role of methane in the stress state of a coal seam[J]. Soviet Mining Scince, 1981.
    [48] Harpalani S. Gas flow through stressed coal [D]. Univ of California.Berkeley, Ph.D. thesis, 1985.
    [49] Harpalani S. & Mopherson, M.J. The effect of gas evacation on coal permeability tests peciments. Int.J.Rock.Meth.Min.Sci & Geomech.Abstr, 1975, 12(2): 151-158.
    [50] J.R.E.Enever, A.Henning. The Relationship Between Permeability and Effective Stress for Australian Coal and Its Implication with Respect to Coalbed Methane Exploration and Reservoir Modeling. Proceedings of the 1997 International Coalbed Methane Symposium, 1997: 13-22.
    [51]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿业学院学报,1986,15(3):67-72.
    [52]林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业学院学报,1987,16(1):21-28.
    [53]姚宇平,周世宁.含瓦斯煤的力学性质[J].中国矿业学院学报,1988,17(2):87-93.
    [54]许江,鲜学福.含瓦斯煤的力学特性的实验分析[J].重庆大学学报,1993,16(5):26-32.
    [55]靳钟铭,赵阳升,贺军,等.含瓦斯煤层力学特性的实验研究[J].岩石力学与工程学报,1991,10(3):271-280.
    [56]段康廉,张文,胡耀青.三维应力对煤体渗透性影响的研究[J].煤炭学报,1993,18(4):43-50.
    [57]赵阳升,胡耀青.孔隙瓦斯作用下煤体有效应力规律的实验研究[J].岩土工程学报,1995,17(3):26-31.
    [58]赵阳升,胡耀青,杨栋,等.三维应力下吸附作用对煤岩体气体渗流规律影响的实验研究[J].岩石力学与工程学报,1999,18(6):651-653.
    [59]何学秋,周世宁.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报,1990,19(2):1-9.
    [60]赵阳升.煤体-瓦斯耦合数学模型及数值解法[J].岩石力学与工程学报,1994,13(3):229-239.
    [61] Yangsheng Zhao, Zhongming Jin, Jun Sun. Mathematical for coupled solid deformation and methane flow in coal seams. Appl.Math.Modeling, 1994, 18(6): 328-333.
    [62]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [63]赵阳升,段康廉,胡耀青,等.块裂介质岩石流体力学研究新进展[J].辽宁工程技术大学学报,1999,18(5):459-462.
    [64]赵阳升,胡耀青,赵宝虎,等.块裂介质岩体变形与气体渗流的耦合数学模型及其应用[J].煤炭学报,2003,28(1):41-45.
    [65]章梦涛,潘一山,梁冰.煤岩流体力学[M] .北京:科学出版社,1995.
    [66]梁冰,章梦涛,王泳嘉.煤和瓦斯突出的固流耦合失稳理论[J].煤炭学报,1995,20(5):492-496.
    [67]梁冰,章梦涛,王泳嘉.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J].岩石力学与工程学报,1996,15(2):135-142.
    [68]梁冰,章梦涛.从煤和瓦斯的耦合作用及煤的失稳破坏看突出的机理[J].中国安全科学学报,1997,7(1):6-9.
    [69]丁继辉,麻玉鹏,赵国景,等.有限变形下的煤与瓦斯突出的固流两相介质耦合失稳理论[J].河北农业大学学报,1998,21(1):74-81.
    [70]丁继辉,麻玉鹏,赵国景,等.煤与瓦斯突出的固流两相介质耦合失稳理论及数值分析[J].工程力学,1999,16(4):47-53.
    [71]李树刚.综放开采围岩活动影响下瓦斯运移规律及其控制[学位论文].徐州:中国矿业大学,1998
    [72]李树刚,林海飞,成连华.综放开采支承压力与卸压瓦斯运移关系研究[J].岩石力学与工程学报,2004,23(19):88-91.
    [73]林海飞,李树刚,成连华.矿山压力变化的采场瓦斯涌出特征及其管理[J].西安科技学院学报,2004,24(1):15-18.
    [74]李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究[J].岩土工程学报,2001,23(1):68-70.
    [75]李树刚,钱鸣高,石平五.煤样全应力应变中的渗透系数-应变方程[J].煤田地质与勘探,2001,29(1):22-24.
    [76]王宏图,杜云贵,鲜学福,等.受地应力、地温和地电效应影响的煤层瓦斯渗流方程[J].重庆大学学报,2000,23(增刊):47-50.
    [77]刘保县,鲜学福,王宏图,等.交变电场对煤瓦斯渗流特性的影响实验[J].重庆大学学报,2000,23(增刊):41-43.
    [78]王宏图,杜云贵,鲜学福,等.地电场对煤中瓦斯渗流特性的影响[J].重庆大学学报,2000,23(增刊):22-24.
    [79]曹树刚,鲜学福.煤岩固-气耦合的流变力学分析[J].中国矿业大学学报,2001,30(4):362-365.
    [80]梁冰,刘建军,王锦山.非等温情况下煤和瓦斯固流耦合作用的研究[J].辽宁工程技术大学学报,1999,18(5):483-486.
    [81]梁冰,刘建军,范厚彬,等.非等温情况下煤层中瓦斯流动的数学模型及数值解法[J].岩石力学与工程学报,2000,19(1):1~5.
    [82]赵阳升,胡耀青,杨栋,等.气液二相流体裂缝渗流规律的模拟实验研究[J].岩石力学与工程学报,1999,18(3):354-356.
    [83]孙可明,梁冰,王锦山.煤层气开采中两相流阶段的流固耦合渗流[J].辽宁工程技术大学学报,2001,20(1):36-39.
    [84]孙可明,梁冰,朱月明.考虑解吸扩散过程的煤层气流固耦合渗流研究[J].辽宁工程技术大学学报,2001,20(4):548-549.
    [85]刘建军.煤层气热-流-固耦合渗流的数学模型[J].武汉工业学院学报,2002,(2):91-94.
    [86]骆祖江,陈艺南,付延玲.水气二相渗流耦合模型的全隐式联立求解[J].煤田地质与勘探,2001,(6).
    [87]林良俊,马凤山.煤层气产出过程中气-水两相流与煤岩变形耦合数学模型研究[J].水文地质工程地质,2001,(1):1-3.
    [88]防治煤与瓦斯突出细则[M].北京:煤炭工业出版社,1995:25-30.
    [89]付建华.煤矿瓦斯灾害防治理论研究与工程实践[M].徐州:中国矿业大学出版社,2005:12-46.
    [90]程远平,俞启香.煤层群煤与瓦斯安全高效共采体系及应用[J].中国矿业大学学报,2003,32(5):471-475.
    [91]程远平,俞启香等.煤与远程卸压瓦斯安全高效共采试验研究[J].中国矿业大学学报,2004,33(2):132-136.
    [92]程远平,俞启香等.上覆远程卸压岩体移动特性与瓦斯抽放技术研究[J].辽宁工程技术大学大学学报,2003,22(4):132-138.
    [93]俞启香,程远平等.高瓦斯特厚煤层煤与瓦斯卸压共采原理及实践[[J].中国矿业大学学报,2004,33(2):127-131.
    [94]程远平,周德永等.保护层工作面瓦斯涌出规律研究[[J].采矿与安全工程学报,2005,(1).
    [95]程远平.回采工作面采空区瓦斯涌出控制[J].矿井通风安全理论与技术[M],中国矿业大学出版社,1999.
    [96]石必明.远距离下保护层开采上覆煤层变形及透气性变化规律的研究[D].徐州:中国矿业大学,2004.
    [97]朱岩华.底板岩层采动破坏影响范围的分带研究[D].徐州:中国矿业大学,2004.
    [98] S.C.Blair, N.G.W.Cook, 1998, Analysis of compressive fracture in rock using statistical techniques: partⅠ. A non-linear rule-based model, Int. J. Rock Mech. Min. Sci., Vol.35, No.7, pp.837-848.
    [99] S.C.Blair, N.G.W.Cook, 1998, Analysis of compressive fracture in rock using statistical techniques: partⅡ.Effect of microscale heterogeneity on macroscopic deformation, Int. J. Roch Mech. Min. Sci., Vol. 35, No.7, pp.849-861.
    [100] Z.Liu, L.R.Myer & N.G.W.Cook, 1994, Numerical simulation of the effect of heterogeneities on macro-behavior of granular materials[C]. Computer methods and advances in geomechanics. Siriwardane & Zaman(eds), Balkema, Rotterdam, pp.611-616.
    [101]杨陆武.应用瓦斯地质单元法预测煤与瓦斯突出[J].中国地质灾害与防治学报,1997年第3期:21-26.
    [102]何继善,吕绍林.瓦斯突出地球物理研究[M].北京:煤炭工业出版社,1999.
    [103]刘建军,梁冰,章梦涛,等.煤和瓦斯突出过程中瓦斯作用机理的研究[J].中国安全科学学报,2000,10(3):63-66.
    [104]程五一,马平.用地质构造和煤体结构特性预测煤层突出危险[J].辽宁工程技术大学学报(自然科学版),1999,18(5):510-512.
    [105]王恩义.煤与瓦斯突出机理研究[J].焦作工学院学报,2004,23(6):419-422.
    [106]于不凡.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2005.
    [107]范云霞.浅析荥巩煤田煤层瓦斯地质特征[J].中州煤田,2006,143(5):28-29.
    [108]刁良勋.荥巩煤田与登封煤田二1煤层瓦斯地质特征对比研究[J].煤炭工程,2007(7):71-73.
    [109]李鸿昌.矿山压力的相似模拟试验.徐州:中国矿业大学出版社,1988
    [110]谢文兵,陈晓祥,郑百生.采矿工程问题数值模拟研究与分析[M].徐州:中国矿业大学出版社,2005.
    [111]于不凡.开采解放层的认识与实践[M].北京:煤炭工业出版社,1986.
    [112]郭勇义,何学秋,林柏泉.煤矿重大灾害防治战略研究与进展[M].徐州:中国矿业大学出版社, 2005.
    [113] Paterson S. Experimental deformation of rocks: the brittle field [M]. Berlin: Springer,1978
    [114] Zhang Jincai, Bai Mao, Roegiers J C, Wang Jianxue, Liu Tianquan. Experimental determination of stress-permeability relationship[A]. Paciffic Rock 2000, Girard Liebman, Breeds & Doe, Balkema, Rotterdam, 2000:817-822
    [115]韩宝平,冯启言等.全应力应变过程中碳酸盐岩渗透性研究[J].工程地质学报.2000, 8(2):127-128.
    [116]李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究[J].岩土工程学报.2001, 23(1):68-70.
    [117]姜振泉,季梁军.岩石全应力应变过程渗透性试验研究[J].岩土工程学报.2001, 23(2):153-156.
    [118]杨天鸿.岩石破裂过程渗透特性及其与应力耦合作用的研究[D].沈阳:东北大学博士学位论文,2001.
    [119]杨天鸿,唐春安,徐涛,芮勇勤.岩石破裂过程的渗流特性:理论、模型与应用[M].北京:科学出版社, 2004.
    [120]陈永强,郑小平,姚振汉.三维非均匀脆性材料破坏过程的数值模拟[J].力学学报,2002,34(3):351-359.
    [121] T.H.Yang, L.G.Tham, C. A. Tang, Influence of Heterogeneity of Mechanical Properties on Hydraulic Fracturing in Permeable Rocks[J], Rock Mach. Rock Eng. 2004, 37(4):251-275.
    [122] WANG Liang, Cheng Yuan-ping, LI Feng-rong, WANG Hai-feng, LIU Hai-bo. Fracture evolution and pressure relief gas drainage from distant protected coal seams under an extremely thick key stratum. [J].Journal of China University of Mining & Technology, 2008,18(2):182-186.
    [123] LIU Hong-yong, CHENG Yuan-ping, ZHOU Hong-xing, YU Qi-xiang. On the effect of the mining fissure in the super-remote protected seams to the pressure-relief gas drainage. [J].Proceeding of 2007 International Symposium On Coal Gas Control Technology, 2008:101-105.
    [124] DONG Gang-feng, LIAN You-hong. Gas control technique used for extremely soft coal seam with outburst risk.[J]. Proceeding of 2007 International Symposium On Coal Gas Control Technology, 2008:162-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700