用户名: 密码: 验证码:
复杂地质条件下石门及井筒揭煤突出危险性快速预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在分析国内外现有石门及井筒揭煤突出危险性预测方法的基础上,发现现有单项指标法和综合指标法存在通用性不强、相关性较差、准确性较差及由此造成意外事故和浪费防突资源、预测参数测定时间过长且易受复杂地质条件影响等问题。为解决以上问题,本文以球壳失稳机理为基础,深入分析了石门及井筒揭煤的影响因素及预测模型,得出了合理的突出危险性预测指标。
     煤与瓦斯突出的球壳失稳机理认为初始释放瓦斯膨胀能是煤体发生突出的唯一能源,可以作为石门及井筒揭煤突出危险性预测的指标。蒋承林教授根据46次突出模拟实验数据,采用Fisher判别分析法进行分析处理,证明采用初始释放瓦斯膨胀能和软煤厚度可以准确预测理想石门揭煤条件下的突出危险性,准确率可达到100%。如果单独仅采用初始释放瓦斯膨胀能指标,准确率也能达到90.9%~96.7%,这时发生弱突出及突出的临界指标为42.98 mJ/g和103.8 mJ/g。以此建立了理想石门揭煤突出预测模型,分析了理想石门揭煤条件下突出的影响因素,认为可以将理想石门揭煤模型应用于石门及井筒揭煤突出危险性快速预测。
     针对以上指标,详细阐述了初始释放瓦斯膨胀能实验测定方法,发现其测定主要受煤体破碎程度和瓦斯压力的影响,和瓦斯压力存在正比关系和破碎程度存在指数关系,但由于预测煤样均应是破碎程度最大的原始煤样,所以不再讨论其和初始释放瓦斯膨胀能的关系将突出危险预测的主要工作归结为现场瓦斯压力的测定。对瓦斯压力测定的影响因素进行了深入分析,发现人为因素是能否实现瓦斯压力快速准确测定的关键,通过数值解算及现场实验,找出了球向和径向流场卸压半径随时间扩展的规律,发现球向流量法在实现快速测定方面要明显优于径向流场法,平衡时间前者只有后者的10%左右,且排放时间越长,优势越明显。通过数值解算及实验发现,采用球向流量法时,无论透气性系数的大小,排空时间均在前30min内对平衡时间影响最大,达到52%~86%。采用球向流量法并在30min内完成封孔可以实现快速预测。
     对复杂地质条件下瓦斯压力的快速测定进行了深入探讨,提出了封堵钻孔水系的对策及措施,利用现场实际和实验室实验,证明了可以在水系小流量渗流时通过瓦斯压力曲线中压力平衡平台的方法分离出水气共存条件下煤层的瓦斯压力。
     根据复杂地质条件下瓦斯压力快速测定技术及初始释放瓦斯膨胀能指标,准确为现场预测了十余处石门及井筒,预测的结论与现场的实际突出情况完全吻合,准确率达到100%,弥补了《防突细则》中预测指标的漏洞。并给出了打钻排放后煤层失去突出危险性的最低排放率,为现场进行安全揭煤提供了依据,同时减少了抽放钻孔排放时间,实现了石门及井筒揭煤过程的安全快速掘进。
The paper analyzes several present coal outburst hazard prediction methods when uncovering coal in crosscut and shaft, and finds some problems existing in the normal predict methods including single indicator prediction and multi-indicator prediction, such as poor generality and relativity, low accuracy and so on. What is more severe are the underlying problems, resource wasting and even the accidents. In addition, the long time consumed for prediction methods and the influence from the complicate geology also affect the prediction. To solve these problems, based on the mechanism of loss of spherical shell stability, the author analyzes the influence factors to the uncovering coal in crosscut and shaft and sets up the prediction model, then gets the prediction indicators for the outburst hazard prediction.
     loss of spherical shell stability think that the expansion energy in initial released gas is the single energy resource to the coal outburst, so that it could be adopted as the prediction indicator. Professor Jiangchenglin employ the Fisher distinguish analysis method to analyze the results of 46 sets of simulation data, and prove that adopting the expansion energy in initial released gas and the thick of soft coal seam as the outburst prediction indicators to predict the outburst risk, the accuracy rate can be 100%; if the expansion energy in initial released gas adopted as the only indicator, the accuracy rate of prediction can from 90.9% to 96.7%,in case the outburst happen at that time, the critical indicator value is 42.98 mJ/g and 103.8 mJ/g. The paper set up the ideal outburst prediction model when uncovering coal in crosscut and shaft. The paper analyzes influencing factor of outburst under ideal model and thinks it can be used in outburst prediction when uncovering coal in crosscut and shaft.
     To the indicator mentioned, the author exposits the determination method of the expansion energy in initial released gas in detail, and finds out that the determination process is mainly affected by the gas pressure and crash situation of the coalbody, and the expansion energy in initial released gas is in direct ratio with the gas pressure. to sum up, the main outburst prediction indicator which is applyed practically is the measured gas pressure on the spot.
     the author find out that the human factor is the key point to realize the rapid and accurate measurement of the gas pressure. According to the numerical computation and experiments on the spot, the author get the expand law of spherical direction and radial direction flow field over time, and the method of radial direction flow is obviously better than the method of radial direction flow when using the rapid gas pressure measurements. The balance time of the former is no more than 10% of the latter, and with the advance of gas drainage time, the advantage becomes more and more obvious. According to the results of the numerical computation and experiments, when the method of radial direction flow is adopted, no matter what is the value of gas permeability coefficient, the maximum influence of emptying time to the balance time appears in 30 min, and the maximum value could be from 52% to 56%. To be concluded, using the method of radial direction flow to measure the gas press and accomplishing the drill sealing process in 30 min so as to rapid predict the gas outburst hazard is feasible.
     According to the detailed study on the rapid gas pressure measurement under complicate geology condition, borehole water sealing measurement has been put forward. Coalmine and lab experiment prove that gas pressure under gas and water co-exist can be determined by platform on the gas curve while water flux is small.
     Applying the rapid gas pressure measurement technology under complicated geological conditions and energy of initial releasing indicator to predict outburst risk of uncovering coal in crosscut and shaft more than 10 times. All the results are in accordance with the real situations, the accuracy of the new prediction method reaches 100%. The new prediction indicator avoid the disadvantages of predicted indicators recommended in Coal and gas outburst prevention and control rules. The theory gives the minim emission rate in order to make coal seam lose outburst risk with emission drill, decrease the emission time of drainage drill and achieve the rapidly safe tunneling process when uncovering coal in crosscut and shaft.
引文
[1]俞启香编著.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.2: 66。
    [2] A.T.艾鲁尼等编著.煤矿瓦斯动力现象的预测和预防[M].北京:煤炭工业出版社,1992.9: 142。
    [3]ИвановБМ.Геол.методылоисковираэведкиместоро.тверд.горюч.ископаемых[M]:Обзор,1988.4:1-70
    [4]张玉功,王魁军,范启炜.北票矿区煤与瓦斯突出预测预报的研究与应用[J].煤矿安全,1991.1: 17-22。
    [5]中华人民共和国煤炭工业部制定.防治煤与瓦斯突出细则[M].北京:煤炭工业出版社,1995。
    [6]于不凡.国内外煤和瓦斯突出日常预测研究综述[R].见:煤炭科学研究总院重庆分院编.煤与瓦斯突出预测资料汇编,1987
    [7]丰城矿务局,焦作矿业学院.煤与瓦斯突出点预测方法[J].见:科研鉴定资料,1984
    [8]范启炜.工作面钻孔瓦斯涌出初速度特征分析[D].抚顺,煤炭科学研究总院抚顺分院,1985
    [9]王克全.突出煤层钻孔瓦斯涌出特点研究[D].:重庆,煤炭科学研究总院重庆分院,1986
    [10]中国矿业大学.钻孔排出物预报煤和瓦斯突出机理[R].见:煤炭科学基金项目研究报告,1992
    [11]原中国统配煤矿总公司安全管理局,煤炭科学研究总院重庆分院编译.煤矿和页岩矿安全规程(1986年版)[M]附件:苏联煤、岩和瓦斯突出危险层安全开采细则(1989年版):1991
    [12]李建铭,煤与瓦斯突出防治技术手册[M],中国矿业大学出版社,2006:204-210
    [13]刘雪峰,程远平等.矿井通风安全管理计算方法与程序设计[M].徐州:中国矿业大学出版社,1991
    [14]王凯.钻孔法预测煤与瓦斯突出的研究[D].徐州,中国矿业大学,1997
    [15]余楚新,鲜学福,谭学术.煤层瓦斯流动理论及渗流控制方程的研究[J].重庆大学学报,1989,12(5):1–10
    [16]张广洋等.煤层瓦斯运移的数学模型[J].重庆大学学报,1994,17(4):53–57
    [17]梁运培.抽放巷道煤壁瓦斯渗流规律的研究[J].山西煤炭,2002,22(2):23–25
    [18]魏晓林.有钻孔煤层瓦斯流动方程及其应用[J].煤炭学报,1988(3):85–95
    [19]林海燕,袁修干,彭根明.抽放钻孔瓦斯流动解算及其软件设计[J].煤,1999,8(3):44–46
    [20]林柏泉,张仁贵.钻孔周围煤体中瓦斯流动的理论分析[J].煤炭工程师,1996(3):14–18
    [21]丁广骧.煤层瓦斯实用动力学方程及其有限元解法[J].中国矿业大学学报,1997,26(4):74–77
    [22]柏发松.煤层钻孔瓦斯流量的数值模拟.安徽理工大学学报(自然科学版),2004,24(2):9–12
    [23]余楚新.煤层瓦斯渗流有限元分析中的几个问题[J].重庆大学学报,1994,17(4):58–63
    [24]孙培德.煤层瓦斯动力学及其应用的研究[J].山西矿业学院学报,1989,7(2):126–134
    [25]孙培德.径向流场瓦斯压力分布[J].山东矿业学院学报,1989,8(4):33–39
    [26]孙培德.瓦斯动力学模型的研究[J].煤田地质与勘探,1993,21(1):33–38
    [27]王凯,俞启香,蒋承林.钻孔瓦斯动态涌出的数值模拟研究[J].煤炭学报,2001,26(3):279–284
    [28]王凯,俞启香,郭立稳.钻孔瓦斯动态涌出特征及其与突出危险的关系[J].中国矿业大学学报,1998,27(3):257–260
    [29]王晓东.渗流力学基础[M].石油工业出版社.2006, 4, 150
    [30] Aronofsky J S,Jenkins R. A Simplified Analysis of Unsteady Radial Gas Flow[M].Trans AIME.1954,201:149~154
    [31] Higgins R V,Leighton A J. A Computer Method of Calculating Two- Phase Flow in Any Irregularly Biunded Porous Media[J].JPT,1962(6):679~683
    [32] Wyckoff R D , Botset H G . The Flow of Gas-Liquid Mixtures Through Unconsolidated Sand[J].Physics 1936(7):325
    [33] Hurst W.Unsteady Flow of Fluid in Oil Reservoirs[J].Physics 1934(5):20~30
    [34] Theis C V.The Relationship Between the Lowering of Piezometric Surface and Rate and Duration of Discharge of Wells Using Ground-water Storage[M].Trans AGUⅡ1935:519
    [35]翟云芳.渗流力学[M].石油工业出版社.1999,p103
    [36] Peaceman D W.Interpretation of Well-Block Pressure in Numeracal Reservoir Simulation[J].SPEJ 1978(6):183-194
    [37] Stone H L.Estimating Three-Phase Relative Permeability and Residal Oil Data[J].JCPT 1973(12) 53-61
    [38] Thomas L K,Lumkin W B.Recheis G M,Reservoir Simulation of Variable Bubble-point problems in Reservoirs[J].SPEJ 1976(16) 10-16
    [39]周宏伟,谢和平,孔隙介质渗透率的重正化群预计[J],中国矿业大学学报,2002 29(3): 244-248
    [40] Skoczylas F,Henry JP. A study of intrinsic permeability to gas, Int. J. Rock Mech.Sci. Geomech. Abstr[J]., 1995, 32(2):171-179
    [41] Reid B., et al, High velocity gas flow effects in porous gas water system[J], SPE, 399,78
    [42]葛传鼎译,关于在孔隙介质中水驱气的机理[J],天然气勘探与开发,1985,2
    [43] Zhi Wang, Jan Feyen, Prediction of fingering in porous media, Water Resource Research[J], 1998, 34(9): 2183-2190
    [44]黄全华,李士伦,孙雷等,考虑多孔介质吸附影响的凝析油气渗流[J],天然气工业,2001,21(2):75-78
    [45] Avraam DG, Payatakes AC.Generalized relative permeability coefficients during steady-state two-phase flow in porous media[J], Transport Porous Media, 1995,20:135-168 [46) Avraam DC,Payatakes AC.Flow regimes and relative permeabilities during two-phase flow in porous media, Transport Porous Media[J], 1995(20)207-236
    [47]俞善炳等,含气多孔介质卸压层裂的间隔特征一突出的前兆[J],力学学报,1998 30(2):140-150
    [48]李铁军,李允,低渗透储层气体渗流数学模型及计算方法研究[J],天然气工业,2000, 20(5):70-72
    [49]阮敏,何秋轩,低渗透非达西渗流临界点及临界参数判别方法[J],西安石油学院学报,1999, 14(3):9-10
    [50]宋付权,刘慈群,李凡华,低渗透介质含启动压力梯度一维瞬时压力分析[J],应用数学与力学,1999, 20(1):25-32
    [51]吴景春,袁满,张继成等,大庆东部低渗透油藏单相流体低速非达西渗流特征[J],大庆石油学院学报,1999, 23(2):82-84
    [52]肖鲁川,甄力,郑岩,特低渗透储层非达西渗流特征研究[M],大庆石油地质与开发,2000, 19(5):27-30 [53」姚约东,葛家理,低渗透油层非达西渗流规律的研究[J],新疆石油地质,2000,21(3) [54」陈代询,王章瑞,致密介质中低速渗流气体的非达西现象[J],重庆大学学报,2000,23(supp.) [55」陈永敏,周娟,刘文香,刘学伟,低速非达西渗流现象的实验验证[J],重庆大学学报,2000, 23 (supp.)
    [56] Norhan Abd. Rahman, Roland W. Lewis. Finite element modeling of multiphase immiscible flow in deforming porous media for subsurface system[J]s, Computers and geotechnics, 1999, 24:41-63
    [57]李铁军,李允,低渗透储层气体渗流数学模型及计算方法研究[J],天然气工业,2000 20(5) ,70-72
    [58] Jiang Li, Donald Helm.Viscous drag, driving forces, and their reduction to Darcy's law[J], Water Resource Research, 1998, 34(7): 1675-1684
    [59]樊栓保.国内外煤与瓦斯突出预测的新方法[J].矿山安全与环保. 2000. 17~19
    [60]于不凡.煤和瓦斯突出机理[M].北京:煤炭工业出版社,1985
    [61]蒋承林,俞启香.煤与瓦斯突出的球壳失稳机理及防治技术[M].徐州:中国矿业大学出版社,1998
    [62]华安增.矿山岩石力学基础[M].北京:煤炭工业出版社,1980.77:7-12
    [63]周维远.高等岩石力学[M].北京:水利电力出版社,1990.13,429
    [64]中国航空研究院.应力强度因子手册[M].北京:科学出版社,1981
    [65]李贺.岩石断裂力学[M].重庆:重庆大学出版社,1988
    [66] Roark R J,Young W C.应力应变公式[M].汪一麟,汪一骏译.北京:中国建筑工业出版社,1985
    [67] [苏]霍多特B.B.煤与瓦斯突出[M].宋士钊,王佑安译.北京:中国工业出版社,1966:32~33,242,95~96
    [68]蒋承林.煤与瓦斯突出的预测模型及预测指标[J].中国矿业大学学报,1998(12):373~376
    [69]张连玉等.爆炸气体动力学基础[M].北京:中国工业出版社,1987:289~306
    [70]贾月梅.流体力学[M].北京:国防工业出版社,2006:102~106
    [71]刘鹤年.流体力学[M].北京:中国建筑工业出版社,2004:97~98
    [72]张鸿雁,张志政,王元.流体力学[M].北京:科学出版社,2004:98
    [73]庞麓鸣等.工程热力学[M].北京:人民教育出版社,1980:82~86
    [74]蒋承林,陈松立,陈燕云等.煤样中的初始释放瓦斯膨胀能的测定[J].岩石力学与工程学报,1996,(4):395~400
    [75]伍荣林,王振宇.风硐设计原理[M].北京:北京航空学院出版社,1985:52
    [76]王孝华,陆鑫盛.气动原件[M].北京:机械工业出版社,1991:18~20
    [77]杨金和.煤炭化验手册[M].北京:煤炭工业出版社,1998:220~223
    [78]杨崇瑞.高等数学[M]。上海:上海交通大学出版社,1998:176~178
    [79]周世宁,孙辑正,煤层瓦斯流动理论及其应用[R],北京矿业学院科学文选,1963,采矿卷-2:33~36。,
    [80]何书建,张仁贵,王凯等新型封孔技术在煤层瓦斯压力测定中的应用[J],煤炭科学技术, 2003,31 (10):33~35。
    [81]余楚新,鲜学福,谭学术.煤层瓦斯流动理论及渗流控制方程的研究[J].重庆大学学报,1989,12(5):1~10
    [82]孙培德,鲜学福.煤层瓦斯渗流力学的研究进展[J].焦作工学院学报(自然科学版),2001,20(3):161–167
    [83]周世宁.瓦斯在煤层中流动的机理[J].煤炭学报,1990,15(1):15~24
    [84]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986(3):87~93
    [85]焦作矿务局科研所,焦作矿务局九里山矿[R].焦作矿区矿井瓦斯综合治理研究报告,1990:89~93
    [86]宋元明.钻孔排出物预测预报煤和瓦斯突出的试验研究[D].徐州,中国矿业大学,1988:92
    [87]В.В.霍多特.煤和瓦斯突出[M].宋世钊,王佑安译.北京:中国工业出版社,1966.88~94:188,274~275.
    [88]于不凡.煤和瓦斯突出机理[M].北京:煤炭工业出版社,1985
    [89]洪伟,吴承祯.试验设计与分析—原理、操作、案例[M].北京:中国林业出版社,2004:67~79
    [90]蒋承林.煤层透气性系数测定方法的研究[D].北京:中国矿业学院北京研究生部,1985:81~82
    [91]屠锡根,马丕梁.阳泉低透气性瓦斯抽放参数计算[C].第22届国际采矿安全会议论文集,煤炭工业出版社,1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700