用户名: 密码: 验证码:
采场底板断层活化及突水力学机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿井突水灾害预测与防治一直是我国煤矿安全生产的重大研究课题,底板断层突水是煤矿突水事故的主要形式,采动引起底板断层活化、进而与采场底板采动裂隙形成导水通道,是引发矿井突水事故的重要原因。本文运用理论分析、实验测试、数值模拟和现场实践等手段,系统研究了采动引起底板断层活化及突水的力学机理,取得了如下具有创新性的成果:
     (1)利用专用的裂隙岩石和破碎岩石渗透性测试系统,测定了断层带围岩的渗透特性,结果表明:峰后破碎岩石和原位破碎岩石的渗透系数较一般裂隙岩石大1~3个量级;轴压和围压对破碎岩样的渗透性均有较大程度的抑制作用,使其渗透系数减小。研究成果对揭示断层带活化及突水机理具有重要作用。
     (2)针对采动引起底板断层活化及突水的力学特征,建立了采场底板活化机理分析的力学模型,得到了断层围岩的应力场分布规律,给出了底板断层活化的剪应力判据,分析得到了采深、断层倾角、断层落差、采场推进方向、工作面支承压力的集中程度等因素对底板断层活化的影响规律。
     (3)应用控制体积法,建立了断层带裂隙内水流的动力学控制方程,分析给出了裂隙内水压的分布规律。在此基础上,应用断裂力学理论研究了含孔隙水压作用断层带裂隙的扩展特征,给出了相应的裂隙扩展判据。研究得到了拉剪复合型裂隙、压剪复合型裂隙的有效应力强度因子随裂隙水压的变化规律。
     (4)应用数值模拟方法,研究了采动影响下底板断层活化及渗流场特征,得到了断层活化范围和渗流速度随断层倾角、断层落差、承压水水压的变化规律,比较了正断层与逆断层两种条件下底板断层活化与渗流特征的异同,初步给出了含断层带压开采情况下防水煤柱的确定方法。
     研究成果成功地用于某矿区含断层工作面突水危险性预测与防治实践,取得了显著的社会和经济效益,也为类似工程条件下矿井突水防治提供参考。
     该论文有图119幅,表26个,参考文献177篇。
The prediction and prevention of water inrush accidents in coal mine has always been one significant subject of safe mining production in china, in which water inrush from faults in floor is one main style. In the process of mining, faults in floor are likely to be activated and link to mining-induced fissures to form water channel, which is one important reason that induces many water inrush accidents in coal mines. In this thesis, different study methods including theoretical analysis, experimental test, numerical simulation and field practice are applied to systematically research the mechanical mechanism of water-inrush with fault activated by mining in floor, and obtain the following innovational results:
     The permeability property of rock around fault zone is measured by using permeability measurement system for rocks with fissures and broken rocks, which indicates that: compared with common rock with fissures, the permeability of post-peak borken rock and in situ can reach up to 10 to 1000 times of that; the premeability of broken samples is greatly controlled by axial and surrounding pressures. The study results can play an important role in revealing mechanism of water-inrush induced by fault activation.
     According to the mechanical characteristics of water inrush form faults activated by mining, mechanical model on mechanism analysis of fault activation in mining floor is built, obtaining stress field distribution rule of rock around fault, giving out shear stress criterion for falut activation in floor, analyzing the effect of factors, such as mining deepth, fault dip, fault throw, advance direction, concentration degree of supporting force in working face, on rule of fault activation in floor.
     Control volume method is applied to build dynamical control equation for water flow in fissures of fault zone, analyzing and presenting the distribution rule of water pressure in fissures; based on this, the propagation characteristics of fissures under the effect of pore pressure in fault zone is studied by using fracture mechanics theory, and give the corresponding criterion for fissure propagation; getting the change rule for effective stress strength of tension-shear compound fissures, compaction-shear compound fissures along with fissure water pressure.
     Numerical simulation method is also applied to study fault activation in mining floor and characteristics of seepage field, obtaining scope of fault activation as well as change rule for seepage velocity along with fault dip, fault throw, confined water pressure, comparing the difference and similarity on falut activation and seepage characteristics under the two different conditions of normal fault and reverse one, and primarily finding the determination method for water-proof coal pillar under the situation of mining floor with fault above confined water.
     The research results have been successfully applied in the water inrush prediction and prevention practice of working face with fault in a certain mining area, and created significant social and economic value, which can provide reference for the prevention of water inrush in mining area with the similar engineering condition.
     There are 119 figures, 26 tables and 177 references in this thesis.
引文
[1]王作宇,刘鸿泉.承压水上采煤[M].北京:煤炭工业出版社, 1993.
    [2]刘志军.承压水上采煤断层失稳突水的研究[D].太原:太原理工大学, 2004.
    [3]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社, 2004.
    [4] Tiwary, R. K. & Dhar, B. B. Environmental Pollution from coal Mining Activities in Damodar River Basin[J]. India.-Mine Water and the Environment, 1994, 13: 1-9.
    [5] Cathy M. lenter, Louis M. McDonald, J1, Jeffrey G., Skousen, Paul F. Ziemkiewicz. The Effects of Sulfate on the Physical and Chemical Properties of Actively Treated Acid Mine Drainage Floc[J]. Mine Water and the Environment, 2002, 21: 114-120.
    [6] J. G. Annandale, N.Z. Jovanovic, P. D. Tanner, N. Benade, H. M. Du Plessi. The Sustainability of Irrigation with Gypsiferous Mine Water and Implications for the Mining Industry in south Africa[J]. Mine water and the Environment, 2002, 21 (2): 81-90.
    [7] Wisotzky, F. Prevention of Acidic Groundwater in Lignite Overburden Dumps by the addition of Alkaline Substances: Pilot-scale field Experiments[J]. Mine Water and the Environment, 2001, 20 (3): 122-128.
    [8] Wang, J.–A., Park, H. D. Coal mining above a confined aquifer[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40 (4): 537-551.
    [9] B.H.G.布雷斯, E.T.布朗.冯树仁,等译.地下采矿岩石力学[M].北京:煤炭工业出版社, 1990.
    [10]郭惟嘉,等.底板突水系数概念及其应用[J].河北煤炭, 1989, 2.
    [11]淮北矿务局扬庄矿.Ⅱ633工作面底板原位测试及其突水可能性预测[M].煤科总院西安分院, 1998.
    [12]李白英.预防矿井底板突水的“下三带”理论及其发展与应用[J].山东科技大学学报, 1999, 18 (4) : 11-18.
    [13]李白英,预防采掘工作面底板突水的理论与实践[C].第22届国际采矿安全会议论文集.北京:煤炭工业出版社, 1987, 677-685.
    [14]刘天泉.“三下一上”采煤技术的现状及其展望[J].煤炭科学技术, 1995, 23 (1): 5-8.
    [15]李加祥.煤层底板“下三带”理论在底板突水中的应用[J].河北煤炭, 1990, 4.
    [16]宋景义,王成绪,等.论承压水在岩体裂隙中的静力学效应[C].煤科总院西安分院文集(第五集), 1991.
    [17]王作宇.底板零位破坏带最大深度的分析计算[J].煤炭科学技术, 1992, (2): 1-8.
    [18]王作宇,刘鸿泉,王培彝,等.承压水上采煤学科理论与实践[J].煤炭学报, 1994, 19 (1): 40-48.
    [19]王作宇,等.底板零位破坏带最大深度的分析计算[C].全国矿井水文工程地质学术交流会论文集,北京:地震出版社, 1986.
    [20]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社, 1997, 56-72.
    [21]张金才.煤层底板突水预测的理论判据及其应用[J].力学与实践, 1990 (2): 43-46.
    [22]张金才.煤层底板突水预测的理论与实践[J].煤田地质与勘探, 1989, (1): 38-41.
    [23]张金才.煤层底板的采动影响特征[M].北京:中国展望出版社, 1990.
    [24]张金才,刘天泉.论煤层底板采动裂隙带的深度及分布特征[J].煤炭学报, 1990, 15 (2) : 46-55.
    [25]钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社, 2003.
    [26]许学汉.煤矿突水预测预报研究[M].地质出版社, 1992.
    [27]潘岳,谢金玉,顾善发.非均匀围压下矿井断层冲击地压的突变理论分析[J].岩石力学与工程, 2001, 20 (3): 310-314.
    [28]潘岳,刘英,顾善发.矿井断层冲击地压的折迭突变模型[J].岩石力学与工程, 2001, 20 (1): 43-48.
    [29]陈忠辉,唐春安,傅宇方.岩石失稳破裂的变形突跳研究[J].工程地质学报, 1997, 5 (2): 143-149.
    [30]邵爱军,等.煤矿地下水与底板突水[M].北京:地震出版社, 2001.
    [31]王连国,宋杨.煤层底板突水突变模型[J].工程地质学报, 2000, 8 (2): 160-163.
    [32]靳德武,王延福,马培智.煤层底板突水的动力学分析[J]. 1997, 17 (4): 354-356.
    [33]朱德仁.岩石工程破坏准则[J].煤炭学报, 1994, 19 (1) : 15-20.
    [34]王成绪.底板突水的数值计算方法研究[J].煤田地质与勘探, 1997, 25(增刊): 45-47.
    [35]高延法,娄华君,牛学良,等.底板突水规律与突水优势面[M].徐州:中国矿业大学出版社, 1999.
    [36]魏久传.煤层底板岩体断裂损伤与底板突水机理研究[D].青岛:山东科技大学, 2000.
    [37]汪明武,金菊良,李丽.煤矿底板突水危险性投影寻踪综合评价模型[J].煤炭学报, 2002, (5).
    [38]冯利军.基于Rough集理论的矿井突水规则获取[J].煤田地质与勘探, 2003, 31 (1): 38-40.
    [39]施龙青,尹增德,刘永法.煤矿底板损伤突水模型[J].焦作工学院学报, 1998, 17 (6) : 403-405.
    [40]肖洪天,李白英,周维垣.煤层底板的损伤稳定分析[J].中国地质灾害与防治学报, 1999, 10 (2) : 33-39.
    [41]张文泉,刘伟韬,王振安.煤矿底板突水灾害地下三维空间分布特征[J].中国地质灾害与防治学报, 1997, 8 (1) : 39-45.
    [42]张文泉,刘伟韬,张红日,等.煤层底板岩层阻水能力及其影响因素的研究[J].岩土力学, 1998, 19 (4) : 31-35.
    [43]张希诚,施龙青,季良军.曹庄井田深部防治水工作研究[J].焦作工学院学报, 1998, 17 (6) : 438-441.
    [44]卜昌森,张希诚.综合水文地质勘探在煤矿岩溶水害防治中的应用[J].煤炭科学术, 2001, 29 (3) : 32-34.
    [45]胡宽,曹玉清.采掘工作面底板突水和防治原则的基本理论研究[J].华北地质矿产杂志, 1997, 12 (3) : 203-225.
    [46]杨善安.采场底板断层突水及其防治方法[J].煤炭学报, 1994, 19 (6): 620-625.
    [47]邱秀梅,王连国.断层采动型突水自组织临界特性研究[J].山东科技大学学报(自然科学版), 2003, 21 (1): 59-61.
    [48]谭志祥.断层突水机制的力学浅析[J].江苏煤炭, 1998, (3): 16-18.
    [49]李晓昭,罗国煌.地下工程突水的富水优势断裂[J].中国地质灾害与防治学报, 2003, 14 (1) : 36-41.
    [50]李晓昭,张国永,罗国煌.地下工程中由控稳到控水的断裂屏障机制[J].岩土力学, 2003, 24 (2) : 220-224.
    [51]白峰青,姜兴阁,蒋勤明.断层防水煤柱设计的可靠度方法[J].辽宁工程技术大学学报, 2000, 19 (4) : 356-359.
    [52]营志杰.煤层渗透性变化规律在防水煤柱上的应用[J].江苏煤炭, 1998, 1: 31-32.
    [53]施龙青,曲有刚,徐望国.采场底板断层突水判别方法[J].矿上压力与顶板管理, 2000, 2: 49-52.
    [54]卜昌森.矿压作用下地质构造对底板突水的影响[J].山东煤炭科技, 1996, 1: 47-50.
    [55]杨映涛,李抗抗.用物理相似模拟技术研究煤层底板突水机理[J].煤田地质与勘探, 1997, 25 (增刊): 33-36.
    [56]刘燕学.峰峰煤田煤层底板强度及断裂构造控水作用[J].河北煤炭, 1998, 3: 19-20.
    [57]杨新安,程军.峰峰矿区矿井突水分类及发生机理研究[J].地质灾害与环境保护, 1999, 10 (2) : 24-36.
    [58]武强,刘金韬,钟亚平,等.开滦赵各庄矿断裂滞后突水数值仿真模拟[J].煤炭学报, 2002, 27 (5) : 511-516.
    [59]杜文堂.断层防水煤柱可靠度分析[J].煤田地质与勘探, 2001, 29 (1): 34-36.
    [60]郑少河,朱维申,王书法.承压水上采煤的固流耦合问题研究[J].岩石力学与工程学报, 2000, 19 (4) : 421-424.
    [61]周钢,李世平,张晓龙.微山湖下断层煤柱留设与开采技术的模拟试验[J].煤炭科学技术, 1997, 25 (5): 13-16.
    [62]周瑞光,成彬芳,叶贵钧,等.断层破碎带突水的时效特性研究[J].工程地质学报, 2000, 8 (4): 412-415.
    [63] P.Habib. The Malpasset Dam Failure[J]. Engineering Geology. 1987, 24: 331-338.
    [64] Snow, D.T. A parallel plate model of fractured permeable media[D]. PH.D, Thesis, Univ, Calif. Berkeley, 1965.
    [65] Iwai, K.. Fundamental studies of fluid flow through a single fracture[D]. PH.D. thesis, University of California, Berkeley, 1976.
    [66] Jones, F. O. A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks[J]. Journal of Petroleum Technology, 1975, 1: 21-27.
    [67] Romm, E.S. Flow characteristics of fractured rocks[J]. Nedra, Moscow, 1966.
    [68] Cook N. G. W. Natural joints in rocks: mechanical, hydraulic and seismic behaviour and properties under normal stress[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1992, 29 (3): 198-223.
    [69] Maini Y. N. T. In situ hydraulic parameters in jointed rock - their measurement and interpretation[D]. PHD thesis, University of London (Imperial College), UK, 1971.
    [70] Tsang Y. W., Witherspoon P. A. Hydromechanical behaviour of a deformable rock fracture subject to normal stress[J]. Journal of Geophysics Research, 1981, 86: 9287-9298.
    [71] Wei L. L. Numerical studies of the hydro-mechanical behaviour of jointed rocks[D]. PHD thesis, Imperial College, University of London, UK, 1992.
    [72] Louis C., Maini Y.NT.. Determination of in situ hydraulic parameters in jointed rock[J]. Rroc. 2nd Congr. ISRM, 1970, 1:235-245.
    [73] Louis C.. Introduction a l'hydraulique desroches[J]. Orleans, Bureau Recherches Geologique Miniers, 1974.
    [74] K.Pruess, B.Faybishenko, G.S.Bodvarsson. Alternative concepts and approaches for modeling flow and transport in thick unsaturated zones of fractured rock[J]. Journal of Contaminant Hydrology , 1999, 38: 281-322.
    [75] Kelsall, P.C.Kesall, J.B.Cass, C.R.Chabannes. Evaluation of excavation-induced changes in rock permeability[J]. Int. J. Rock Mech. Min. Sci. &Geomech. 1984, 21 (3): 123-135.
    [76] Oda.M.. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses[J]. Water research, 1986, 13 (22): 1845-1856.
    [77] Erichsen,C.. Gekoppctlte Spannungs- Sickerstromungsberechnungcn von Bauwetken in kluftigem fels unter Berucksichtigung dcs Nichtilinearcn Spannung-Sverschungsverhaltens von Trennflachen[J]. Verffentlichungen dcs Institutes of Grundbau, Bodcnmechanik, Felsmechanik and Verkchswasscrbau der RWTH Aachen, 1987.
    [78] Jakubick, A. T. and Franz, T.,“Vacuum Testing of The Permeability of The Excavation Damaged Zone[J]. Rock Mechanics and Rock Engineering, 1993, 26 (2): 165-182.
    [79] L.J. Pyrak-Nolte, J.P. Morris. Single fractures under normal stress: The relation between fracture specific stiffness and fluid flow[J]. International Journal of Rock Mechanics and Mining Sciences , 2000, 37: 45-262.
    [80] Agust Gudmundsson. Fracture dimensions, displacements and uid transport[J]. Journal of Structural Geology, 2000, 22: 1221-1231.
    [81] B.Indraratna, P.G.Ranjith,,J.R.Price. Two phase(air and water) flow through rock joins: analytical and experimental study[J]. Journal of Geotechnical and geoenvironmental engineering, 2003, 129 (10): 918-928.
    [82]刘继山.单裂隙受正压力作用时的渗流公式[J].水文地质与工程地质, 1987 (2): 32-33.
    [83]刘继山.结构面力学参数与水力参数耦合关系及其应用[J].水文地质与工程地质, 1988 (2): 7-12.
    [84]郭雪莽.岩体的变形、稳定和渗流及其相互作用研究[D].大连:大连理工大学, 1990.
    [85]仵彦卿.裂隙岩体应力与渗流关系研究[J].水文地质工程地质, 1995, 12 (2): 30-35.
    [86]窦铁生,陶振宇.裂隙岩体水力特性的研究[J].武汉水利电力大学学报, 1995, 28 (2): 132-136.
    [87]陶振宇,窦铁生.关于岩石水力模型[J].力学进展, 1994, 24 (3): 409-417.
    [88]周瑞光,成彬芳.水岩相互作用下金川露天矿F1断层泥破坏特征[J].工程勘察, 1996, 3: 26-29.
    [89]耿克勤,刘光廷,陈兴华.节理岩体的渗透系数与应变、应力的关系[J].清华大学学报(自然科学版), 1996, 36 (1): 107-112.
    [90]耿克勤,陈风翔,等.岩体裂隙渗流水力特性的实验研究[J].清华大学学报(自然科学版), 1996, 36 (1): 102-106.
    [91]郑少河,赵阳升.三维应力作用下天然裂隙渗流规律的实验研究[J].岩石力学与工程学报, 1999, 18 (2): 133-136.
    [92]赵阳升,杨栋,郑少河,等.三维应力作用下岩石裂缝水渗流物性规律的实验研究[J].中国科学(E辑), 1999, 2: 82-86.
    [93]赵阳升,段康廉,胡耀青,等.块裂介质岩石流体力学研究新进展[J].辽宁工程技术大学学报(自然科学版),1999, 18 (5): 459-462.
    [94]刘才华,陈从新,付少兰.二维应力作用下岩石单裂隙渗流规律的实验研究[J].岩石力学与工程学报, 2002, 21 (8): 1194-1198.
    [95]彭苏萍,孟召平,王虎,等.不同围压下砂岩孔渗规律试验研究[J].岩石力学与工程学报, 2003, 22 (5): 742-746.
    [96]吕明海.采动地层水资源流失机理研究[D].阜新:辽宁工程技术大学, 2004.
    [97]包太.岩体渗流的理论模型及其渗流参数确定[D].重庆:重庆大学, 2005.
    [98] John A.Franklin and Maurice B.Dusseault. Rock Engineering Application[J]. Printed and bound by R.R.Donnelley & Sons Company, 1991.
    [99]王来贵,刘向峰,吕明海.大面积采动地层水系调整的数学模型[J].辽宁工程技术大学学报, 2003, 22 (5): 583-584.
    [100]王恩志,等.裂隙网络及地下水网络流数值方法研究[J].勘察科学技术, 1991, (4): 12-16.
    [101] Wittke, W., Louis, Zur, C. Berechnung des einfluses der Bergwasser-str?mung auf die Standsicherheit von B?schungen und Bauwerken in zer kluftetem Fels, proc.Intl[J]. Cong. ISRM., 1966.
    [102] Witherspoon, P.A., Wilson, C, R. Steady state flow in rigid networks of fracture[J]. Water Resources Research, 1974, (2): 328-339.
    [103]陈洪凯.三峡工程永久船闸岩体渗流与排水机理研究[D].重庆:重庆建筑大学, 1996.
    [104] Lomize G.. Fluid flow in fissured formation. (In Russian)[J]. In Louis, 1969.
    [105] Sun N.Z. Jeng M C,Yeh W W-G..A proposed geological parameterization method for parameter identitication in three dimensional groundwater modeling[J].Submitted to WaterResour, 1994.
    [106] Nick Barton, Eda F. de Quadros. Joint Aperture And Roughness In The Prediction Of Flow And Groutability Of Rock Masses[J]. Int. J. Rock Mech. & Min. Sci, 1997, 34:3-4.
    [107] Long J.C.S, Gilmour P. and Witherspoon P.A. A Model For Steady Fluid In Random Three Dimensional Networks Of Disc-Shaped Fractures[J]. Water Resource Research, 1985, 21 (8): 1105-1115.
    [108]万力,李定方,李吉庆.三维渗流的多边形单元渗流模型[J].水利水运科学研究, 1993, 4: 347-352.
    [109]毛昶熙,陈平,等.裂隙岩体渗流计算方法研究[J].岩土工程学报, 1991, 13 (2): 1-10.
    [110]王媛,速宝玉,徐志英.裂隙岩体渗流模型综述[J].水科学进展, 1996, 7 (3): 276-282.
    [111]傅志安,凤家骥.混凝土面板堆石坝[M].武汉:华中理工大学出版社, 1993.
    [112] Stephenson D.堆石工程水力计算[M].北京:海洋出版社, 1984.
    [113] Ahmed N and Sunada DK. Nonlinear flow in porous media. Proc. ASCE[J]. Hydr. Div, 1969:1847-1857.
    [114] Cedergren HR. Seepage, Drainage and Flow Nets[J]. J. Wiley & Sons, NY, 1977: 534-535.
    [115] Soni, JP, Islam N and Basak P. An experimental evaluation of non-Darcian flow in porous media[J]. J. Hydrol., 1978, 38: 231-241.
    [116]刘杰.土的渗透稳定与渗流控制[M].北京:水利电力出版社, 1992.
    [117] Sherard JL, Dunnigan LP and Talbot JR. Basic properties of sand and gravel filters[J]. Geotechnical Engineering, 1984, 110 (6).
    [118]刘杰.无粘性土的孔隙直径及渗流特性[C].水利水电科学研究论文集,北京:水利出版社, 1982.
    [119] Li BJ, Garga VK and Davies MH. Relationships for non-Darcy flow in rockfill[J]. Journal of Hydraulic Engineering, 1998, 124: 206-211.
    [120] Hansen D, Garga, VK and Townsend DR. Selection and application of a one-dimensional non-Darcy flow equation for two-dimensional flow through rockfill embankments[J]. Canadian Geotechnical Journal, 1995, 32: 223-232.
    [121] Martins R. Turbulent seepage flow through rockfill structures[J]. International Water Power and Dam Construction, 1990, 42: 41-45.
    [122] Jiang NQ, Hirschi MC, Cooke RAC, et al. Hydraulic performance of rockfill[J]. American Society of Agricultural Engineers, 1997(2): 145-166.
    [123] Pradip KGN and Venkataraman P. Non-Darcy converging flow through coarse granular media[J]. Journal of the Institution of Engineers (India), Civil Engineering Division, 1995, 76: 6-11.
    [124] Panthulu TV, Krishnaiah C and Shirke JM. Detection of seepage paths in earth dams using self-potential and electrical resistivity methods[J]. Engineering Geology, 2001, 59: 281-295.
    [125]刘卫群.破碎岩体渗流理论及其应用研究[D].徐州:中国矿业大学, 2002.
    [126]李顺才.破碎岩体非Darcy渗流的非线性动力学研究[D].徐州:中国矿业大学, 2006.
    [127]李世平.岩石力学简明教程[M].北京:煤炭工业出版社, 1996.
    [128] Wang Lian-Guo, Miao Xie-Xing. Numerical Simulation of Coal Floor Fault Activation Influenced by Mining[J]. Journal of China University of Mining and Technology, 2006, 16 (4): 385-388.
    [129]于广明,谢和平,杨伦,等.采动断层活化分形界面效应的数值模拟研究[J].煤炭学报, 1998, 23 (4): 396-400.
    [130]赵海军,马凤山,李国庆,等.开挖引起断层活化对井巷围岩的变形破坏[J].金属矿山, 2008, (6): 9-12.
    [131]胡戈.综放开采断层活化导水机理研究[D],徐州:中国矿业大学, 2008.
    [132]冯恩杰,付民强.东滩矿断层活化对3煤顶板突水的影响[J].煤田地质与勘探, 2004, (4).
    [133]周笑绿,付民强,赖映星.综放工作面顶板突水与断层活化的关系[J].煤矿安全, 2005, 36 (1): 26-27.
    [134]于军杰,张彦宾,李德海.断层活化对地表移动与变形的分析[J].煤矿现代化, 2008, (3): 39-40.
    [135]纪洪广,史明霞.频繁矿震作用下断层活化机理及其危害评价[J].中国矿业, 2005, 14 (3): 37-41.
    [136]施龙青,韩进.底板突水机理及预测预报[M].徐州:中国矿业大学出版社, 2004.
    [137]孙文斌.断层对底板突水的影响作用研究[D].青岛:山东科技大学, 2006.
    [138]尹会永.潘西煤矿煤层底板突水机理及预测预报研究[D].青岛:山东科技大学, 2005.
    [139]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社, 2003.
    [140]徐芝纶.弹性力学[M].北京:高等教育出版社, 1990.
    [141]李晓昭,罗国煜,陈忠胜.地下工程突水的断裂变形活化导水机制[J].岩土工程学报,2002, 24 (6): 695-700.
    [142]施龙青,曲有刚,徐望国.采场底板断层突水判别方法[J].矿上压力与顶板管理, 2000, 2: 49-52.
    [143]任长吉,黄涛.裂隙岩体渗流场与应力场耦合数学模型的研究[J].武汉大学学报(工学版), 2004, 37 (2): 9-12.
    [144]柴军瑞,件彦卿.作用在岩体裂隙网络中的渗透力分析[J].工程地质学报, 2001, 9 (1): 24-27.
    [145] Bruhwiler E.SaoumaV E.Water fracture interaction in concrete-PartI:Fracture Properties[J]. ACI Materials Journal, 1995, 92 (3): 296-303.
    [146]谢坤.高压水作用下岩体水力劈裂的无单元法模拟[D].杭州:浙江大学, 2007.
    [147]李宗利.岩体水力劈裂机理研究及其在地下洞室围岩稳定分析中应用[D].南京:河海大学, 2005.
    [148] ReneTinwai, Lotfi Guizani. Formulation of hydrodynamic pressure in cracks due to earthquakes in concrete dams[J]. Earthquake Engineering and Structural Dynamics, 1994, 23(7): 699-715.
    [149]张也影.流体力学[M].北京:高等教育出版社, 1999, 355-359.
    [150]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社, 1998, 62-63.
    [151]吴持恭.水力学(上册)[M].北京:高等教育出版社, 1979, 160-162,117.
    [152]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社, 1994, 125-143.
    [153]黄克智译.脆性断裂力学[M].北京:科学出版社, 1990.
    [154] Papanastasian P. An efficient algorithm of propagating fluid-driven fractures[J]. ComPuattional Mechnaics, 1999, 24 (4): 258-267.
    [155] Bruhwiler E.SaoumaV E.Water fracture interaction in concrete-PartII: Hydrostatic pressure in cracks [J]. ACI Materials Journal, 1995, 92 (4): 383-390.
    [156]杨卫.断裂力学讲义[M].清华大学力学系, 1993.
    [157]程靳,赵树山.断裂力学[M].北京:科学出版社, 2006.
    [158]范天佑.断裂理论基础[M].北京:科学出版社, 2006.
    [159]中国航空研究院.应力强度因子手册[M].北京:科学出版社, 1993.
    [160]张行.断裂力学中应力强度因子的解法[M].北京:国防工业出版社, 1992.
    [161]刘启蒙.高承压水上采煤断层突水渗流转换机理研究[D].徐州:中国矿业大学, 2007.
    [162]薛禹群.地下水动力学原理[M].北京:地质出版社, 1986.
    [163]柴军瑞,仵彦卿.单裂隙非稳定流分析[J].南京水利科学研究院水利水运科学研究, 2000, (2): 59-61.
    [164]方涛,柴军瑞,徐文彬.裂隙岩体平面非稳定渗流模型[J].水电能源科学, 2007, 25 (4): 64-67.
    [165]何杨,柴军瑞,唐志立,等.三维裂隙网络非稳定渗流数值分析[J].水动力学研究与进展, 2007, 22 (3): 338-343.
    [166]柴军瑞,仵彦卿.作用在裂隙中的渗透力分析[J].工程地质学报, 2001, 9 (1): 29-31.
    [167]杨新安,程军,杨喜增.峰峰矿区矿井突水分类及发生机理研究[J].地质灾害与环境保护, 1999, 10 (2): 24-29.
    [168]唐春安,赵文.岩石破裂全过程分析软件系统RFPA2D[J].岩石力学与工程学报, 1997, 16 (5): 507-508.
    [169]杨天鸿,唐春安,徐涛,等.岩石破裂过程渗流特性——理论、模型与应用[M].北京:科学出版社, 2004.
    [170]刘俊杰,陈雄,张后全,等.运用RFPA2D数值模拟开采条件下的渗流通道[J].岩石力学与工程学报, 2005, 24 (9): 1522-1526.
    [171]杨天鸿,唐春安,刘红元,等.承压水底板突水失稳过程的数值模型初探[J].地质力学学报, 2003, 9 (3): 281-288.
    [172]杨天鸿,唐春安,李连崇,等.非均匀岩石破裂过程渗透率演化规律研究[J].岩石力学与工程学报, 2004, 23 (5): 758-762.
    [173]杨天鸿,唐春安,梁正召,等.脆性岩石破裂过程损伤与渗流耦合数值模型研究[J].力学学报, 2003, 35 (5): 533-541.
    [174]杨天鸿,赵兴东,冷雪峰,等.地下开挖引起围岩破坏及其渗透性演化过程仿真[J].岩石力学与工程学报, 2003, 22 (增1): 2386-2389.
    [175]浦海.保水采煤的隔水关键层模型及力学分析[D].徐州:中国矿业大学, 2007.
    [176]冯梅梅.带压开采煤层底板阻隔水性能的力学分析及应用研究[D].徐州:中国矿业大学, 2007.
    [177]白海波.奥陶系顶部岩层渗流力学特性及作为隔水关键层应用研究[D].徐州:中国矿业大学, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700