用户名: 密码: 验证码:
基于电场双旋度方程的三维可控源电磁法有限单元法数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大地电磁法由于天然场源信号的微弱性和随机性,在野外记录和数据采集方面需要花费巨大的努力。可控源电磁法由于人工源的加入恰恰可以解决大地电磁法的这个缺点,因此在矿产普查、油气勘探等方面得到了广泛的应用。当前对于可控源电磁法的研究主要集中于一维层状地质体的近似模拟或沿走向无限延伸地质体的二维模拟,但严格来讲,地球物理电磁场问题都应该在三维空间中进行讨论。三维条件下的可控源数值模拟不仅仅是一维、二维情况下的简单的扩展,许多一维、二维条件下不曾出现的问题在三维情况下都出现了。随着计算机硬件技术的不断发展,三维可控源电磁法正演逐渐变的可行。因此,本文就三维可控源电磁法数值模拟进行了深入的研究。
     从可控源电磁法的基本原理出发,推导了基于电场双旋度方程的边值问题,利用广义变分原理,把边值问题转换为变分问题,从而得到了基于电场双旋度方程的积分弱解形式,为其后的有限元计算奠定了理论基础。在准静态近似条件下,分别推导了水平电偶极子在空中和大地的远区电场闭合表达式,并以此作为有限元计算中的外边界条件,解决了边界条件加载的困难。把应用于地震模拟中的伪delta函数引入到可控源电磁法中的有限元模拟中,并把其扩展到三维情况下,用源周围的小块区域代替偶极子源,从而消除了源点的奇异性,提高了方程组的稳定性。针对三维可控源电磁法有限元模拟中形成的刚度系数矩阵巨大而且稀疏的特点,采用了全稀疏按行压缩存储的方法,极大的节省了存储空间,为在个人电脑上实现几万甚至几十万自由度的计算提供了保证。对于大型、稀疏复系数方程组的求解来说,由于其系数矩阵的条件数非常大,导致了方程组的严重病态,为了保证迭代法的快速收敛,本文采用不完全LDL~T预处理技术,降低了矩阵的条件数,加快了收敛速度,为迭代法高效求解大型方程组奠定基础。在预处理技术做保证的条件下,引入Krylov子空间迭代法,计算表明,该迭代方法结合预处理技术后收敛速度非常快,是高效快速求解电磁有限元模拟中形成的大型复系数方程组的最佳选择。
     由于源的加入,使可控源电磁法理论和数值模拟非常复杂,本文的三维有限元数值模拟基于电场的双旋度方程,避免了对电偶极子源求旋度,减少了程序编制的复杂性;同时,引入散度条件,保证电源点以外研究区域中电场散度为零,从而避免了伪解的出现,使有限元计算在理论上更加完备。
Due to the weakness and randomness of natural source in magnetotelluric method, a great deal of effort is spent in the field records and data acquisition. This problem can be solved by controlled source electromagnetic method due to artificial sources, and so it is widely used in nineral prospecting, oil and gas exploration, and so on. However, the currently controlled source electromagnetic research is limited to one-dimensional layered modeling or two-dimensional simulation for geologic body of unlimited extension along strike. Strictly speaking, the geophysical electromagnetic field problems should be discussed in three dimensional space. Under the condition of three-dimension, numerical simulation of controlled source is not a simple expansion of one dimension, two-dimension cases. But it also encounters many problems which do not appear in one-dimension and two-dimension cases. With the development of computer hardware technology, three dimensional controlled source electromagnetic forward modeling become available. So, in this paper, three dimensional controlled source electromagnetic problems are studied in depth.
     From the basic principles of controlled source electromagnetic, boundary value problem based on double electric field curl equation is derived, and then transformed into variational problem by generalized variational principle from which weak solutions form is obtained based on double curl equation of the electric field. In quasi-static conditions, the closed expressions far from source in the air and the earth is derived for electric dipole source, and by using it as the outer boundary conditions of the finite element method, difficulties in loading the boundary conditions is solved. The pseudo delta function in seismic method is used to simulate the electric dipole source in finite element simulation, In this paper, the author extend it into three-dimensional case from which singularity from source is eliminated, and also the the stability of the equation is remarkably. For sparse and large stiffness matrix in controlled source electromagnetic three-dimensional finite element simulation, full sparse compressed row storage method is used. And through it a great deal of storage space is saved by which large-scale modeling is becoming available in personal computers for hundreds of thousands of degrees of freedoms. Because of a huge condition number, large-scale, sparse complex coefficient equations is badly in-conditioned. In order to ensure the rapid convergence of the method, incomplete precondition LDLT technology is used. By using it, condition number of matrix is reduced from which the, convergence rate is accelerated.Under the guarantee of preconditions, Krylov subspace iteration method is introduced. The results show that Krylov subspace iteration combined with precondition, convergence is very quickly, and it is fast and efficient for solving electromagnetic finite element simulation of large-scale complex coefficient equations.
     Since the electric sources makes controlled source electromagnetic theory and numerical simulation very complex, The electric field double curl equation in three-dimensional finite element numerical simulation is adoped to avoids curling the electric dipole source by which the complexity of programming is reduced; Meanwhile, the introduction of divergence conditions ensures divergence to be zero for the electric field outside the source and avoid a spurious solution and make electromagnetic finite element method more complete in theory.
引文
[1]汤井田,何继善.可控源音频大地电磁法及其应用[M].长沙:中南大学出版社,2005.
    [2]何继善编译.可控源音频大地电磁法[M].长沙:中南大学出版社,1990.
    [3]米萨克N.纳比吉安.勘查地球物理电磁法(第一卷 理论)(赵经祥译)[M].北京:地质出版社,1992.
    [4]A.A..Kaufman,G.V.Keller.频率域和时间域电磁测深[M].北京:地质出版社,1987.
    [5]朴化荣.电磁测深法原理[M].北京:地质出版社,1990.
    [6]阎述,陈明生.频率测深中磁性层的视电阻率响应[J].地质与勘探,1997,33(3):38-42.
    [7]殷长春.可控源音频磁大地电流法一维正演及精度评价[J].长春地质学院学报,1994,24(4):438-453.
    [8]王若,王妙月.一维全资料CSAMT反演[J].石油地球物理勘探,2007,42(1);108-114.
    [9]朴化荣,殷长春.频率测深水平磁场的正演计算及应用[J].物化探计算技术,1988,11(3);204-213.
    [10]Leppin,M.,Electromagnetic modeling of 3-D sources over 2-D inhomogeneties in the time domain[J],Geophysics,1992,57:994-1003.
    [11]Xiong Bin,Luo Yan-Zhong.Finite element modeling of 2.5-D TEM with block homogeneous conductivity[J].Chinese J.Geophys.2006,49(2):590-597.
    [12]Yuji Mitsuhata,Toshihiro Uchida.2.5-dimensional modeling and inversion of CSEM data[J],SEG 1999 Expanded Abstracts,1999
    [13]Yuji Mitsuhata,Toshihiro Uchida.2.5-D inversion of frequency-domain CSEM data based on quasi-linearized ABIC[J],SEG 2000 Expanded Abstracts
    [14]底青云,Martyn Unsworth,王妙月.复杂介质有限元法2.5维可控源音频大地电磁法数值模拟[J].地球物理学报,2004,47(4):723-730.
    [15]底青云,Martyn Unsworth,王妙月.有限元法2.5维CSAMT数值模拟[J].地球物理学进展 19(2):317-324.
    [16]Yuguo Li.2D marine controlled-source electromagnetic modeling:Part1-An adaptive finite-element algorithm[J].Geophysics,2007,72(2):51-62.
    [17]Yuguo Li,2D marine controlled-source electromagnetic modeling:Part 2-The effect of bathymetry[J].Geophysics 2007,72(2):63-71.
    [18]汤井田,任政勇.Coulomb规范下地电磁场自适应有限元模拟的理论分析[J],地球物理学报,50(5):1584-1594.
    [19]金建铭.电磁场有限元方法[M].西安:西安电子科技大学出版社,1998.
    [20]闫述.基于三维有限元数值模拟的电和电磁探测研究:[博士论文].西安:西安交通大学,2003.
    [21]Jepsen,A.F.,Numerical modeling in resistivity prospecting.Ph.D.these,University of California.Berkeley.1975.
    [22]Lamontagne,Y.and West,G.F.,EM response of a rectangular thin plat[J]e.Geophysics,1971,36:26-30.
    [23]Swift,C.M.,Theoretical magnetotelluric and Turam response from two-dimension inhomogeneities[J].Geophysics,1971,36,p1.
    [24]Jepsen,A.F.Numerical modeling in resistivity prospecting.Ph.D,University of California Berkeley 1975.
    [25]Mufti,J.R.,Finite-difference resistivity modeling for arbitrarily shaped two-dimensional structures[J].Geophysics,1976,41,p62.
    [26]Dey,A.,Morrison,H.F.,Resistivity modeling for arbitrarily shaped two-dimensional structures[J].Geophysics,1976,44,p753.
    [27]Scriba,H.Computation of the electrical potential in three-dimensional structures[J].Geophysics,1979,44,p753.
    [28]Leppin,M.,Electromagnetic modeling of 3-D sources over 2-D inhomogeneties in the time domain[J].Geophysics,1992,57,994-1003.
    [29]Spitzer,K and Wurmstich,B.,Speed and accuracy in 3D resistivity modeling[J].Geophysics.2001,66.
    [30]Gldman,M.,Stoyert,C.H.,Finite-difference calculations of the transient field of an axiallv svmmetric earth for vertical magnetic dipole excitation[J].Geophysics,1983,48:953-957.
    [31]Weaver,J.T.,Agarwal,A.K,et al.Three-Dimensional Finite-Difference Modeling of the Magnetic Field in Geo-Electromagnetic Induction,in M.J.Oristaglio and B.R.Spies(eds.),Three Dimensional Electromagnetics[J],S.E.G.Geophysical Developments Series 7,1999,426-443.
    [32]Varentsov,Iv.M.,The Selection of Effective Finite Difference Solvers in 3D Electromagnetic Modeling,in Expanded Abstracts of 2nd International Symposium on 3DElectromagnetics,Salt Lake City,Utah.1999.
    [33]Champagne,N.J.,Berryman,J.G.,Buettner,H.M.,Grant,J.B.,et al.A Finite-Difference Frequency-Domain Code for Electromagnetic Induction Tomography,in Proc.SAGEEP,Oakland,CA,1999,931-940.
    [34]Fomenko,E.Y.,and Mogi,T.A New Computation Method for a Staggered Grid of 3D EM Field Conservative Modeling,Earth Planets Space,2002,54:499-509.
    [35]Davydycheva,S.,Druskin,V.,and Habashy,T.An Efficient Finite Difference Scheme for Electromagnetic Logging in 3D Anisotropic Inhomogeneous Media,Geophysics,2003,68:1525-1536.
    [36]Commer,M.,and Newman,G.A Parallel Finite-Difference Approach for 3D Transient Electromagnetic Modeling with Galvanic Sources,Geophysics,2004,69,1192-1202.
    [37]罗延钟.二维地形不平条件下外电场的有限差分模拟[J].物化探计算技术,1984,4(2):17-28.
    [38]谭捍东等,大地电磁法三维交错采样有限差分数值模拟.地球物理学报,2003,46(5):705-711.
    [39]Dias,C.A.,et al.Multi-Frequency EM Method for Hydrocarbon Detection and for Monitoring Fluid Invasion During Enhanced Oil Recovery,SEG,Houston 2005 Annual Meeting,4.
    [40]Wang,T.,and Tripp,A.FDTD Simulation of EM Wave Propagation in 3-D Media,Geophysics,1996,61:110-120.
    [41]宋维琪,仝兆歧.3-D瞬变电磁场的有限差分正演计算[J].石油地球物理勘探,2000,35(6):751-756.
    [42]周熙襄.点源二维电阻率法有限差分正演计算[J].物化探计算技术,1983,5(3).
    [43]刘正栋.稳定点电流场三维有限差分正演模拟[J],解放军理工大学学报,2000,1(3).
    [44]裴正林.三维各向异性介质中弹性波方程交错网格高阶有限差分法模拟[J].石油大学学报(自然科学版).2004,28(5):23-29
    [45]徐凯军,李桐林.垂直有限线源三维地电场有限差分正演研究[J].吉林大学学报(地球科学版).2006.36(1):137-147.
    [46]Brewitt-Taylor C R,Weaver J T.On the finite difference solution of two-dimensional induction problems[J].Geophysics,1976,47:375-396.
    [47]Zonghou Xiong,A.C.T.3-D electromagnetic modeling for near-surface targets using integral equations[J].Geophysics,1997,62(4).
    [48]Xiong,Z.EM Modeling Three-Dimensional Structures by the Method of System Iteration Using Integral Equations[J].Geophysics,1992,57:1556-1561.
    [49]Xiong,Z.,and Tripp,A.C.Electromagnetic Scattering of Large Structures in Layered Earth Using Integral Equations[J],Radio Sci.1997,30:921-929.
    [50]Newman,G.A.,and Alumbaugh,D.L.Three-Dimensional Induction Logging Problems.Part Ⅰ.An Integral Equation Solution and Model Comparisons[J],Geophysics,2002,67:484-491.
    [51]张辉,李桐林,董瑞霞.体积分方程法模拟电偶源三维电磁响应[J].地球物理学进展,2006,21(2):386-390.
    [52]朴化荣,薛爱民,金东和等.积分方程求解三度极化体的激发极化效应[J].物化探计算技术.1985,17(3).
    [53]夏训银,张宪润,张碧星.均匀半空间三维体的三频激电相对相位法积分方程模拟[J].桂林工学院学报.2004,24(4):422-425.
    [54]鲍光淑,张碧星,敬荣中.三维电磁响应积分方程法数值模拟[J].中南工业大学学报.1999,30(5):472-474.
    [55]张辉.复电阻率三维电磁场正反演研究:[博士论文].吉林:吉林大学,2006.
    [56]Alfano L.,Introduction to the interpretation of resistivity measurements for complicated structural condition[J].Geophysical Prospecting,1959,Vol.17.
    [57]Vozoff K.,Numerical resistivity interpreation general inhomogeneity[J].Geophysics,1960,25(6).
    [58]Keller G.V.,Frischknecht F.C.,Electrical methods in geophysical prospecting[J].Pergamon Press,1966.
    [59]田宪谟,黄兰珍.电法勘探用边界单元法[M].北京:地质出版社.1990.
    [60]黄兰珍,田宪谟等.点源场电阻率法二维地形改正边界元法[J].物探化探计算技术.1986;8(3):201-207.
    [61]岳建华,李志聃,刘世蕾.层状介质中巷道底板电测深边界元法正演[J].煤炭学报.1998,23(4):347-351.
    [62]田宪谟,黄兰珍等.点源场电阻率法三维地形改正的边界元法[J].成都地质学院学报.1986;13(3):170-175.
    [63]马饮忠,钱家栋.二维频率测深边界单元法正演计算[J].地球物理学报,1995,38(2):252-261.
    [64]马饮忠,钱家栋.二维层伏介质点电源边界单元解[J].西北地震学报,1991,13(2),1-7.
    [65]吴至善,林君琴.边界单元法在电法勘探中的应用[J].吉林大学学报(地球科学版),1989,(4).
    [66]刘继东.用异常电位边界单元法做电测深资料地形改正[J].煤田地质与勘探,1998,26(3):54-56.
    [67]阮百尧,徐世浙,徐志锋.三维地形大地电磁场的边界元模拟方法[J].地 球科学(中国地质大学学报),2007,32(1):130-134.
    [68]阮百尧,王有学.三维地形频率域人工源电磁场的边界元模拟方法[J]地球物理学报,2005,(5):1197-1204.
    [69]鲍光淑,孙紫英.用边界积分方程法对地下目标体基本定位[J].中南工业大学学报(自然科学版),2000,(02):102-105.
    [70]谭义东,周京涛.边界单元法在电法资料解释中的应用[J].地质与勘探,1993,(6).
    [71]罗延钟.频谱激电法及其在近几年的发展,勘查地球物理勘查地球化学文集(20).北京:地质出版社,1996.
    [72]Fox,R.C.,Hohmann,GW,Killpack,T.J,et al.,Topographic effects in resistivity and induced ploarization surveys[J].Geophysics,1980,45,57-93.
    [73]Oppliger,G.L.,Three dimension terrain corrections for mise-a-la-masse and magnetometic resistivity surveys[J].Geophysics,1984,49:1718-1729.
    [74]监凯维奇,O.C.,邱Y.K.,结构和连续力学中的有限单元法[M].北京:国防工业出版社,1967.
    [75]Coggon.J.H.Electromagnetic and electrical modeling by the finite-element method[J].Geophysics,1971,36(1):132-155.
    [76]Rijo.L.Modeling of electric and electromagnetic data[D].Dessertation:University of Utah,1977.
    [77]Anderson,S.K.Simulation of induction logging by the finite-element methods.Geophysics[J]..1984,49(11):1943-1958.
    [78]David Pardo,C.T.-V..,and Maciej Paszynski.Numerical simulation of 3D EM borehole measurements using an hp-adaptive goal-oriented finite-lement formulation.SEG/San Antonio 2007 Annual Meeting.
    [79]P.Kaikkonen.Numerical VLF modeling[J].Geophysical Prospecting,1979.27:106-136.
    [80]Pridmore,D.F.Three-dimensional Modeling of Electric and electromagnetic data using the finite-element method[D].dissertation,Univ.of.Utah.1978.
    [81]Wannamaker,P.E.,Hohmann,G.W.,and Ward,S.H.,1984,Magnetotelluric responses of three-dimensional bodies in layered earths[J].Geophysics.49,1517-1533
    [82]Wannamaker,P.E.,Stodt,J.A.,and Rijo,L.,PW2D Finite element program for solution of magnetotelluric responses of two dimensional earth resistivity structure[J].User documentation:Univ.of Utah Res.Inst.Rep.ESL-158.1985.
    [83]Wannamaker,P.E.Two-dimensional topographic response in magnetotellurics modeled using finite element[J].Geophysics.1986,51(11):2131-2144.
    [84]Morgan,M.A.,Finite element and finite difference methods in electromagnetic scattering[M].1990,Elsevier.
    [85]Unsworth,M.J.Electromagnetic induction by a finite electric dipole source over a 2-D earth[J].Gephysics,1993,58(1):198-214.
    [86]Albanese,R.,and Rubinacci,G.,Finite element methods for the solutions of 3D eddy current problems[M].Advances in Imaging and Electron Physics,1998,12,1-86.
    [87]Badea,E.A.,Everett,M.E.,Newman,G.A.Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials[J].Geophysics,2001,66,786-799.
    [88]D.F.Pridmore,G.W.HohmannS,S.H.Ward,et,al.An investigation of finite-element modeling of electric and electromagnetic data in three dimensions[J].Geophysics,1981,46(7):1009-1024.
    [89]Yuji Mitsuhata,Toshihiro Uchida.3D magnetotelluric modeling using the T-Ωfinite-element method[J].Geophysics,2004.69(1).108-119.
    [90]Kerry Key,Chester Weiss,Adaptive finite-element modeling using unstructured grids:The 2D magnetotelluric example[J].GEOPHYSICS,2006,71(6).291-299.
    [91]D.F.Pridmore,G.W.H.,S.H.War,W.FL Sill.An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions[J].Geophysics,46(7):1981.1009-1024.
    [92]David Pardol,C.T.-V.,and Leszek F.Demkowicz2.Feasibility study for 2D frequency-dependent electromagnetic sensing through casing[J].Geophyics,2007,72(3):111-118.
    [93]David Pardo.C.T.-V.,and Maciej Paszynski.Numerical simulation of 3D EM borehole measurements using an hp-adaptive goal-oriented finite-lement formulation[J]..SEG/San Antonio 2007 Annual Meeting.
    [94]Ganquan Xie,J.L.,Ernest.L.Majer,et al.3-D electromagnetic modeling and nonlinear inversion[J]..Geophysics,2000,65(3):804-822.
    [95]Jack.L.S.a.M.E.E.Finite element analysis of controlled-source electromagnetic induction for near-surface[J].2002.
    [96]ji.Y.Development and application of a hybrid finite-element method/method of moments(fem/mom)tool to model electromagnetic compatibility and signal integrity problems.[博士论文]2000.
    [97]K.H.Lee,H.F.M.A numerical solution for the electromagnetic scattering by a two-dimensional inhomogeneity[J].Geophyics 1985,50(3):466-472.
    [98]Kerry Key,C.W.Adaptive finite-element modeling using unstructured grids:The 2D magnetotelluric example[J].Geophysics,2006,71(6):291-299.
    [99]Martyn J,U.,Bryan J,Alan D.Chave.Electromagnetic induction by a finite electric dipole source over a 2-D earth[J].Geophyics,1993,58(2):198-214.
    [100]Mitsuhata,Y.(2000).2-D electromagnetic modeling by finite-element method with a dipole source and topography[J].Geophyics,2000,65(2):465-475.
    [101]Philip,E.,Wannamaker,John A,Stodt,Luis Rijo.Two-dimensional topographic responses in magnetotellurics modeled using finite elements[J].Geophyics 1986,51(11):2134-2144.
    [102]Sasaki,Y.3-D resistivity inversion using the finite-element method[J].Geophysics 1994,59(11):1839-1848.
    [103]Shu-Kong Chang,B.A..Simulation of induction logging by the finite-element method[J].Geophyics,1984,49(11):1943-1958.
    [104]Y.Goldman,C.H.,S.Nicoletis,S.Spitz.A finite element solution for the transient electromagnetic response of an arbitrary two dimensional resistivity distribution[J].Geophysics,1986,51(7):1450-1461.
    [105]Yuji Mitsuhata,T.U..and Hiroshi Amanoz.2.5-D inversion of frequency-domain electromagnetic data generated by a grounded-wire source[J].Geophyics,2002,67(6):1753-1768.
    [106]李大潜.有限元素法在电法测井中的应用[M].北京:石油工业出版社,1980.
    [107]周熙襄,钟本善等.有限单元法在直流电法勘探正问题中的应用[J].物探化探计算技术.1980,(3)1-57.
    [108]周熙襄,钟本善等.电法勘探数值模拟技术[M].成都:四川科学技术出版社,1986.
    [109]罗延钟,张桂青.频率域激电法原理[M].北京:地质出版社,1988.
    [110]罗延钟,张桂青.电子计算机在电法勘探中的应用[M].武汉:武汉地质学院出版社,1987.
    [111]熊彬,罗延钟,电导率分块均匀的瞬变电磁2.5维有限元数值模拟[J].地球物理学报,2006,49(2):590-597.
    [112]罗延钟,孟永良,熊宗厚.频谱激电法的模拟准则[J].勘查地球物理勘查地球化学文集(20)[M].北京:地质出版社,1996.
    [113]罗延钟,昌彦君.G-S变换的快速算法[J].地球物理学报,2000,43(5):684-690.
    [114]徐世浙.位场延拓的积分-迭代法.地球物理学报[J].2006,49(4):1176-1182.
    [115]徐世浙.用边界单元法模拟二维地形对大地电磁场的影响[J].地球物理学报,1992,25(3):380-388.
    [116]Xu Si-zhe.The integral-iteration method for continuation of potential fields[J]Chinese Geophys,2006,49(4):1176-1182.
    [117]阮百尧.均匀水平大地上频率域垂直磁偶源电磁场数值滤波解法[J].桂林工学院学报,2005,25(1):14-18.
    [118]阮百尧等.三维地电断面电阻率测深有限元数值模拟[J].地球科学,2001,26(1):73-77.
    [119]阮百尧等.电导率连续变化的三维电阻率测深有限元数值模拟[J]地球物理学报,2002,45:14-18.
    [120]黄临平,戴世坤.复杂条件下3D电磁场有限元计算方法[J].地球科学--中国地质大学学报 2002,27(6):775-779.
    [121]强建科.起伏地形三维电阻率正演模拟与反演成像研究[D].武汉:中国地质大学,2006.
    [122]强建科,罗延钟,三维地形直流电阻率有限元法模拟[J].地球物理学报,2007,50(5):1606-1613.
    [123]黄俊革.三维电阻率/极化率有限元正演模拟与反演成像[D].长沙:中南大学,2003.
    [124]黄俊革,阮百尧,王家林.坑道直流电阻率法超前探测的快速反演[J].地球物理学报,2007,50(2):619-624.
    [125]闫述,陈明生.线源频率电磁测深二维正演(一)[J].煤田地质与勘探,1999,27(5):60-62.
    [126]底青云,王妙月.稳定电流场有限元法模拟研究[J].地球物理学报1998,41(2):252-259.
    [127]吕玉增,阮百尧.复杂地形条件下四面体剖分电阻率三维有限元数值模拟[J].地球物理学进展 2006,21(4):13021308.
    [128]阮百尧.三角单元部分电导率分块连续变化点源二维电场有限元数值模拟[J].广西科学,2001,8(1):1-3.
    [129]阮百尧,熊彬.电导率连续变化的三维电阻率测深有限元模拟[J].地球物理学报,2002,45(1):131-138.
    [130]王若,王妙月,底青云.频率域线源大地电磁法有限元正演模拟[J].地球物理学报,2006,49(6):1858-1866.
    [131]史明娟,徐世浙,刘斌.大地电磁二次函数插值的有限元法正演模拟[J].地球物理学报,1997,40(3):421-430.
    [132]闫述,陈明生.电偶源频率电磁测深三维地电模型有限元正演[J].煤田地质与勘探,2000,28(3):50-56.
    [133]阎述,陈明生.线源频率电磁测深二维正演(二)[J].煤田地质与勘探.1999,27(6):56-59.
    [134]张继锋.井-地电阻率法确定油气藏边界研究[D]西安,长安大学,硕士论文2005.
    [135]王永刚.全空间电阻率法探测油藏边界有限元模拟研究[D]西安,硕士论文长安大学.2006.
    [136]周刚.人工源电磁法二维半问题等参有限元法数值模拟研究[D].北京,中国地质大学:硕士论文,2006.
    [137]王胜阁,地形起伏条件下可控源音频大地电磁法2_5维正演研究[D].北京,中国地质大学:硕士论文,2007.
    [138]蔡军涛,阮百尧,赵国泽等.复电阻率法二维有限元数值模拟[J].地球物理学报,2007,50(6):1869-1876.
    [139]徐凯军.2_5维复电阻率电磁场正反演研究[D]..吉林,吉林大学:博士论文,2007
    [140]陈小斌,张翔,胡文宝.有限元直接迭代算法在MT二维正演计算中的应用[J].石油地球物理勘探 2002,35(4):487-496.
    [141]徐世浙,陈小斌,胡文宝.线源二维瞬变电磁场的正演计算新方法[J].煤田地质与勘探,2004,32(5):58-61.
    [142]徐世浙,于涛,李予国等.电导率分块连续变化的二维MT有限元模拟(1)[J].高校地质学报,1995,1(2):65-73.
    [143]徐世浙,于涛,李予国等.电导率分块连续变化的二维MT有限元模拟(2)[J].高校地质学报 1996,2(4):448-452.
    [144]刘树才,周圣武.二维电法数值模拟中的网格剖分方法[J].物化探计算技术,1995,17(1):49-53.
    [145]G.P.Nikishkov a,Y.G.N.b.,V.V.Savchenko Comparison of C and Java performance in finite element computations.computers & structures[J].2003.
    [146]陈璞,孙树立,袁明武有限元快速解法[J].力学学报.2002,34(2):216-222.
    [147]陈志,高旅端.求解大规模稀疏线性方程组的算法[J].北京工业大学学报2001,27(3):262-265.
    [148]文代刚,姜可薰,黄键.求解有限元复代数方程组的实型ICCG法[J].电工技术学报 1996,11(4):62-45.
    [149]吴海容.复双共轭梯度法的结构[J].哈尔滨电工学院学报,1996.19(2):133-141.
    [150]谢的馨,姚缨英,白保东.电磁场分析中大型稀疏对称线性方程组预处理法的改进[J].电机与控制学报 1997,1(2):98-101.
    [151]姚松,田红旗.有限元刚度矩阵的压缩存贮组集及快速求解[J].中国科技论文在线,2002.
    [152]张永杰,孙秦.大型稀疏复线性方程组双共轭梯度法[J].航空计算技术2006,36(4):119-126.
    [153]张永杰,孙秦.稀疏矩阵存储技术[J].长春理工大学报,2006,29(3):38-41.
    [154]Smith,J.T,Conservative Modeling of 3-D Electromagnetic Fields,Part Ⅰ,Properties and Error Analysis[J],Geophysics,1996,61:1308-1318.
    [155]Smith,J.T.Conservative Modeling of 3-D Electromagnetic Fields,Part Ⅱ,Bi-conjugate Gradient Solution and an Accelertor[J],Geophysics,1996,61:1319-1324.
    [156]Paulsen,K.D.and D.R.Lynch Elimination of vector parasites in finite element Maxwell solutions[J].IEEE Transactions On Microwave Theory And Techniques,1991.39(3):395-404.
    [157]Daniel,R.L.and D.P.Keith,Origin of vector parasites in numerical Maxwell solutions[J].IEEE Transactions on Microwave Theory And Techniques,1991.39(3):383-394.
    [158]Biro,O.and K.Preis,On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy currents[J].IEEE Transaction.Magnetics,1989.25:3145-3159.
    [159]Paulsen,K.D.and W.E.Bosye.Continuous potential Maxwell solutions on nodal-based finite elements[J].IEEE Transaction Antenna Propag.,1992.40(1):1192-1200.
    [160]Biro,O.and K.Preis.Finite element analysis of 3-D eddy currents.IEEE Transaction.Magnetics[J].1990.26:418-423.
    [161]Mur,G.The finite-element modeling of three-dimensional electromagnetic fields using edge and nodal elements[J].IEEE Transaction Antenna Propag.,1993.41:948-953

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700