用户名: 密码: 验证码:
青杄中两个与花粉萌发和花粉管生长相关基因的分离和功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在显花植物授粉受精过程中,具顶端极性生长特性的花粉管是雄性生殖单位的载体,也是研究细胞生长分子调控机理的理想体系。与被子植物相比,裸子植物具有生长周期长,花粉管生长缓慢、易分叉等特点,具有不同于被子植物花粉发育的独特发育模式。对于裸子植物花粉萌发和花粉管生长的调控机理,目前尚不十分清楚。本文以松类植物中比较有代表性的裸子植物青杄(Picea willsonii)花粉为试材,构建青杄花粉和花粉管的cDNA文库,并通过RT-PCR方法克隆到微管蛋白基因TUA1,从Ca2+诱导青杄花粉cDNA文库中分离得到CCAAT框结合蛋白类型的转录因子基因HAP5。对这两个基因进行表达分析和功能鉴定,结果如下:
     1.利用Clontech SmartTM cDNA Library Construction Kit构建青杄花粉及花粉管的cDNA文库,根据同源序列设计兼并引物,通过RT-PCR的方法获得微管蛋白基因TUA1的中间片段,经5'-和3'-RACE PCR,得到其全长cDNA,为1721bp,编码区全长为1353bp,编码含451个氨基酸的多肽,分子量为49.58kDa。在Ca2+诱导的青杄花粉cDNA文库中筛选得到基因PwHAP5,该基因编码一个CCAAT框结合蛋白类型的转录因子,cDNA全长为985bp,编码区全长为603bp,编码含201个氨基酸的多肽,分子量为22.44kDa。
     2.同源序列比较发现,青杄的微管蛋白基因TUA1与拟南芥、水稻、棉花和花旗松的微管蛋白有高度的序列同源性,分别为88.47%、96.9%、97.78%和99.78%。聚类分析表明PwTUA1属于I类α-微管蛋白。青杄的转录因子PwHAP5与拟南芥、水稻、酵母和人类HAP5的关键结构域都比较保守,与拟南芥的AtNF-YC9(AtHAP5C)和水稻的OsHAP5A/B亲缘关系较近。
     3.半定量RT-PCR分析表明PwTUA1在青杄花粉中特异表达,且表达水平随着花粉萌发过程逐渐升高,12小时达最高值,随后逐渐下降,并且在花粉萌发的各阶段均受到Ca2+和硼的诱导。PwHAP5在青杄花粉、针叶、茎和根中均有表达,随着花粉萌发时间延长,表达量逐渐升高,18小时达峰值后一直保持不变,在不同萌发时段PwHAP5表达均受Ca2+的诱导。
     4.在青杄花粉中超表达PwTUA1可以提高花粉的萌发率和花粉管的生长速度,而超表达PwHAP5可以改变花粉管生长方向。
     5.在拟南芥中组成型超表达PwTUA1使得转基因植株生长迟缓,出现螺旋生长,甚至由于不能够完成形态建成而死亡。在拟南芥花粉中专一表达PwTUA1可以促进花粉的萌发和花粉管生长,即使是在Ca2+和硼浓度非最适培养基中同样可以起到促进作用,并且PwTUA1在拟南芥花粉中的表达改变了TUA蛋白(微管蛋白α亚基)在花粉管中的分布模式以及花粉管的超微结构。野生型拟南芥中TUA蛋白主要定位于除花粉管尖端区域以外的整个花粉管中,而在转基因拟南芥花粉管的顶端区域有大量的TUA蛋白存在。野生型拟南芥花粉管壁远远厚于转基因拟南芥,在转基因拟南芥花粉管顶端存在许多短的游离的胞质微管,并且富集小泡,而在野生型拟南芥花粉管的相应位置中没有发现这些结构。
     6.在拟南芥中超表达PwHAP5后,会影响果荚的排列,但不影响花粉管的生长方向。用青杄转录因子PwHAP5的N末端77个氨基酸、C末端130个氨基酸及全长分别做诱饵筛选青杄花粉和花粉管cDNA文库,共得到约80个克隆,经重新验证活性后,选择结合活性较强的克隆测序。在测序结果中筛选到7个与PwHAP5全长、N端和C端均相互作用的克隆。GenBanK中Blast结果发现这些克隆与拟南芥基因组中的同类基因有较高同源性。选择其中的PwFKBP12蛋白与PwHAP5通过双分子荧光互补实验进行体内互作的验证。
Pollen tube, a carrier of sperm nuclei during the process of sexual plant reproduction in flowering plants, is a highly polarized, rapidly tip-growing plant cell, and thus is an ideal system for studying the molecular mechanism involved in the regulation of cell growth. As compared with angiosperm, pollen tubes of coniferous species grow slowly, tend to ramify, and lack a tip-to-base zonation of organelles, implying that tubes of the two types of plant differ in developmental mechanism and wall construction. However, the mechnisms of pollen germination and tube growth in coniferous species remain enigmatic. Thus, in this paper, we constructed pollen and pollen tubes cDNA library and cloned a cDNA fragment ofα-tubulin gene (TUA1) in coniferous species (Picea wilsonii). In addition, a Ca2+-induced cDNA library of Picea wilsonii pollen was constructed and a CCAAT-box binding factor gene (HAP5) was obtained by differential hybridization. A series of studies have been conduced on the sequence and expression analysis and functional identification of PwTUA1 and PwHAP5.The obtained results are as follows:
     1. A cDNA library of Picea wilsonii pollen and pollen tubes was constructed with Clontech SmartTM cDNA Library Construction Kit. Two mixed primers were designed to amplify specific DNA fragment using cDNA library on the homologous sequences from other plants. The middle fragment of interested cDNA was obtained by RT-PCR. The full length cDNA was further isolated by 5’-RACE and 3’-RACE. The isolated cDNA is 1721 bp in length and harbors an opening reading frame of 1353 bp encoding a 49.58 kDa protein of 451 amino acids. A Ca2+-induced cDNA library of Picea wilsonii pollen was constructed and a CCAAT-box binding factor gene (HAP5) was obtained by differential hybridization. The isolated cDNA is 985bp in length with an open reading frame (ORF) of 603bp comprising 201 amino acid residues with the predicted molecular mass of 22.44kDa.
     2. Multi-alignment analysis revealed that PwTUA1 was highly related to other plant TUAs, sharing a homology of 88.47% to AtTUA1, 97.78% to GhTUA1, 96.9% toOsTUA1, and 99.78% to PmTUA1. The phylogenetic analysis of various TUAs also indicated that PwTUA1 was attributed to class I . The main functional domains of PwHAP5 were conserved compared with other HAP5s from Arabidopsis, rice, yeast and human. The phylogenetic analysis also indicated that the kinship of PwHAP5 was close to AtNF-YC9(AtHAP5C) and OsHAP5A/B.
     3. Semi-quantitative RT-PCR was used to examine the expression of PwTUA1 and PwHAP5. The results showed that PwTUA1 was expressed specifically in germinating pollen but was not detected in needles, stems, and roots. PwTUA1 was first detected at 6 h after incubation (just germinated); it was abundant during middle developmental stages (12, 18, and 24 h after incubation) and then continued weakly at later stages (30 and 36 h after incubation). The expression of PwHAP5 was detected in all of the tissues and increased during the pollen germination stages till reached the peak after incubation for 18h and keep to the tubes stop growing.
     4. Transient expression of PwTUA1 improved pollen germination and pollen tube growth in Picea wilsonii, while transient expression of PwHAP5 changed the orientation of pollen tubes growth.
     5. Arabidopsis overexpressing PwTUA1 driven by the CaMV 35S promoter showed growth retardation and helical growth to some degree. Some of them were unable to complete morphogenesis, resulting in death. When PwTUA1 was expressed in Arabidopsis pollen exclusively by using the pollen-specific promoter Lat52, both pollen germination and pollen tube growth were enhanced in the transgenic lines when compared to wild-type Arabidopsis, even at the nonoptimal boron or Ca2+ concentrations present in the culture medium. PwTUA1-overexpression changed the subcellular localization of theα-tubulin protein and affected the ultrastructure of pollen tubes in Arabidopsis. Theα-tubulin protein existed throughout the tubes of wild-type Arabidopsis, excluding the tip or apical region. However, highly intense fluorescence was observed in the apical region of transgenic Arabidopsis pollen tubes. The pollen tube wall of transgenic Arabidopsis was only slightly detectable, while the wall of wild-type Arabidopsis was much thicker. Additionally, many short, solitary cytoplasmic MTs were observed in the tip-most portion of the transgenic pollen tubes where the vesicles accumulated, but were rarely observed in the tip region of wild-type pollen tubes.
     6. Overexpressing PwHAP5 changed the arrangement of transgenic Arabidopsis siliques instead of the orient of pollen tubes growth. Interactive proteins were screened from Picea wilsonii pollen cDNA library with the N, C terminal and full-length of PwHAP5 as bait protein by Yeast Two-Hybrid System. More than 100 positive clones were identified by PCR colony screening and the representative clones were sequenced. Among them 7 clones were selected which interacted with C, N terminal and full-length PwHAP5. By blast in GenBank, the prey cDNA inserts were homologous to mRNA sequences in Arabidopsis. PwFKBP12 protein was selected and we tested its interaction with PwHAP5 in vivo by using bimolecular fluorescenc complementation (BiFC) analysis.
引文
1.曹志方,李洁,刘强.植物转录因子的结构与功能.植物科学进展, 2000(3):95-108
    2.范六民,杨弘远,周嫦.钙一钙调素信使系统在花粉萌发、花粉管生长及生殖细胞分裂过程中的作用.细胞生物学动态.北京:北京师范大学出版社1997, 63-7l.
    3.范六民.钙与钙调素对烟草花粉管生长及生殖核分裂的调节.武汉大学博士论文1997, l8-27
    4.郝怀庆,王钦丽,陈艳梅,胡玉熹,林金星.花粉管细胞壁结构及胞质运动.植物学通报,2003(20): 270-279
    5.胡适宜,杨弘远.被子植物受精生物学.北京:科学出版社2002, pp 41-46, 116-120
    6.黄荣峰,王学臣.微管在气孔中的作用.植物学报,1997(39):253-258
    7.李岩,阎隆飞,徐是雄.百合花粉及花粉管内微丝和微管的分布.植物学报, 1998(40): 890-894
    8.李一勤,小竹敬久,樱井直树,赵南明,刘强.细胞壁结合的β-葡聚糖酶对百合花粉管顶端生长的调节作用.植物学报, 2001 (43):461-468
    9.李一勤.花粉与花粉管:生物技术领域理想的细胞体系.细胞生物学动态,北京:北京师范大学出版社1997, l67-188
    10.李一勤.花粉与花粉管:生物技术领域理想的细胞体系.见翟中和:细胞生物学动态.北京:北京师范大学出版社1998, pp167-176
    11.马力耕,崔素娟,徐小冬,孙大业. G蛋白在细胞外钙调素启动花粉萌发和花粉管伸长中的作用.自然科学进展, 1997 (7): 751-754
    12.孙大业,郭艳林,马力耕.细胞信号转导.北京:科学出版社, 2000, pp91-94.
    13.孙大业,马力耕.细胞外钙调素—一种植物中的多肽信使.中国科学C辑, 2001(31):289-297
    14.孙颖,孙大业.花粉萌发和花粉管生长发育的信号转导.植物学报, 2001 (43):121l-1216
    15.唐佩华.在人工培养条件下君子兰雄配子体发育过程中营养核与生殖细胞的动态显微缩时电影记录与一般细胞学观察.植物学报, 1973(15): 12-l8
    16.田惠桥,远彤.钙在被子植物受精作用中的作用.植物生理学报,2000(2):6369-380
    17.邢树平,胡玉熹,林金星.雪松和水杉花粉外壁亚结构的原子力显微镜研究.科学通报,2000a(45):306-310
    18.许莉,郑文竹,等.α-微管蛋白基因在玉米CMS中的表达调控[J].云南大学学报(自然科学版),1999(21): 163-164
    19.许莉,郑文竹,左正宏等.玉米α-微管蛋白分子生物学研究进展[J].植物学通报, 1999(16): 488-494
    20.杨晓冬,孙素琴,李一勤.硼缺乏导致花粉管细胞壁多糖分布的改变.植物学报, 1999(41): 1169-1176
    21.朱澂,徐是雄.花粉管及其生殖细胞和精细胞中的细胞骨架.被子植物受精生物学.北京:科学出版社. 2002,29-58
    22. Abdrakhamanova A, Wang QY, Khokhlova L, Nick P. Is microtubule disassembly a trigger for cold acclimation? Plant Cell Physiology,2003(44): 676-686
    23. Abe T, Thitamadee S, Hashimoto T. Microtubule defects and cell morphogenesis in the lefty1lefty2 tubulin mutant of Arabidopsis thaliana. Plant Cell Physiology,2004(45): 211-220
    24. Abel S and Theologis A. A polymorphic bipartite motif signals nuclear targeting of early auxin-inducible proteins related to PS-IAA4 from pea (Pisum sativum). The Plant Journal,1995(8):87-96
    25. Adam E, Szell M, Szekeres M, et al. The developmental and tissue-specific expression of tobacco phytochrome-A genes. The Plant Journal,1994(6):283-293
    26. Anderson J R, Williarn S, Bedinger P. 2, 6-Diehlombenzonitrile,a cellulose biosynthesis inhibitor, affects morphology and structural integrity of petunia and lily pollen tubes. Plant Physiology,2002(159): 61-67
    27. Anthony RG, Hussey PJ. Suppression of endogenous alpha and beta tubulin synthesis in transgenic maize calli overexpressing alpha and beta tubulins. The Plant Journal ,1998(16): 297-304
    28. Anthony RG, Hussey PJ. Double mutation in eleusine indica alpha-tubulin increases the resistance of transgenic maize calli to dinitroaniline and phosphorothioamidate herbicides. The Plant Journal,1999(18): 669-674
    29. Baerson S R and Lamppa C K. Developmental regulation of an acyl carrier protein gene promoter in vegetative and reproductive tissues. Plant Molecular Biology, 1993(22): 255-267
    30. Ben-Naim O, Eshed R, Parnis A, Teper-Bamnolker P, Shalit A, Coupland G, Samach A, Lifschitz E. The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. The Plant Journal, 2006(46): 462–476
    31. Bed R, Oakley.An abundance of tubulins. Trends in Cell Biology,2000 (10):537-542
    32. Bernadt CT, Nowling T, Wiebe MS, et al. NF-Y behaves as a bifunctional transcription factor that can stimulate or repress the FGF-4 promoter in an enhancer-dependent manner. Gene Expression, 2005, (12): 193-212
    33. BiW, et al. DNA binding specificity of the CCAAT-binding factor CBF/NF-Y. The Journal of Biological Chemistry, 1997(272): 26562-26572
    34. Bobb A J, Eiben H G and Bustos M M. PvALF, an embryo-specific acidic transcriptional activator enhances gene expression from phaseolin and phytohemagglutinin promoters. The Plant Journal,(1996)8:331-343
    35. Boulikas T. Putative nuclear localization signals (NLS) in protein transcription factors. Journal of cellular biochemistry, 1994(55):32-58
    36. Brierley H L, Webstert P, Long S R. The Pisum sativum TubA1 gene, a member of a small family of -tubulin sequences. Plant Molecular Biology, 1995( 27): 715-727
    37. Buschmann H, Fabri CO, Hauptmann M, Hutzler P, Laux T, Lloyd CW, Schaffner AR.Helical growth of the Arabidopsis mutant tortifolia1 reveals a plant-specific microtubule-associated protein. Current Biology, 2004(14): 1515-1521
    38. Cai G, Bartalesi AD, Casino C, Moscatelli A, Tiezzi A, Cresti M. The kinesin immunoreactive homologue from Nicotiana tabacum pollen tubes: biochemichal properties and subcellular localization. Planta,1993(191):496-506
    39. Cai G, Moscatelli A, Cresfi M. Cytoskeletal organization and pollen tube growth. Trends in Plant Science, l997(2): 86-9l
    40. Chay CH, Buehler EG, Thorn JM, Whelan TM, Bedinger PA. Purification of maize pollen exines and analysis of associated proteins. Plant Physiol ogy,1992(100): 756-761
    41. Chen CY, Wong EI, Vidali L, Estavillo A, Hepler PK, Wu HM, Cheung AY. The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. The Plant Cell ,2002(14): 2175-2190
    42. Cheng Z, Snustad DP, Carter JV.Temporal and spatial expression patterns of TUB9, a beta-tubulin gene of Arabidopsis thaliana. Plant Molecular Biology, 2001(47): 389-398
    43. Chretien D, Fuller SD, Karsenti E. Sucture of growing microtubule ends: two-dimensional sheets close into tubes at variable rates. The Journal of Cell Biology, 1995(129):1311-1328
    44. Christov NK, Imai R, Blume Y. Differential expression of two winter wheat alpha-tubulin genes during cold acclimation. Cell Biology International, 2008(32): 574-578
    45. Ciceri P, Gianazza E, Lazzari B et al. Phosphorylation of Opaque2 changes diurnally and impacts its DNA binding activity. Plant Cell, 1997(9):97-108
    46. Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernie T, Ott T, Gamas P, Crespi M, Niebel A . MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes & development, 2006(20): 3084–3088
    47. Coustry F, Maity SN, de Crombrugghe B, et al. Studies on transcription activation by themulti- meric CCAAT-binding factor CBF. The Journal of Biological Chemistry, 1995( 270): 468-543
    48. CoustryF, et al. The transcriptional activity of the CCAAT-binding factor CBF is mediated by two distinct activation domains, one in the CBF-B subunit and the other in the CBF-C subunit. The Journal of Biological Chemistry, 1996(271): 14485-14492
    49. de Win AH N, Knuiman B, Pierson ES, Geurts H, Kengen H M P, Derksen J. Development and cellular organization of Pinus sylvestris pollen tubes. Sexual Plant Reproduction, 1996(9): 93-101
    50. Dehesh K, Smith L G, Tepperman J M, et al. Twin autonomous bipartite nuclear localization signals direct nuclear import of GT-2. The Plant Journal,1995(8):25-36
    51. Derksen J,Rutten TL,Lichtscheidl IL,De win AHN,Pierson ES, Rongen GM. Organelle distribution,exocytosis and endocytosis in tobacco pollen tubes. Protoplasma, 1995a(188): 267-276
    52. Derksen J. Pollen tubes: a model system for plant cell growth. Botanica Acta, 1996(109) : 341-345
    53. Derksen J, Van Amstel ANM, Rutten ALM, Knuiman B, Li YQ, Pierson ES. Pollen tubes: cellular organization and control of growth. In: Clement C, Pacini E, Audran J C eds. Anther and pollen. New York: Springer 1999a(161): 161-174
    54. Derksen J LY, Knuiman B, Geurts H. The wall of Pinus sylvestris L. pollen tubes. Protoplasma, 1999b(208): 26-36
    55. Dorn A, et al. A multiplicity of CCAAT box binding proteins. Cell,1987(50): 863-935
    56. Eulgem T, Rushton P J, Robatzek S et al. The WRKY superfamily of plant transcription factors. Trends in Plant Science, 2000(5):199-207
    57. Ferguson C,Teeri T T,Siika-Aho M,Read S M,Bacic A. Location of cellulose and callose in polen tubes and grains of Nicotiana tabacum. Planta, l998(206): 452- 460
    58. Foraburg SL , Guarente L. Identification and characterization of HAP4 : A thirdcomponent of the CCAAT-bound HAP2/ HAP3 heteromer.Genes & development, 1989(3) : 1166-1178
    59. Franklin-Tong VE, Drobak BK, Allan AC, Watkins PAC, Trewavas AJ. Growth of pollen tubes of papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1, 4, 5-trisphosphate. The Plant Cell ,1996(8): 1305-1321
    60. Franklin-Tong VE. Signaling and the modulation of pollen tube growth. The Plant Cell, 1999(11):727-738
    61. Frontini M, Imbriano C, Manni I, Mantovani R.Cell cycle regulation of NF-YC nuclear localization. Cell Cycle,2004(3): 217–222
    62. Fulton, C., and Simpson, P.A. Selective synthesis and utilization of flagellar tubulin. The multi-tubulin hypothesis. In Cell Motility, R. Goldman, T. Pollard, and J. Rosenbaum, eds (Cold Spring Harbor, NY Cold Spring Harbor Laboratory), 1976, pp. 987-1005
    63. Geisler M, Bailly A. Tete-a-tete: the function of FKBPs in plant development. Trends in Plant Science ,2007(12): 465-473
    64. Geitmann A, Huda KJ, Vennigerhlz F, Walles B. Immunogold localization of pectin and callose in pollen grains and pollen tubes of Brugmansia suaveolens-implications for the selfincompatibility reaction. Plant Physiology,1995(147):225-235
    65. Geitmann A,Hudak J,Venningerholz F,Waues B. Immunogold localization of pectin and callose pollen grains and pollen tubes of Brugmansia suaveolens :implications for theself incompatibility reaction. Plant Physiology ,1995a (147):225-235
    66. Goff S A, Cone K C and Fromm M E. Identification of functional domains in the maize transcriptional activator C1: comparison of wild-type and dominant inhibitor proteins. Genes & development ,1991(5):298-309
    67. Grotewold E, Chambérlin M, Snook M et al. Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. The Plant Cell, 1998(10):171-182
    68. Guilfoyle T J. The structure of plant gene promoters. Genetic Engineering,1997(19):15-47
    69. Hasunuma K and Funadera K. GTP-binding protein(s) in green plant, Lemna paucicostata. Biochemical and biophysical research communications, 1986 (148): 908-912
    70. Heslop-Harrison J, Heslop-Harrison Y, Cresti M, Tiezzi A and Moscatelli A. Cytoskeletal elements, cell shaping and movement in the angiosperm pollen tube. Journal of Cell Science,1988( 91): 49-60
    71. Heslop-Harrison J. Pollen germination and pollen tube growth. International review of cytology ,1987 (107): l-78
    72. Holdaway-Clarke TL, Feijo JA, Hackett GR, Kunkel JG, Hepler PK. Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. The Plant Cell,1997(9):1999-2010
    73. Holdaway-Clarke TL, Weddle NM, Kim S, Robi A, Parris C, Kunkel JG, Hepler PK. Effect of extracellular calcium, pH and borate on growth oscillations in Lilium formosanum pollen tubes. Journal of Experimental Botany,2003(54):65-72
    74. Ishida T, Kaneko Y, Iwano M, Hashimoto T. Helical microtubule arrays in a collection of twisting tubulin mutants of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2007 (104): 8544-8549
    75. Jeon J S Lee S Jung K H et al. Tissue-preferential expression of a riceα-tubulin gene, osTubA1, mediated by the first intron. Plant Physiology, 2000(123): 1005-1014
    76. Job D., Valiron O., Okaley B. Microbubule nucleation. Current Opinion in Cell Biology,2003(15):111-117
    77. Joos U, van Aken J, Kristen U. Microtubules are involved in maintaining the cellular polarity in pollen tubes of Nicotiana sylcetris. Protoplasma,1994(179):5-15
    78. Kahle J, Baake M, Doenecke D, Albig W.Subunits of the heterotrimeric transcription factor NF-Y are imported into the nucleus by distinct pathways involving importin beta and importin 13. Molecular and Cellular Biology,2005(25): 5339–5354
    79. Kahle J, Baake M, Doenecke D, et al. Subunits of the heterotrimeric transcription factor NF-Y are imported into the nucleus by distinct pathways involving importin beta and importin 13. Molecular and Cellular Biology,2005(25): 5339-5393
    80. Kang M S, Choi Y J, Kim M C, et al. Isolation and characterization of twoβ–tubulin cDNA clones from rice. Plant Molecular Biology,1994(26): 1975-1979
    81. Kater M M, Colombo L, Franken J et al. Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate. The Plant Cell, 1998(10):721-728
    82. Kerr GP, Carter JV. Tubulin isotypes in rye roots are altered during cold acclimation. Plant Physiology,1990(93): 83-88
    83. Kim IS, et al. Determination of functional domains in the C subunit of the CCAAT-binding factor (CBF) necessary for formation of a CBF-DNA complex: CBF-B interacts simultaneously with both the CBF-A and CBF-C subunits to form a heterotrimeric CBF. Molecular and Cellular Biology, 1996(16): 4003-4015
    84. Kopczak SD, Haas NA, Hussey PJ, Silflow CD, Snustad DP. The small genome of Arabidopsis contains at least six expressed alpha-tubulin genes. The Plant Cell,1992(4): 539-547
    85. Kopczak SD, Haas NA, Hussey PJ, Silflow CD, Snustad DP. The small genome of Arabidopsis contains at least six expressed alpha-tubulin genes. The Plant Cell,1992(4): 539-547
    86. Kriz A L, Wallace M S and Paiva R. Globulin gene expression in embryos of maize vivparous mutants. Plant Physiology,1990(92):5538-5542
    87. Laitiainen E, Nieminen KM, Vihinen H, Raudaskoski M. Movement of generative cell and vegetative nucleus in tobacco pollen tubes is dependent on microtubule cytoskeleton but independent of the synthesis of callose plugs. Sexual Plant Reproduction, 2002(15):195-204
    88. Lancelle SA,Hepler PK. Ultrastructure of freeze-substituted pollen tubes of LiliumLongiflorum. Protoplasma, l992(167): 215-230
    89. Lancelle SA, Cresti M, Hepler PK. Growth inhibition and recovery in freeze-substituted Lilium longiflorum pollen tubes: structural effects of caffeine. Protoplasma, (1997)196: 21-33
    90. Lazzaro MD,Cardenas L, Bhatt AP, Justus CD, Phillips MS, Holdaway-Clarke TL, Hepler PK.Calcium gradients in conifer pollen tubes; dynamic properties differ from those seen in angiosperms. Journal of Experimental Botany,2005(56):2619-2628
    91. Lazzaro MD. Microtubule organization in germinated pollen of the conifer Picea abies (Norway spruce, Pinaceae). American Journal of Botany ,1999(86): 759-766
    92. Lee H, Fischer RL, Goldberg RB, Harada JJ. Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 2003(100): 2152–2156
    93. Li YQ,Faler C,Geitmann A,Zhang HQ,Cresti M. Immunogold localization of ambinogalactan proteins,unesterified and estefified pectins in pollen grains and pollen tubes of Nicotiana tabactum L.Protoplasma,1995b(189): 26-36
    94. Liu G Q , Cai G et al . Kinesin - related polypeptide is associated with vesicles from Corglus avellana pollen. Cell Motility and the Cytoskeleton, 1994(29) :155-156
    95. Liu L, White M J and MacRae T H. Transcription factors and their genes in higher plants. European Journal of Biochemistry,1999(262):247-257
    96. Logemann E, Parniske M and Hahlbrock K. Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley. Proceedings of the National Academy of Sciences of the United States of America, 1995(92):5905-5909
    97. Ludwig SR, Oppenheimer DG, Silflow CD et al . Characterization of theα-tubulin gene family of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 1987 (84):5833-5837
    98. Lyck R, Harmening U, Hohfeld I et al. Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors. Planta, 1997(202):117-125
    99. Maity S N, de Crombrugghe B. Biochemical analysis of the B subunit of the heteromeric CCAAT-binding factor. A DNA-binding domain and a subunit interaction domain are specified by two separatesegment. The Journal of Biological Chemistry, 1992(267): 8286-8378
    100.Maity SN, de CrombruggheB. Purification, characterization, and role of CCAAT-binding factor in transcription. Methods in Enzymology,1996(273): 217-232
    101.MalhóR., Read N.D., Pais M.S., and Trewavas A.J. Role of cytosolic free calcium in the reorientation of pollen tube growth. The Plant Journal,1994(5):331-341
    102.MalhóR., Read N.D., Trewavas A.J., and Pais M.S. Calcium channel activity during pollen tube growth and reorientation. The Plant Cell , 1995(7):1173-1184
    103.Malho R, Read ND, Trewavas AJ, Salome-Pais MS. Localized apical increases of cytosolic free calcium control pollen tube orientation. The Plant Cell,1996(8): 1935-1949
    104.Malho R. Pollen tube guidance-the long and winding road. Sexual Plant Reproduction, 1998(11): 242-244
    105.Maria Carla Motta, Giuseppina Caretti, Gian Franco Badaracco, et al. Interactions of the CCAAT-binding Trimer NF-Y with Nucleosomes. The Journal of Biological Chemistry, 1999(274): 1326-1333
    106.Masashi KATO.An overview of the CCAAT-Box binding factor in filamentous fungi: assembly, nuclear trnanslocation, and transcriptional enhancement. Bioscience, biotechnology, and biochemistry, 2005(69): 663-672
    107.Mascarenhas JP. Molecular mechanisms of pollen tube growth and differentiation. The Plant Cell,1993(5): 1303-1314
    108.McCann MC SJ, Roberts K, Carpita NC. Changes in pectin structure and localizationduring the growth of unadapted and NaCl-adapted tobacco cells. The Plant Journal,1994(5): 773-785
    109.McNabb DS, Xing Y, Guarente L. Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes & Development1995(9) : 47-58
    110.Meshi T and Iwabuchi M. Plant transcription factors. Plant Cell Physiology,1995(36):1405-1420
    111.Messerli MA, Creton R, Jaffe LF, Robinson KR. Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth. Developmental Biology, 2000(222):84-98
    112.Nantel A and Quatrano R S. Characterization of three rice basic/leucine zipper factors, including two inhibitorts of EmBP-1 DNA-binding activity. The Journal of Biological Chemistry,1996(271):31296-31305
    113.Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, et al . Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proceedings of the National Academy of Sciences of the United States of America, 2007(104): 16450–16455
    114.Oakley RV, Wang YS, Ramakrishna W, Harding SA, Tsai CJ. Differential expansion and expression of alpha- and beta-tubulin gene families in Populus. Plant Physiology ,2007(145): 961-973
    115.Palevitz BA, Tiezzi A. Organization, composition and function of the generative cell and sperm cytoskeleton. International review of cytology, 1992(140):149-185
    116.Parre E, Geitmann A. Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta, 2005(220): 582-592
    117.Paul G., The extended tubulin superfamily. Journal of Cell Science,2001(114):2723-2733
    118.Peng Y, Jahroudi N.The NFY transcription factor functions as a repressor and activator of the von Willebrand factor promoter. Blood,2002(99): 2408–2417
    119.Peng Y, Jahroudi N.The NFY transcription factor inhibits von Willebrand factor promoter activation in non-endothelial cells through recruitment of histone deacetylases. The Journal of Biological Chemistry,2003(278): 8385–8394
    120.Phung AD, Soucek K, Kubala L, Harper RW, Chloe Bulinski J, Eiserich JP. Posttranslational nitrotyrosination of alpha-tubulin induces cell cycle arrest and inhibits proliferation of vascular smooth muscle cells. European Journal of Cell Biology, 2006(85): 1241-1252
    121.Pierson ES,Cresti M. Cyteskeleton and cytoplasmic organization of pollen and pollen tubes. International review of cytology, l992(140):73- l25
    122.Pierson ES, Miller DD, Callaham DA, Shipley AM, Rivers BA, Cresti M, Hepler PK. Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. The Plant Cell,1994(6):1815-1828
    123.Pierson ES, Miller DD, et al. Tip-localized calcium entry fluctuates during pollen tube growth. Development Biology ,1996(174):160-73
    124.Radchuk V, Sreenivasulu N, Blume Y, Weschke W. Cloning and expression of the tubulin genes in barley. Cell biology international ,2008(32): 557-559
    125.Rae A. Composition of the cel walls of Nicotiana alata Link et Otto pollen tubes.Planta, 1985(166): 128-138
    126.Raff EC .Genetics of microtubule systems. Journal of Cell Biology,1984(99): 1-10
    127.Raudaskoski M, ?str?m H, Pertill? K, Virtanen I, Louhelian J. 1987, Role of the microtubule cytoskeleton in pollen tubes: an immunocytochemical and ultrastructural approach. Biology of the Cell,1987(61):177-188
    128.Raudaskoski M, ?str?m H, Laitiainen E. Pollen tube cytoskeleton: structure and function.Journal of Plant Growth Regulation,2001(20): 113-130
    129.Riechmann J L, Heard J, Martin G et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes. Science, 2000(290):2105-2110
    130.Sainz M B, Goff S A and Chandler V L. Extensive mutagenesis of a transcriptional activation domain identifies single hydrophobic and acidic amino acids important for activation in vivo. Molecular and Cellular Biology,1997(17):115-122
    131.Savage C, Hamelin M, Culotti JG, Coulson A, Albertson DG, Chalfie M. mec-7 is a beta-tubulin gene required for the production of 15-protofilament microtubules in Caenorhabditis elegans. Genes & Development,1989(3): 870-881
    132.Schroder J, Stenger H, Wernicke W. Alpha-tubulin genes are differentially expressed during leaf cell development in barley (Hordeum vulgare L.). Plant Molecular Biology, 2001(45): 723-730
    133.Schultz T F, Spiker S and Quatrano R S. Histone H1 enhance the DNA binding activity of the transcription factor EmBP-1. Journal of Biological Chemistry. 1996, (271):25742-25745
    134.Seagull RW. A quantitative electron microscopic study of changes in microtubule arrays and wall microfibfil orientation during in vitro cotton fiber development. Journal of Cell Science,1992(101):561-577
    135.Seagull RW. Changes in microtubule organization and wall microfibril orientation during in vitro cotton fiber development: an immunofluorescent study. Canadian Journal of Botany, 1986(64):1373-1381
    136.Seagull RW. The effects of microtubule and microfilament disrupting agents on cytosketetal arrays and wall deposition in developing cotton fibers. Protoplasma. 1990,(159):44-59
    137.Siefers N, Dang KK, Kumimoto RW, Bynum WEt, Tayrose G, Holt BFⅢ. Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity. Plant Physiology,2009(149):625-641
    138.Simonds D, Setterfield G, Brown DL. Organization of microtubules in dividing and elongating cells of Vicia hajastana Grossh in suspension culture. European Journal of Cell Biology ,1983 (32):59-66
    139.Singh H. Embryology of gymnosperms. Gebrer Borntraeger, Berlin (Handbuch der Pflanzenanatomie 1978, vol 10, part 2).
    140.Sinha S, et al. Three classes of mutations in the A subunit of the CCAAT-binding factor CBF delineate functional domains involved in the three-step assembly of the CBF-DNA complex. Molecular and Cellular Biology,1996(16): 328-337
    141.Sinha S, Kim IS, Sohn Kyetal. Three classes of mutations in the A subunit of the CCAAT-binding factor CBF delineate functional domains involved in the three-step assembly of the CBF-DNA complex. Molecular and Cellular Biology,1996(16): 328-365
    142.Snustad DP, Haas NA, Kopczak SD, Silflow CD. The small genome of Arabidopsis contains at least 9 expressed beta-tubulin genes. The Plant Cell,1992(4): 549–556
    143.Steer MW and Steer JM. Pollen tube tip growth. New Phytologist, 1989(111): 323-325
    144.Su M, Bansal AK, Mantovani R. Recruitment of nuclear factor Y to the inverted CCAAT element (ICE) by c-Jun and E1A stimulates basal transcription of the bone sialoprotein gene in osteosarcoma cells. Journal of Biological Chemistry. 2005,280(46): 38365-38440
    145.Tao LZ, Cheung AY, Wu HM. Plant Rac-like GTPases are activated by auxin and mediate auxin-responsive gene expression. The Plant Cell ,2002(14): 2745-60
    146.Taylor LP,Hepler PK. Pollen germination and tube growth. Annual Review of Plant Physiology and Plant Molecular Biology,l997(48): 461-491
    147.Taylor M A, Wright F, Davies H V. Characterization of the cDNA clones of twoβ-tubulin genes and their expression in the potato plant (Solanum tuberosum L.). Plant Molecular Biology, 1994(26): 1013-1018
    148.Terasaka O, Niitsu T Differential roles of microtubule and actin-myosin cytoskeleton in the growth of Pinus pollen tubes. Sexual plant reproduction ,1994(7): 264-272
    149.Thirumurugan T, Ito Y, Kubo T, Serizawa A, Kurata N. Identification, characterization and interaction of HAP family genes in rice. Molecular genetics and genomics , 2008(279):279-289
    150.Tiezzi A. The pollen tube cytoskeleton. Electron Microscopy Reviews,1991(4):205-219
    151.UwateWJ,Lin J. Cytological zonation of Prunus avium L.pollen tube in vivo.Journal of ultrastructure research, 1980(71):173-l84
    152.Van AA. Construction of plant cell walls . Ph.D.thesis. Catholic University Nijmegen.The Netherlands. 1994
    153.Varanona M J, Schmidt R J and Raikhel N V. Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2. The Plant Cell, 1992 (4):1213-1227
    154.Villemur R, Haas N A, Joyce C M, et al. Characterization of four new -tubulin genes and their express-ion during male flower development in maize(Zea mays L.) Plant Molecular Biology, 1994(24): 295-315
    155.Vincentz-Carbajosa J, Moose S P, Parsons R L et al. A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proceedings of the National Academy of Sciences of the United States of America, 1997(94):7685-7690
    156.Wang QL, Lu LD, Wu XQ, Li YQ, Lin JX. Boron influences pollen germination and pollen tube growth in Picea meyeri.Tree Physiology,2003(23): 345-351
    157.Weinstein B, Solomon F. Phenotypic consequences of tubulin overproduction in Saccharomyces cerevisiae: differences between alpha-tubulin and beta-tubulin. Molecular and cellular biology, 1990(10): 5295-5304
    158.Weisenberg RC, Borisy GG, Taylor EW.The colchicine-binding protein of mammalian brain and its relation to microtubules. Journal of Biochemistry,1968(7): 4466-4479
    159.Weisenberg RC, Deery WJ, Dickinson PJ. Tubulin-nucleotide interactions during thepolymerization and depolymerization of microtubules. Journal of Biochemistry, 1976(15):4248-4254
    160.Weisenberg RC. Microtuble formation in vitro in solutions containing low calcium concentrations. Science,1972(177):1104-1105
    161.Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. The Plant Cell, 2006(18): 2971–2984
    162.Whittaker DJ, Triplett BA. Gene-specific changes in alpha-tubulin transcript accumulation in developing cotton fibers. Plant Physiology,1999(121): 181-188
    163.Whittaker DJ, Triplett BA.Gene-specific changes in alpha-tubulin transcript accumulation in developing cotton fibers. Plant Physiology,1999(121): 181-188
    164.Wymer CL , Wymer SA , Casgrove DJ et al . Plant cell growth responds to external forces and the response requires intact microtubules. Plant Physiology, 1996 (110):425-430
    165.Xing SP, Zhang Q, Hu YX, Chen ZK, Lin JX. The mechanism of pollination in Platycladus orientalis and Thuja occidentalis (Cupressaceae). Acta Botanica Sinica, 1999(41): 130-132
    166.Xing Y, Fikes JD, Guarente L. Mutations in yeast HAP2/ HAP3 define a hybrid CCAAT box binding domain.The EMBO Journal , 1993(12) : 4647-4655
    167.Yang L, Huang WH, Wang H, Cai R, Xu YQ, Huang H. Characterizations of a hypomorphic argonaute1 mutant reveal novel AGO1 functions in Arabidopsis lateral organ development. Plant Molecular Biology,2006(61):63-78
    168.Yazawa K, Kamada H. Identification and characterization of carrot HAP factors that form a complex with the embryo-specific transcription factor C-LEC1. Journal of Experimental. Botany,2007(58): 3819-3828
    169.Yu HS, Russell SD. Three-dimensional ultrastructure of generative cell mitosis in the pollen tube of Nicotiana tabacum. European Journal of Cell Biology,1993(61): 338-348
    170.Zhang LY, Hao HQ, Wang QL, Fang KF, Hou ZX, Lin JX. The localization of Rac GTPase in Picea wilsonii pollen tubes implies roles in tube growth and the movement of the tube nucleus and sperm cells. Plant Science, 2007(172):1210-1217
    171.Zheng ZL, Yang Z. The Rop GTPase: an emerging signaling switch in plants. Plant Molecular Biology , 2000(44): 1-9
    172.Zonia L, Cordeiro S, Tupy J, Feijo JA. Oscillatory chloride efflux at the pollen tube apex has a role in growth and cell volume regulation and is targeted by inositol 3,4,5,6-tetrakisphosphate. The Plant Cell,2002(14): 2233-2249
    173.Zonia L, Muller M, Munnik T. Hydrodynamics and cell volume oscillations in the pollen tube apical region are integral components of the biomechanics of Nicotiana tabacum pollen tube growth. Cell Biochemistry and Biophysics, 2006(46): 209-232

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700