用户名: 密码: 验证码:
棉花金属硫蛋白基因GhMT3a的功能分析及拟南芥与水稻蛋白质磷酸酶PP2C基因家族分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非生物胁迫是影响植物生长发育和产量的重要环境因素,而其中又以干旱、低温和盐渍的影响最为严重。植物在长期的进化过程中形成了一套主动的防御机制,能够识别逆境信息并通过信号传递最终调节植物的生长发育,从而抵御不良环境的影响。植物在逆境下通常伴随大量活性氧(ROS)的产生。一方面活性氧自由基作为信号分子有效地传递逆境信号,另一方面活性氧自由基水平的升高又会对植物造成伤害。目前,关于活性氧自由基介导的基因调控的研究很少,活性氧自由基在植物胁迫中的功能有待于进一步的探索。
     金属硫蛋白(Metallothionein,MT)是一类低分子量(6000~9000Da)、高Cys含量、具有金属结合能力的多肽,它具有独特的氨基酸排列顺序,即多肽的N端和C端具有两个富含Cys的金属结合结构域,其中的Cys按CX_nC的方式排列。研究表明在动物和真菌中MT在很多生理过程中发挥作用,包括细胞内激素平衡、氧化胁迫、离子伤害。近来,不断有研究证明植物MT也具有相似的功能。棉花是一种古老的纤维用经济作物,它具有广泛的应用价值和研究价值。本文以耐盐棉花品种中棉19(ZM19)为试验材料,通过反向northern差异筛选法从盐诱导棉花幼苗叶片cDNA文库中分离得到了一个与胁迫相关的克隆,通过序列比对发现该基因编码一种金属硫蛋白,命名为GhMT3a。并对该基因的功能和分子机制进行了探索。
     蛋白磷酸酯酶2C(PP2C)是蛋白磷酸酯酶中的一大类,广泛参与逆境信号的传递过程。迄今为止,对植物PP2C蛋白的研究只是局限于个别基因的鉴定与功能分析,没有研究从基因组水平对此基因家族进行分析。拟南芥和水稻的基因组测序的完成为全面的分析和对比双子叶和单子叶植物基因家族提供了条件。本研究中以已知PP2C基因的序列作为检索条件,利用BLAST查找其同源序列,检索了模式植物拟南芥和水稻的基因组,获得编码PP2C蛋白的基因。得到的结果用SMART或者Pfam检测序列中的PP2C元件,最后从拟南芥和水稻基因组中分别鉴定到80个和78个PP2C基因。在此基础上,我们做了基因家族的分类、染色体的定位、表达模式分析以及基因上游调控序列等方面的研究。主要结果如下:
     1.通过反向northern差异筛选盐胁迫诱导棉花幼苗叶片cDNA文库获得的一个编码63个氨基酸的基因。该基因编码蛋白与植物中金属硫蛋白具有很高的同源性,具有典型的植物3类金属硫蛋白序列特点,命名GhMT3a。
     2.Northern blot表达分析表明GhMT3a能被NaCl、低温、干旱、CuSO_4、ZnSO_4、百草枯(PQ)、过氧化氢(H_2O_2)、ABA和乙烯等多种胁迫及激素信号诱导表达,而抗氧化剂N-乙酰基-L-半胱氨酸(N-Acetyl-L-cysteine,NAC)能够有效的抑制NaCl、低温、干旱胁迫对GhMT3a诱导。对过氧化氢相对水平的测定结果表明NAC能够有效地降低NaCl、低温、干旱胁迫条件下棉花幼苗中ROS水平。这些结果说明GhMT3a具有金属硫蛋白受重金属诱导的功能,ROS是非生物胁迫诱导GhMT3a表达的重要信号物质。
     3.同野生型相比,过量表达GhMT3a的转基因烟草能在200、300 mM NaCl,4℃,25%PEG条件下更好的生长。而胁迫条件下,转基因烟草中的H_2O_2水平远低于野生型烟草。过量表达GhMT3a能够有效的提高转基因酵母对PQ和H_2O_2的抗性。这些结果说明GhMT3a能够在真核细胞内有效地清除ROS,维持ROS平衡从而提高植物对非生物胁迫的抗性。
     4.对GhMT3a体外结合Zn~(2+)能力的测定表明每个GhMT3a蛋白最多能结合5个锌离子,说明GhMT3a具有金属硫蛋白家族结合金属离子的特性。
     5.利用BLAST同源检索分别从模式植物拟南芥和水稻中鉴定到80和78个PP2C基因。neighbor-joining法分别构建拟南芥和水稻中PP2C基因家族的系统发生树,根据分支上的解靴带值将拟南芥与水稻的PP2C家族分别分为13与11个亚家族,基因结构和蛋白质元件分析结果都支持这一分类。对拟南芥和水稻中PP2C基因的对比分析表明拟南芥的PP2C 13个亚家族在水稻PP2C家族中都能找到同源基因,说明植物中PP2C各个亚家族在单子叶和双子叶植物分化之前已经形成。
     6.利用网络数据库分别将拟南芥和水稻中的PP2C基因在染色体上进行了定位。通过对复制区域的PP2C基因的分析与对比发现,基因组加倍事件对单子叶和双子叶PP2C基因家族的形成都发挥了重大的作用。但是,基因的串联复制对水稻中的PP2C基因家族的形成的影响更为明显。
     7.利用MEME元件分析工具对拟南芥和水稻中的PP2C基因家族分析获得11个保守的元件序列。大部分元件广泛分布PP2C基因家族成员中。而个别元件仅仅存在于少数几个亚家族中。这种差异为研究不同亚家族之间功能的差别提供了线索。
     8.利用Genevestigator,MPSS和EST的公共数据库资源统计了拟南芥中PP2C基因的组织表达模式。根据表达模式的差异可以将PP2C基因分为三类,第一类的基因在四种检测的组织中都有表达,这类基因在拟南芥中有49个,第二类包括拟南芥中的28个基因,这些基因只在部分组织中表达;第三类的基因是组织特异表达的基因,包括3个拟南芥中的PP2C基因。同样,根据表达模式的差异,水稻中的PP2C基因也可以分为三类,分别包含27、45、6个PP2C成员。这些结果说明多数PP2C家族成员在植物发育的不同阶段发挥功能。
     9.通过Genevestigator上的芯片数据分析拟南芥PP2C基因家族所有成员在ABA及数种胁迫信号条件下的表达模式。与其他亚家族不同,亚家族A所有成员都能够被ABA和数种胁迫信号诱导表达。RT-PCR实验表明ABA和胁迫处理条件下水稻亚家族A成员的表达也受到了明显的诱导。这些结果说明单子叶和双子叶植物中PP2C亚家族A的成员在ABA介导的胁迫信号传导中发挥着重要的作用。
     10.利用网络数据库以及矩阵频率对拟南芥和水稻亚家族A中19个基因转录起始位点上游1000bp调控序列进行了详细的分析。结果表明它们都含有ABA响应元件(ABRE),为这些基因在ABA信号途径中发挥功能提供了证据。其他调控元件,比如茉莉酸酮酯响应元件(TGACG motif),在水稻和拟南芥中的分布存在显著差异,暗示单子叶和双子叶植物PP2C基因家族存在不同的调控模式。
Abiotic stresses such as low temperature,drought and high salt,influence plant growth, productivity and development.To survive these challenges,plants have developed elaborate mechanisms to perceive external signals and to manifest adaptive responses with the proper physiological and morphological changes.One of the most common and crucial consequences is the generation of ROS in plants,which can elicit a potentially damaging oxidative burden on cellular constituents and/or act as signals for engaging mechanisms that ameliorate oxidative stress.Although the deleterious effects of ROS have long been known,knowledge on the molecular mechanisms of ROS-mediated gene regulations is limited and whether they play different roles in plant stress response have remained largely unexplored.
     Cotton is one of the most important economic crops in our country.People are always interested in identifying and developing new cotton breed to make it can be widely cultivated in saline-alkali soil.Metallothioneins(MTs) are defined as a family of proteins with the characteristics of low molecular weight,high cysteine(Cys) residue content,and metal-binding ability.Plant MT proteins are distinguishable on the basis of the distribution of cysteine residues in their amino acid sequences.In animals,MTs are ubiquitous proteins associated with numerous cellular functions,including the regulation of metal homeostasis in cells and the response to metal toxicity and oxidative stress.In fungi,MTs have been proposed to be primarily involved in the response to metal toxicity or as general stress proteins.Recently,increasing numbers of reports have indicated that plant MTs may play important roles as they do in animals and fungi.In this research,a cDNA library was constructed by using mRNA isolated from salt-induced cotton seedlings and screened by differential hybridization.A cDNA clone,GhMT3a,which encodes a 64-amino acid type 3 plant MT,was isolated and characterized.
     Protein phosphatases(PPs),by reversing the action of protein kinases,provide modulations of protein phosphoregulation.The protein phosphatase 2Cs(PP2Cs) from various organisms have been implicated involved in diverse environmental stress responses and developmental processes.To date,a genome-wide overview of the PP2C gene family in plants is not yet available.In this study,we performed multiple BLAST algorithms to search against the corresponding data set using the known PP2C proteins got from several database as our query.Then,we eliminated the proteins that did not contain the PP2C domains after detecting by SMART and Pfam.We further compared the rice and Arabidopsis PP2C genes to identify both shared and specific subfamilies.Following the analysis of gene structure and protein motifs,we traced gene duplication events that likely contributed to the expansion of the PP2C family.The expression patterns of the PP2Cs from rice and Arabidopsis were analyzed and compared.The upstream regulatory regions of the subfamily A members were finally analyzed in order to provide insight into the transcriptional regulation machineries that define the temporal and spatial expression and the stimuli responses.The main results are as follows:
     1.A cDNA clone,was isolated from a NaCl-induced cotton cotyledon cDNA library by differential hybridization screening.This clone showed high homology with type3 metallothein-like genes from various plants species.Our results indicated that this gene encodes a type3 MT protein,which was designated as GhMT3a.
     2.Northern blot analysis indicated that the mRNA accumulation of GhMT3a was induced by salt stress(NaCl),CuSO_4,ZnSO_4,low temperature(4℃),drought(25%PEG),ABA(abscisic acid),ethylene and H_2O_2 and paraquat(PQ).Interestingly,N-Acetyl-L-cysteine(NAC) as a kind of antioxidant,could effectively reduce not only ROS accumulation but also the GhMT3a transcript level induced by salinity,drought,and cold stresses.These results suggested that GhMT3a might be regulated directly by ROS production under abiotic stress conditions.
     3.The transgenic tobacco plants overexpressing GhMT3a exhibited enhanced tolerance against high salinity(200 and 300mM NaCl),low temperature(4℃) and drought(25%PEG) compared with WT plants.Moreover,H_2O_2 levels in transgenic tobacco plants were only half of those in WT plants under such stress conditions.The GhMT3a-overexpressing yeast cells were less sensitive to oxidants such as PQ and H_2O_2 than the control cells.These results suggested that GhMT3a could scavenge ROS effectively in eukaryotie cells and improved stress tolerance might be due to the keep of ROS balance in tobacco by overexpressing GhMT3a.
     4.A recombinant GST-GhMT3a fusion protein was constructed and expressed in E.coli. The purified GST,GhMT3a,and GST-GhMT3a fusion proteins were determined in vitro for their ability to bind metal ions.The results showed that the purified GhMT3a could bind Zn~(2+) ions in vitro and the binding capacity per GhMT3a molecule would be no more than five Zn~(2+).
     5.We used multiple BLAST algorithms to identify 80 and 78 PP2C family genes in Arabidopsis and rice,respectively.The phylogenetic trees of PP2C gene family were generated with the neighbor-joining method.Based on the statistical support of each branch, we divided the Arabidopsis and rice PP2C family into 13 and 11 subfamilies,respectively, which are supported by the analyses of gene structures and protein motifs.We further investigated the relationship between the Arabidopsis and rice PP2C protein families by the construction of a phylogenetic tree using the full-length protein sequences of 78 OsPP2Cs and 80 AtPP2Cs.The rice and Arabidopsis genes in each subfamily are thus more closely related to each other than to the PP2C genes of the same species from a different subfamily, suggesting that an ancestral set of PP2C genes defining each subfamily already existed before the monocot-eudicot divergence.
     6.Based on the chromosomal location information on Internet database,we localized Arabidopsis and rice PP2C genes in chromosomes.After analyzing the PP2C genes in duplicated segmental regions,we found whole genome and chromosomal segment duplications mainly contributed to the expansion of both OsPP2Cs and AtPP2Cs.But tandem or local duplication occurred more frequently in rice.
     7.Eleven motifs were identified shared among related proteins within the PP2C family using the MEME motif search tool.Some motifs are widespread among PP2C proteins and the others are specific to only one or two subfamilies.The different motif distribution in the respective protein sequences may provide an anchor to study the divergence of gene function in different subfamilies.
     8.We examined the expression of Arabidopsis PP2C genes in different tissure using Genevestigater,massively parallel signature sequencing(MPSS) and EST data.The expression of rice PP2C genes in different tissues were also summarized using MPSS and EST data. According to expression profiles,PP2C genes can be classified into three groups.The largest group is the genes that expressed in all tissues,including 49 genes in Arabidopsis and 27 genes in rice,and the second group contains 28 AtPP2Cs and 45 OsPP2Cs whose expression were detected in the majority,but not all,of the tissues.The third group includes 3 AtPP2Cs and 6 OsPP2Cs with tissue specific expression.
     9.The expression of all AtPP2Cs in response to ABA treatment and several environmental stimuli were examined using the Genevestigator microarray dataset.Unlike the PP2C genes from other subfamilies,all members from subfamily A were induced by several stimuli and ABA treatment.The expression pattern of the OsPP2C subfamily A genes using RT-PCR is in good agreement with the microarray data for Arabidopsis subfamily A members,suggesting that the members of this subfamily play foremost roles in ABA-mediated processes related to stress responses both in monocots and eudicots.
     10.The 1000-base-pair(bp) upstream promoter sequences of the 19 PP2C genes in subfamily A in Arabidopsis and rice were analyzed using the PlantCARE database and a frequency distribution approach.The abundance of ABA responsive elements in subfamily A PP2C gene promoters provides additional evidences for their role in ABA signaling.The different motif distributions in Arabidopsis and rice point to evolutionary divergent patterns of PP2C gene regulatory networks.
引文
1.方宣钧,海岛棉NBS-LR类抗病基因同源序列的克隆与定位[J]。分子植物种,2003,1(3)247-429.
    2.樊卫华,沈燕新,张中林等,棉花叶绿体70s核糖体S7蛋白基因的克隆和序列分析[J]。作物学报,1997,23:487-490.
    3.费云标,孙龙华等,沙冬青活性抗性蛋白的发现。植物学报,1994,36.640-650.
    4.何军贤,等,种子Lea蛋白的研究进展。植物生理学通讯,1996,32:241-246
    5.胡根海.,棉花基因克隆研究进展。棉花学报2005,17(4):5.
    6.江勇,等,抗冻蛋白及其在植物抗冻生理中的作用。植物学报,1999,7:687-692.
    7.卢存福,简令成,匡廷云,低温诱导唐古特红景天细胞分泌抗冻蛋白。生物化学与生物物理进展。2000,27:555-559
    8.孙大业,细胞信号转导。科学出版社,2001.
    9.孙小芳,刘友良,棉花品种耐盐性鉴定指标可靠性的检验。作物学报,2001,27:794-801.
    10.索金凤,普莉,梁小娥,等,棉花胚珠内种皮特异基因GhIAA16的分离鉴定。植物学报,2004,46,4:472-479.
    11.图礼莉,张献龙,朱龙付,等,海岛棉NBS类型抗病基因类似物的起源、多样性及进化[J]。遗传学报,2003,30(11):1071-1077.
    12.王爱国,等,活性氧对花生叶片大分子量DNA的损伤。植物生理学通讯,1993,29:260-262.
    13.王忠华,李旭晨,夏英武,作物抗旱的作用机制及其基因工程改良研究进展。生物技术通报,2002,1:16-19.
    14.肖月华,罗明,候磊,等,棉花类LRR抗病蛋白(GhLRR-RI_)基因的克隆及表达分析[J]。遗传学报,2002,29(7):653-658.
    15.尹明安,等,胡萝卜抗冻蛋白基因克隆及植物表达载体构建。西北农林科技大学学报,2001,29:6-10.
    16.张和臣,尹伟伦,夏新莉,非生物逆境胁迫下植物钙信号转导的分子机制。植物学通报,2007,24:9.
    17.Abel S,Savchenko T,Levy M.Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa.BMC Evol Biol 2005,5:72
    18.Aiyar A.The use of CLUSTAL W and CLUSTAL X for multiple sequence alignment.Methods Mol Biol 2000,132:221-241.
    19.Altschul SF,Gish W,Miller Wet al.Basic local alignment search tool.J Mol Biol 1990,215:403-410.
    20.Altschul SF,Madden TL,Schaffer AA et al.Gapped BLAST and PSI-BLAST:a new generation of protein database search programs.Nucleic Acids Res 1997,25:3389-3402.
    21.Anna M.Vetrano,Diane E.Heck,Thomas M.Mariano,Vladimir Mishin,Debra L.Laskin,and Jeffrey D.
    22.Laskin.Characterization of the Oxidase Activity in Mammalian Catalase.J Biol Chem,2005,280(42):35372-35381.
    23.Anthony DD,Merrick WC.Eukaryotic initiation factor(eIF)-4F.Implications for a role in internal initiation of translation.J Biol Chem,1991,266:10218-10226
    24.Apse MP,Aharon GS,Snedden WA,Blumwald E.Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiporter in Arabidopsis thaliana.Science,1999,285:1256-12582
    5.Arain AG,Baig MS,Rehman K.The performance of cotton strains under different fertility regimes.New Genetical Aproached to Crop Improvement Ⅱ 1998:435-444
    26.Ashraf M.Salt tolerance of cotton:some new advances.Crit Rev Plant Sci 2002,21:1-32
    27.Blanc G,Hokarnp K,Wolfe KH:A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome.Genome Res,2003,13(2):137-144.
    28.Bohnert,H.J.,and Sheveleva,E..Plant stress adaptations,making metabolism move.Curr.Opin.Plant Biol.1998,1,267-274.
    29.Bork,P.,Brown,N.P.,Hegyi,H.,and Schultz,J,The protein phosphatase 2C(PP2C)superfamily:detection of bacterial homologues.Protein Science,1996,5:1421-1425
    30.Bose,R.,Holbert,M.A.,Pickin,K.A.,and Cole,P.A,Protein tyrosine kinase-substrate interactions.Curr Opin Sturc Biol,2006,16:668-675
    31.Bothwell JH,Ng CK.The evolution of Ca~(2+) signalling in photosynthetic eukaryotes.New Phytol,2005,166,21-38.
    32.Boudsocq,M.,and Lauriere,C.,Osmotic signaling in plants:multiple pathways mediated by emerging kinase families.Plant Physiol,2005,138:1185-1194
    33.Braun,D.M.,Stone,J.M.,and Walker,J.C.,Interaction of the maize and Arabidopsis kinase interaction domains with a subset of receptor-like protein kinases:implications for transmembrane signaling in plants.Plant J,1997,12:83-95
    34.Brocard-Gifford,I.,Lynch,T.J.,Garcia,M.E.,Malhotra,B.,and Finkelstein,R.R.,The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 encodes a novel protein mediating abscisic acid and sugar responses essential for growth.Plant Cell,2004,16:406-421
    35.Cakmak I,Marschner H.Decrease in nitrate uptake and increase in proton release in zinc deficient cotton,sunflower and buckwheat plants.Plant and Soil,1990,129:261-268
    36.Chae HZ,Uhm TB,Rhee SG..Dimerization of thiol-specific antioxidant and the essential role of cysteine 47.Proc Natl Acad Sci USA,1994,91:7022-7026.
    37.Chen X,Meyerowitz EM.HUA1 and HUA2 are two members of the floral homeotic AGAMOUS pathway.Mol Cell,1999,3:349-360.
    38. Chen XL, Dai AH, Gong Q, Wang MN, Chen HE A study on chilling injury in medicinal plants region of South China Botanical Garden]. Zhong Yao Cai, 2008, 31: 1607-1610.
    
    39. Cherel I., Michard E., Platet N., Mouline K., Alcon C., Sentenac H., Thibaud J.,Physical and Functional Interaction of the Arabidopsis K~+ Channel AKT2 and Phosphatase AtPP2CA. Plant Cell, 2002, 14:1133-1146
    
    40. Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol, 2002, 53:159-182.
    
    41. Cobley LS, Steele WM. Vegetables and fibers. An introduction to the botany of tropical crops, 2nd ed. Longman, London. New York, 1976: 252-257.
    
    42. Cohen, P., The structure and regulation of protein phosphatases. Annual Review of Biochem. 1989,58:453-508
    
    43. Couee I, Sulmon C, Gouesbet G, El Amrani A. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot, 2006, 57:449-459.
    44. Diego A. Meloni, Marco A. Oliva, Carlos A. Martinez, Jose Cambraia. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Envir Experi Botany, 2003,49:69-76.
    45. Domenech J, Mir G, Huguet G, Capdevila M, Molinas M, Atrian S.. Plant metallothionein domains: functional insight into physiological metal binding and protein folding. Biochimie, 2006, 88: 583-593.
    46. Droillard, M., Boudsocq, M., Barbier-Brygoo, H., and Lauriere, C., Different protein kinase families are activated by osmotic stresses in Arabidopsis thaliana cell suspensions. Involvement of the MAP kinases AtMPK3 and AtMPK6. FEBS lett, 2002, 527:43-50
    47. Duncan, L., Alper, S., Arigoni, F., Losick, R., and Stragier, P., Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division. Science, 1995,270: 641-644
    48. DuPont FM. Salt-induced changes in ion transport: regulation of primary pumps and secondary transporters. In: Transport and Receptor Proteins of Plant Membranes Molecular Structure and Function. Cooke DT and Clarkson DT. Eds. Plenum Press, New York 1992,97-100.
    49. Feng Q, Zhang Y, Hao P et al. Sequence and analysis of rice chromosome 4. Nature , 2002, 420:316-320.
    50. Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inze D, Mittler R, Van Breusegem F. ranscriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol, 2006, 141: 436-445,
    51. Garcia-Hemandez M, Murphy A, Taiz L. Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiol, 1998,118: 387-397.
    52. Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J, 1998.16: 433-442.
    53. Goff SA, Ricke D, Lan TH et al. A draft sequence of the rice genome (Oryza sativa L. ssp. Japonica). Science, 2002,296: 92-100.
    
    54. Gong M, Li YJ, Dai X, Tian M, Li Z G. Involvement of calcium and calmodulin in the acquisition of heat shock induced thermotolerance in maize. Plant Physiol, 1997,150:615-621
    
    55. Gossett DR, Millhollon EP, Lucas MC. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci, 1994, 34:706-714
    
    56. Gaits, F., Shiozaki, K., and Russell, P., Protein phosphatase 2C acts independently of stress-activated kinase cascade to regulate the stress response in fission yeast. J of Biol Chem, 1997,272: 17873-17879
    57. Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol, 2002, 350:87-96
    58. Gilchrist, Czubryt, Pieerce. Calcium and calcium-binding proteins in the nucleus. Mol. Cell Biochem 1994,135,10.
    59. Gonzalez-Garcia, M.P., Rodriguez, D., Nicolas, C., Rodriguez, P.L., Nicolas, G., and Lorenzo, O.,Negative regulation of abscisic acid signaling by the Fagus sylvatica FsPP2Cl plays a role in seed dormancy regulation and promotion of seed germination. Plant Physiol, 2003, 133: 135-144.
    60. Grennan AK. Genevestigator. Facilitating web-based gene-expression analysis. Plant Physiol, 2006,141:1164-1166.
    61. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, A draft sequence of the rice genome (Oryza sativa L. ssp. Japonica). Science, 2002, 296(5565) :92-100.
    62. Gosti, F., Beaudoin, N., Serizet, C., Webb, A.A., Vartanian, N., and Giraudat, J., ABU protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell, 1999,11: 1897-1910.
    63. Gupta, A., and Sharma, A.C., Metalloendopeptidase inhibition regulates phosphorylation of p38-mitogen-activated protein kinase and nitric oxide synthase in heart after endotoxemia. Mol Cell Biochem, 2003,20: 375-381.
    64. Gupta, R., Huang, Y., Kieber, J., and Luan, S., Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis. Plant J, 1998,16: 581-589.
    65. Guyot R, Keller B: Ancestral genome duplication in rice. Genome, 2004,47(3):610-614.
    66. Fan B, Cheung GS, Fan M, Gutmann JL, Bian Z. 2004. C-shaped canal system in mandibular second molars: Part I--Anatomical features. J Endod, 30,899-903.
    67. Fan LM, Zhao Z, Assmann SM: Guard cells: a dynamic signaling model. Curr Opin Plant Bio, 2004, 7(5): 537-546.
    68. Finkelstein RR, Gampala SS, Rock CD: Abscisic acid signaling in seeds and seedlings. Plant Cell, 2002, 14(Suppl: S15-45.
    69. Franklin RB, Zou J, Ma J, Costello LC. Protein kinase C alpha, epsilon and AP-1 mediate prolactin regulation of mitochondrial aspartate aminotransferase expression in the rat lateral prostate. Mol Cell Endocrinol, 2000,170: 153-161.
    70. Foyer CH, Descourvierres P, Kunert KJ. Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ, 1994, 17: 507-523.
    71. Fukukawa, C., Shima, H., Tanuma, N., Ogawa, K., and Kikuchi, K., Up-regulation of I-2(PP2A)/SET gene expression in rat primary hepatomas and regenerating livers.Cancer letters, 2000,161:89-95.
    72. Harden N, Loh HY, Chia W, Lim L. A dominant inhibitory version of the small GTP-binding protein Rac disrupts cytoskeletal structures and inhibits developmental cell shape changes in Drosophila. Development, 1995, 121: 903-914.
    73. Hasegawa, P.M., Bressan, R.A., Zhu, J.K., and Bohnert, H.J.. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Mol. Plant Physiol. 2000, 51: 463-499.
    74. Haslekas C, Viken MK, Grini PE, Nygaard V, Nordgard SH, Meza TJ, Aalen RB. Seed 1-cysteine peroxiredoxin antioxidants are not involved in dormancy, but contribute to inhibition of germination during stress. Plant Physiol, 2003,133: 1148-1157.
    75. He CX, Yan JQ, Shen GX, et al. Expression of an Arabidopsis vacuolar sodium/proton Antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol, 2005,46: 1848-1854.
    76. Hetherington AM, Woodward FI: The role of stomata in sensing and driving environmental change. Nature, 2003,424(6951): 901-908.
    77. Hetherington AM, Brownlee C. The generation of Ca~(2+) signals in plants. Annu Rev Plant Biol, 2004, 55: 401-427.
    78. Higgins DG, Thompson JD, Gibson TJ. Using CLUSTAL for multiple sequence alignments. Methods Enzymol, 1996, 266: 383-402.
    79. Hijova E. Metallothioneins and zinc: their functions and interactions. Bratisl Lek Listy, 2004, 105, 230-234.
    80. Himmelbach, A., Hoffmann, T., Leube, M., Hohener, B., and Grill, E., Homeodomain protein ATHB6 is a target of the protein phosphatase ABU and regulates hormone responses in Arabidopsis. EMBO J, 2002, 21: 3029-3038
    81. Himmelbach A, Yang Y, Grill E: Relay and control of abscisic acid signaling. Curr Opin Plant Biol, 2003, 6(5: 470-479.
    82. Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol, 2008, 67, 169-181.
    83. Huala E, Dickerman AW, Garcia-Hernandez M et al. The Arabidopsis Information Resource(TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res, 2001, 29:102-105.
    84. Hong Z. Removal of feedback inhibition of I-pyrroling-5-carboxylate synthase results in increased proline accumulation and protection of plants from osmotic stress. Plant physiol, 2000, 122: 1129-1136
    85. Huala E, Dickerman AW, Garcia-Hemandez M et al. The Arabidopsis Information Resource(TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res 2001,29:102-105.
    86. Hao Q, Maret W. Aldehydes release zinc from proteins. A pathway from oxidative stressAipid peroxidation to cellular functions of zinc. FEBS J, 2006,273: 4300-4310.
    87. Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature, 2001,409, 1060-1063.
    88. Ingebritsen, T.S., and Cohen, P., Protein phosphatases: properties and role in cellular regulation. Science, 1983,221:331-338.
    89. Ingram J, et al. The molecula rbasis of dehydration tolerance in plants. Plant Mol Biol, 1996, 47:377-403
    90. Ito H, Fukuda Y, Murata K. and Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol, 1983,153:163-168.
    91. Jacoby B. mechanism involved in salt tolerance of plants. In: Pessarakli M.(ed). Handbook of plant and crop stress. Second edition. Marcel Dekker, Inc., NY, USA. 1999: 97-123.
    92. Jans, D.A., and Hubner, S., Regulation of protein transport to the nucleus: central role of phosphorylation. Physiological Reviews, 1996, 76: 651-685.
    93. Jeanmougin F, Thompson JD, Gouy M et al. Multiple sequence alignment with Clustal X. Trends Biochem Science, 1998,23:403-405.
    94. Jiang J, Fan LW, Wu WH. Evidences for involvement of endogenous cAMP in Arabidopsis defense responses to Verticillium toxins. Cell Res, 2005,15:585-592
    95. Judith L, Gomez-Porras1, Diego MR et al., Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC Genomics, 2007, 8:260.
    96. Kano-Murakami Y, Yanai T, Tagiri A. and Matsuoka M. A rice homeotic gene, OSH1, causes unusual phenotype in transgenic tobacco. FEBS Lett, 1993,334: 365-368
    97. Kay J, Cryer A, Darke BM, Kille P, Lees WE, Norey CG, Stark JM. Naturally occurring and recombinant metallothioneins: structure, immunoreactivity and metal-binding functions. Int J Biochem, 1991,23,1-5.
    98. Kerk, D., Bulgrien, J., Smith, D.W., Barsam, B., Veretnik, S., and Gribskov, M., The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis. Plant Physiol, 2002, 129: 908-925.
    99. Klee, C.B., Crouch, T.H., and Krinks, M.H., Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci USA, 1979, 76: 6270-6273.
    100.Kordyum EL.2003.Calcium signaling in plant cells in altered gravity.Adv Space Res 32,1621-1630.
    101.Kovtun Y,Chiu W -L,Tena G and Sheen J Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants.Proc.Natl.Acad.Sci USA.2000,97:2940-2945.
    102.Kuhlemeier C,Sinha N.Growth and development.The diversity of plant development.Curr Opin Plant Biol,2007,10:1-3.
    103.Kuhn JM,Boisson-Demier A,Dizon MB,Maktabi MH,Schroeder JI:The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis,and effects of abh1 on AtPP2CA mRNA.Plant Physiol,2006,140(1):127-139.
    104.Kurosaki F,Kaburaki H,Nishi A.Synthesis and degradation of cyclic AMP incultured carrot cells treated with FK.Arch Biochem Biophys,1993,303:177-179.
    105.Laule O,Hirsch-Hoffmann M,Hruz T et al.Web-based analysis of the mouse transcriptome using Genevestigator.BMC Bioinformatics,2006,7:311.
    106.Leung J,Giraudat J:Abscisic Acid Signal Transduction.Annu Rev Plant Physiol Plant Mol Biol,1998,49:199-222.
    107.Li C H,Zhu Y Q,Meng Y L,et al,Isolation of genes preferentially expressed in cotton fibers by cDNA fiber arrays and RT-PCR[J].Plant Science,2002,163:1113 -1120.
    108.Li J,Smith,G.P.,Walker,J.C.,Kinase interaction domain of kinase-assosiated protein phosphatase,a phosphoprotein-binding domain.Proc Natl Acad Sci USA,1999,96:7821-7826
    109.Li S-R,Zhang J-R.,Chen H-M.,Study on induction of embryogenic callus and plantlet regeneration in maize.J Shandong Univ,1990,116-124.
    110.Li X,Duan X,Jiang H et al.Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis.Plant Physiol,2006,141:1167-1184.
    111.Liang X E,Suo J F,Xue Y B,et al.Development and application of a transformation competent artificial chromosome(TAC) genomic DNA library in allotetrapolid cotton(Gossypium hirsutum L).Cotton science,2002,14:52
    112.Lijavetzky D,Carbonero P,Vicente-Carbajosa J.Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families.BMC Evol Biol,2003,3:17.
    113.Liming Xiong,Karen S.Schumaker,and Jian-Kang Zhu,Cell Signaling during Cold,Drought,and Salt Stress.Plant Cell,2002,S165-S183.
    114.Liu J,Huang S.Studies on high salt tolerance of transgenic tobacco.Chin J Biotechnol,1995,11(4):275-280.
    115.Liu PF,Chang WC,Wang YK,Chang HY,Pan RL:Signaling pathways mediating the suppression of Arabidopsis thaliana Ku gene expression by abscisic acid.Biochim Biophys Acta,2008,1779(3):164-174.
    116. Liu X, Yue Y, Li B, Nie Y, Li W, Wu WH, Ma L. A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science, 2007, 315: 1712-1716.
    117. Liu Y,Zhao G R,Zhang H M,et al. Analysis of functional genes for cotton fibers development. Cotton Science, 2002,14(sup):51.
    118. Lorenzo, O., Nicolas, C., Nicolas, G., and Rodriguez, D., Molecular cloning of a functional protein phosphatase 2C(FsPP2C2) with unusual features and synergistically up-regulated by ABA and calcium in dormant seeds of Fagus sylvatica. Physiol Plant, 2002,114:482-490.
    119. Luan, S., Protein phosphatases in plants. Annu Rev Plant Biol, 2003, 54:63-92.
    120. Maas EV, Hoffman GJ. Crop salt tolerance-Current assessment. J Irrig Drain Div Am Soc Civ Eng, 1977,103:115-134.
    121. Maathuis FJM, Sanders D. Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol, 2001, 127:1617-1625.
    122. Mackintosh, C., Regulation of spinach-leaf nitrate reductase by reversible phosphorylation. Biochimica et Biophysica Acta, 1992,1137:121-126.
    123. Maret W. Oxidative metal release from metallothionein via zinc-thiol/disulfide interchange. Proc Natl Acad Sci USA, 1994,91,237-241.
    124. Mao J, Zhang YC, Sang Y, Li QH, Yang HQ. From The Cover: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci USA, 2005, 102:12270-12275.
    125. Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J: The ABI1 and ABO protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J 2001, 25(3): 295-303.
    126. Meyers BC, Vu TH, Tej SS et al. Analysis of the transcriptional complexity of Arabidopsis thaliana by massively parallel signature sequencing. Nat Biotechnol 2004,22:1006-1011.
    127. Meyer, K., Leube, M.P., and Grill, E., A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science, 1994,264:1452-1455.
    128. Menges, M., Hennig, L., Gruissem, W., and Murray, J.A., Cell cycle-regulated gene expression in Arabidopsis. J Biol Chem, 2002,277:41987-42002.
    129. Meskiene, I., Bogre, L., Glaser, W., Balog, J., Brandstotter, M., Zwerger, K., Ammerer, G., and Hirt, H., MP2C, a plant protein phosphatase 2C, functions as a negative regulator of mitogen-activated protein kinase pathways in yeast and plants. Proc Natl Acad Sci USA, 1998, 95: 1938-1943.
    130. Meskiene, I., Baudouin, E., Schweighofer, A., Liwosz, A., Jonak, C., Rodriguez, P.L., Jelinek, H., and Hirt, H., Stress-induced protein phosphatase 2C is a negative regulator of a mitogen-activated protein kinase. J Biol Chem, 2003,278: 18945-18952 .
    131. Miedema H, Bothwell JH, Brownlee C, Davies JM.. Calcium uptake by plant cells-channels and pumps acting in concert. Trends Plant Sci, 2001,6: 514-519.
    132. Mihindukulasuriya, K.A., Zhou, G., Qin, J., and Tan, T.H., Protein phosphatase 4 interacts with and down-regulates insulin receptor substrate 4 following tumor necrosis factor-alpha stimulation. J Biol Chem, 2004,279:46588-46594.
    133. Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R. Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol, 2007, 144: 1777-1785.
    134. Millward, T.A., Zolnierowicz, S., and Hemmings, B.A., Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sciences, 1999, 24: 186-191.
    135. Mir G, Domenech J, Huguet G, Guo WJ, Goldsbrough P, Atrian S, Molinas M. A plant type 2 metallothionein(MT) from cork tissue responds to oxidative stress. J Exp Bot, 2004,55: 2483-2493.
    136. Mizoguchi, T., Ichimura, K., and Shinozaki, K., Environmental stress response in plants: the role of mitogen-activated protein kinases. Trends Biotechnol, 1997,15: 104 15-19.
    137. Miyazaki, S., Koga, R., Bohnert, H.J., and Fukuhara, T., Tissue- and environmental response-specific expression of 10 PP2C transcripts in Mesembryanthemum crystallinum. Mol Gen Genet, 1999,261: 307-316.
    138. Monroy, A.F., Sarhan, F., and Dhindsa, R.S., Cold-induced changes in freezing tolerance, protein phosphorylation, and gene expression (evidence for a role of calcium). Plant Physiol, 1993,102: 1227-1235.
    139. Monroy, A.F., Labbe, E., and Dhindsa, R.S., Low temperature perception in plants: effects of cold on protein phosphorylation in cell-free extracts. FEBS lett, 1997,410:206-209.
    140. Mumby, M.C., and Walter, G., Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev, 1993,73:673-699.
    141.Nakano M, Nobuta K, Vemaraju K et al. Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA. Nucleic Acids Res, 2006, 34: 731-735.
    142. Nuccio, M.L., Rhodes, D., McNeil, S.D., and Hanson, A.D. Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol, 1999,2: 128-134.
    143. Ohta, M., Guo, Y., Halfter, U., and Zhu, J.K., A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci USA, 2003, 100: 11771-11776.
    144. Ponting CP, Schultz J, Milpetz F et al. SMART: identification and annotation of domains from signaling and extracellular protein sequences. Nucleic Acids Res 1999,27: 229-232.
    145. Park A.R., Cho S.K., Yun U.J., Jin M.Y., Lee S.H., Sachetto-Martins G., Park O. K., Interaction of the Arabidopsis receptor protein kinase Wakl with a glycine-rich protein, AtGRP-3. J Biol Chem, 2001, 276: 26688-26693.
    146. Perla, Perltreves R, et al. Enhanced oxidative-stress defense in transgenic potato expressingtomato Cu,Zn superoxide dismutases.Theor Appl Genet,1993,85:568-576.
    147.Polidoros AN,Scandalios JG.Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione S-transferase gene expression in maize(Zea mays L.).Physiol Plant,1999,106:112-120.
    148.Qi Z,Stephens NR,Spalding EP.Calcium entry mediated by GLR3.3,an Arabidopsis glutamate receptor with a broad agonist profile.Plant Physiol,2006,142:963-971.
    149.Reinartz J,Bruyns E,Lin JZ et al.Massively parallel signature sequencing(MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms.Brief Funct Genomic Proteomic 2002,1:95-104.
    150.Reiser L,Rhee SY.Using the Arabidopsis Information Resource(TAIR) to find information about Arabidopsis genes.Curr Protoc Bioinformatics 2005,1:Unit 1 11.
    151.Retief JD.Phylogenetic analysis using PHYLIP.Methods Mol Biol 2000,132:243-258.
    152.Robinson NJ,Tommey AM,Kuske C,Jackson PJ.Plant metallothioneins.Biochem J,1993,295(1):1-10.
    153.Reyes D,Rodriguez D,Gonzalez-Garcia MP,Lorenzo O,Nicolas G,Garcia-Martinez JL,Nicolas C:Overexpression of a protein phosphatase 2C from beech seeds in Arabidopsis shows phenotypes related to abscisic acid responses and gibberellin biosynthesis.Plant Physiol,2006,141(4):1414-1424.
    154.Robinson NJ,Tommey AM,Kuske C,Jackson PJ.Plant metallothioneins.Biochem J,1993.295:1-10.
    155.Robinson NJ,Wilson JR,Turner JS.Expression of the type 2 metallothionein-like gene MT2 from Arabidopsis thaliana in Zn~(2+) -metallothionein-deficient Synechococcus PCC 7942:putative role for MT2 in Zn~(2+) metabolism.Plant Mol Biol,1996,30:1169-1179.
    156.Rodriguez,P.L.,Protein phosphatase 2C(PP2C) fimction in higher plants.Plant Mol Biol,1998,38:919-927.
    157.Rodriguez,P.L.,Benning,G.,and Grill,E.,ABI2,a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis.FEBS lett,1998a,421:185-190.
    158.Rodriguez,P.L.,Leube,M.P.,and Grill,E.,Molecular cloning in Arabidopsis thaliana of a new protein phosphatase 2C(PP2C) with homology to ABI1 and ABI2.Plant Mol Biol,1998b,38:879-883.
    159.Ron Mittler,Eric Lam,Vladimir Shulaev and Mira Cohen Signals controlling the expression of cytosolic ascorbate peroxidase during pathogen-induced programmed cell death in tobacco.Plant Mol Biol,1999,39:1025-1035.
    160.Saez A,Apostolova N,Gonzalez-Guzman M,Gonzalez-Garcia MP,Nicolas C,Lorenzo O,Rodriguez PL:Gain-of-function and lossof-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling.Plant J 2004,37(3):354-369.
    161. Saijo Y, Kinoshita N, Ishiyama K, Hata S, Kyozuka J, Hayakawa T, Nakamura T, Shimamoto K, Yaraaya T, Izui K. A Ca(2+)-dependent protein kinase that endows rice plants with cold- and salt-stress tolerance functions in vascular bundles. Plant Cell Physiol, 2001, 42: 1228-1233.
    162. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987,4:406-425.
    163. Sankoff D. The early introduction of dynamic programming into computational biology. Bioinformatics 2000,16:41-47.
    164. Schoof H, Ernst R, Nazarov V et al. MIPS Arabidopsis thaliana Database(MAtDB): an integrated biological knowledge resource for plant genomics. Nucleic Acids Res, 2004,32: 373-376.
    165. Schoof H, Zaccaria P, Gundlach H et al. MIPS Arabidopsis thaliana Database(MAtDB): an integrated biological knowledge resource based on the first complete plant genome. Nucleic Acids Res, 2002, 30: 91-93.
    166. Schultz J, Copley RR, Doerks T et al. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res, 2000, 28: 231-234.
    167. Schweighofer, A., Hirt, H., and Meskiene, I., Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Science, 2004,9: 236-243.
    168. Schaeffer, P.J., Wende, A.R., Magee, C.J., Neilson, J.R., Leone, T.C., Chen, E, and Kelly, D.P., Calcineurin and calcium/calmodulin-dependent protein kinase activate distinct metabolic gene regulatory programs in cardiac muscle. J Biol Chem, 2004,279: 39593-39603.
    169. Shan DP, Huang JG, Yang YT, et al. Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol. 2007,176:70-81.
    170. Sheen, J., Mutational analysis of protein phosphatase 2C involved in abscisic acid transduction in higher plants. Proc Natl Acad Sci USA, 1998,95: 975-980.
    171. Shi HZ, Francisco J, Quintero FJ, et al. The putative plasma membrane Na~+/H~+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell, 2002,14:465~477.
    172. Smillie RM, Hetherington SE. Stress Tolerance and Stress-Induced Injury in Crop Plants Measured by Chlorophyll Fluorescence In Vivo: Chilling, Freezing, Ice Cover, Heat, and High Light. Plant Physiol, 1983, 72: 1043-1050.
    173. Spychalla JP, Desborough SL. Superoxide dismutase, catalase, and alpha-tocopherol content of stored potato tubers. Plant Physiol, 1990, 94:1214-1218.
    174. Song SK, Clark SE: POL and related phosphatases are dosagesensitive regulators of meristem and organ development in Arabidopsis. Developmental biology, 2005, 285(1): 272-284.
    175. Sonnhammer EL, Eddy SR, Durbin R. Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins, 1997, 28: 405-420.
    176. Speiser DM, Ortiz DF, Kreppel L, Ow DW. Purine biosynthetic genes are required for cadmium tolerance in Schizosaccharomyces pombe. Mol. Cell. Biol. 1992, 12: 5301-10.
    177.Spychalla JP,Desborough SL.Superoxide dismutase,catalase,and alpha-tocopherol content of stored potato tubers.Plant Physiol,1990,94:1214-1218.
    178.Stone,J.M.,and Walker,J.C.,Plant protein kinase families and signal transduction.Plant Physiol 1995,108:451-457.
    179.Swarbreck D,Wilks C,Lamesch P et al.The Arabidopsis Information Resource(TAIR):gene structure and function annotation.Nucleic Acids Res,2008,36:1009-1014.
    180.Tahtiharju,S.,and Palva,T.,Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana.Plant J,2001,26:461-470.
    181.Taylor,S.S.,Radzio-Andzelm,E.,and Hunter,T.,How do protein kinases discriminate between serine/threonine and tyrosine Structural insights from the insulin receptor protein-tyrosine kinase.Faseb J,1995,9:1255-1266.
    182.Takezawa,D.,Characterization of a novel plant PP2C-like protein Ser/Thr phosphatase as a calmodulin-binding protein.The Journal of Biological Chemistry,2003,278:38076-38083.
    183.Tamura,S.,Toriumi,S.,Saito,J.,Awano,K.,Kudo,T.A.,and Kobayashi,T.,PP2C family members play key roles in regulation of cell survival and apoptosis.Cancer Science,2006,97:563-567.
    184.Thomashow MF.1999.PLANT COLD ACCLIMATION:Freezing Tolerance Genes and Regulatory Mechanisms.Annu Rev Plant Physiol Plant Mol Biol,50,571-599.
    185.Thompson JD,Gibson TJ,Plewniak F et al.The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res,1997,25:4876-4882.
    186.Toledo-Ortiz G;Huq E,Quail PH.The Arabidopsis basic/helix-loop-helix transcription factor family.Plant Cell,2003,15:1749-1770.
    187.Trotochaud,A.E.,Hao,T.,Wu,G,Yang,Z.,and Clark,S.E.,The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein.Plant Cell,1999,11:393-406.
    188.Tucker SL,Thornton CR,Tasker K,Jacob C,Giles G,Egan M,Talbot NJ.2004.A fungal metallothionein is required for pathogenicity of Magnaporthe grisea.Plant Cell,16,1575-1588.
    189.Tyeman SD,et al.Plant aquaporins:multifunctional water and solute channels with expanding roles.Plant Cell Environ,2002,25:173-194.
    190.Van CW,Willekensh,et al.Elevated levels of superoxide dismutase protect transgenic plants against ozone damage.Biotechnology,1994,12:165-168.
    191.Vavasseur A,Raghavendra AS.Guard cell metabolism and CO_2 sensing.New Phytol,2005,165:665-682.
    192.Vogel HJ.The Merck Frosst Award Lecture Calmodulin:a versatile calcium mediator protein.Biochem Cell Biol,1994,72:357-376.
    193.Wagner GJ.1993.Accumulation of cadmium in crop plants and its consequences to human health.Adv.Agron.51:173-212.
    194.Walker,J.C.,Receptor-like protein kinase genes of Arabidopsis thaliana.Plant J,1993,3:451-456.
    195.Wise RR,Naylor AW.Chilling-enhanced photooxidation:Evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants.Plant Physiol,1987,83:278-282.
    196.Wolf O,Munns ML,Tonnet ML,Jeschke WD.The role of the stem in the partitioning of Na+and K+in salt-treated barley.J Exp Bot,1991,42:697-704.
    197.Wu CA,Yang GD,Meng QW,Zheng CC.The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress.Plant Cell Physiol,2004,45:600-607.
    198.Wu J and Seliskar D.Salinity adaptation of plasma membrane H~+-ATPase in the salt marsh plant Spartina patens:ATP hydrolysis and enzyme kinetics.J Exp Bot,1998,49:1005-1013.
    199.Wu KL,Guo ZJ,Wang HH et al.The WRKY family of transcription factors in rice and Arabidopsis and their origins.DNA Res 2005,12:9-26.
    200.Xiong L,Schumaker KS,Zhu JK.Cell signaling during cold,drought,and salt stress.Plant Cell,2002,.14:165-183.
    201.Xiong Y,Liu T,Tian C,Sun S,Li J,Chen M:Transcription factors in rice:a genome-wide comparative analysis between monocots and eudicots.Plant Mol Biol 2005,59(1):191-203.
    202.Yan JQ,He CX,Wang J,et al.Overexpression of the Arabidopsis 14-3-3 protein GF14λ in ctton leads to a "Stay-Green" phenotype and improves stress tolerance under moderate drought conditions.Plant Cell Physiol,2004,45:1007-1014.
    203.Yokoi S,Quintero FJ,Cubero B,Ruiz MT,Bressan RA,Hasegawa PM,Pardo JM.Differential expression and function of Arabidopsis thaliana NHX Na~+/H~+ antiporters in the salt stress response.Plant J,2002,30:529-539.
    204.Young JC,DeWitt ND,and Sussman MR.A transgene encoding a plasma membrane H~+-ATPase that confers acid resistance in Arabidopsis thaliana Seedlings.Genetics,1998,149:501-507.
    205.Yoshida T,Nishimura N,Kitahata N,Kuromori T,Ito T,Asami T,Shinozaki K,Hirayama T:ABA-hypersensitive germination3 encodes a protein phosphatase 2C(AtPP2CA)that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs.Plant Physiol 2006,140(1):115-126.
    206.Yoshida,R.,Umezawa,T.,Mizoguchi,T.,Takahashi,S.,Takahashi,F.,and Shinozaki,K.,The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis.J Biol Chem,2006,281:5310-5318.
    207.Yu,L.P.,Miller,A.K.,and Clark,S.E.,POLTERGEIST encodes a protein phosphatase 2C that regulates CLAVATA pathways controlling stem cell identity at Arabidopsis shoot and flower meristems. Curr Biol, 2003,13: 179-188.
    
    208. Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C, et al.: The Genomes of Oryza sativa: a history of duplications. PLoS Biol, 2005,3 (2): 38.
    209. Zakany, R., Szucs, K., Bako, E., Felszeghy, S., Czifra, G., Biro, T., Modis, L., and Gergely, P., Protein phosphatase 2A is involved in the regulation of protein kinase A signaling pathway during in vitro chondrogenesis. Exp Cell Res, 2002,275: 1-8.
    210. Zhang HX and Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotech, 2001,19: 765-768.
    211. Zhang Y, Wang L. The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 2005,5:1.
    212. Zhou J, Goldsbrough PB. 1994. Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6, 875-884.
    213. Zhu JK. Plant salt tolerance. Trends Plant Sci, 2001,6: 66-71.
    214. Zhu JK, Liu J, Xiong L. Genetic analysis of salt tolerance in Arabidopsis: Evidence for a critical role of potassium nutrition. Plant Cell, 1998,10: 1181-1191.
    215. Zhu Y Z,Ji S T,Lu Y C,et al.Current status and progress in Chinese cotton genomic research. Cotton Science,2002,14(sup):36.
    216. Zhou, B., Wang, Z.X., Zhao, Y., Brautigan, D.L., and Zhang, Z.Y., The specificity of extracellular signal-regulated kinase 2 dephosphorylation by protein phosphatases. J Biol Chem, 2002, 277: 31818-31825.
    217. Zhou, H.W., Nussbaumer, C., Chao, Y., and DeLong, A., Disparate roles for the regulatory A subunit isoforms in Arabidopsis protein phosphatase 2A. Plant Cell, 2004,16: 709-722.
    218. Zhou J, Goldsbrough PB. 1994. Functional homologs of animal and fungal metallothionein genes from Arabidopsis. Plant Cell 6:875-84.
    219. Zhu, J.K., Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol, 2000, 124: 941-948.
    220. Zhu, J.K., Plant salt tolerance. Trends Plant Science, 2001,6: 66-71.
    221. Zhu, J.K., Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700