用户名: 密码: 验证码:
SPLUNC1相关差异miRNA的功能及分子网络调控机制分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼻咽癌是一种在中国南部和东南亚地区高发的多基因遗传性恶性肿瘤。SPLUNC1基因是我室克隆的鼻咽癌候选抑瘤基因,它在鼻咽正常组织中高表达,而在鼻咽癌细胞系和组织中低表达。我室前期研究发现SPLUNC1蛋白是一种细胞表面的分泌性蛋白,它不仅能够通过结合细菌脂多糖与革兰氏阴性菌相结合,还能够抑制EB病毒。说明SPLUNC1可能是一种天然免疫保护分子。我室还克隆了多个候选鼻咽癌抑瘤基因,比如BRD7,NGX6,UBAP1,LPLUNC1,NAG7等,长期以来,我们都是用单基因转染的方法来研究它们抑制鼻咽癌的机制,但这些抑瘤基因是如何共同作用来阻止多基因遗传性肿瘤发生发展的机制还不为人知。miRNA是近年来生命科学的热点,它是一种内源性调控转录后信使RNA的小分子RNA,由于miRNA对其数以百计的靶基因的调控使miRNA与信使RNA之间组成了复杂的调控网络。正是miRNA调控多基因的这一特点,也许能帮助解决我们多个抑瘤基因共同作用机制的疑问。为了了解SPLUNC1与miRNA在鼻咽癌中调控的分子机制,我们进行了如下研究,并取得了相应的结果:[has-mir-141与has-mir-205在SPLUNC1转染细胞系中表达下调]
     我们将含有全长的SPLUNC1基因的载体转染至高侵袭,高转移性鼻咽癌细胞系5-8f中,并建立了稳定转染的细胞系。我们利用博奥生物有限公司开发的针对435个人(包含Nature杂志预测的有122个miRNA)、196个大鼠、261个小鼠成熟miRNA的哺乳动物miRNA芯片分析了转染SPLUNC1与其空白对照组的miRNA的差别。结果转基因组和对照组相比,共有25种miRNA表达明显上调,(fold change>3)29种miRNA表达明显下调。(fold change>3).其中两种强烈下调的miRNA(fold change>10),has-mir-141与has-mir-205通过northernblot和Q-PCR验证,确定确实在在SPLUNC1转染细胞系中表达下调。随后通过显微切割10例鼻咽癌组织和10例正常对照鼻咽组织进行Q-PCR验证,我们发现hsa-mir-141在鼻咽癌组织中的表达略强于鼻咽组织对照,两者之间的差异存在统计学意义,而has-mir-205表达则没有差别。
     [通过细胞生物学实验证实has-mir-141和has-mir-205在鼻咽癌细胞系中起着瘤基因的作用]
     对特定miRNA的相关细胞生物学功能的研究通常是通过脂质体
     转染它的成熟体(mimics)与抑制子(inhibitors)进入相应细胞,人为改变细胞内相应miRNA的含量,达到上调和下调细胞内miRNA的表达的作用进而研究这一系列改变对细胞生长,运动功能,穿膜能力,凋亡,细胞周期等功能的影响。MTT实验显示通过转染hsa-mr-141与hsa-mir-205的成熟体(mimics)与抑制子(inhibitors)及其相对应的成熟体对照(NC)抑制子对照(INC),在实验的前三天各转染组之间没有明显差别,第四天以后,hsa-mir-141抑制子组(inhibitors)较其他对照组生长速度减慢了30%左右,而hsa-mir-205成熟体(mimics)组较其他各对照组生长速度提高了40%左右。由于5-8f细胞是一种高侵袭,高转移性肿瘤细胞,我们想知道miRNA对细胞这一特性的影响。通过细胞划痕实验,我们发现hsa-mir-141和hsa-mir-205的成熟体组(mimics)均能显著促进5-8f细胞划痕伤口的愈合,而hsa-mir-141的抑制子组(inhibitors)则明显能减缓5-8f细胞划痕伤口的愈合;而通过transwell实验我们发现hsa-mir-141与hsa-mir-205的抑制子组(inhibitors)能明显降低5-8f细胞穿膜能力。流式细胞术分析发现抑制hsa-mir-141和hsa-mir-205能促进细胞凋亡,并能将5-8f细胞阻滞于G1到S期之间。通过western blot对细胞周期相关的一些分子进行检测,我们发现显示hsa-mir-205与141抑制子(inhibitors)均能促进caspase8与caspase3的表达达到促进凋亡的目的,同时它们同时具有促进JNK2及NF-κB P65表达,并抑制Iκα的表达。这些结果说明hsa-mir-205与141抑制子能够通过影响MAPK通路和TNFR通路的相关分子达到阻滞细胞周期的作用。
     [has-mir-141与has-mir-205所预测的靶基因与SPLUNC1转染影响的差异mRNA基因多位于相同的肿瘤调控通路]
     我们对转染SPLUNC1的差异miRNA has-mir-141和has-mir-205进行了靶基因预测,分别通过在线软件pictar,targetscan4.0进行预测。随后我们运用在线基因功能分析软件DAVID 2008 FunctionalAnnotation Bioinformatics Microassay Analysis Tools对hsa-mir-141与hsa-mir-205所预测的靶基因进行功能归类和信号通路分析,发现它们的靶基因涉及到MAPK,JAK-STAT,Cell cycle,wnt,tightjunction,Adherens junction等多条与肿瘤调控细胞凋亡等功能相关通路。由于hsa-mir-141与hsa-mir-205在鼻咽癌细胞相对低表达,所以我们考虑它们在通路中主要影响抑瘤基因,我们发现了其中一些具有研究价值的抑瘤基因:MAP2K4,MAP3K3,DLC1,TP53BP2等。更让我们感兴趣的是,我们在has-mir-141的靶基因中发现了同属我室克隆的抑瘤基因UBAP1。随后通过安捷伦全基因组芯片The WholeHuman Genome Oligo Microarray分析SPLUNC1转染对鼻咽癌细胞系mRNA水平的影响,我们发现转基因组与空白组比较上调明显(FOLDchange>2)的有1698个基因,转基因组与空白组比较下调明显(FOLDchange>2)的有2135个基因。通过对转染SPLUNC1的差异miRNA的预测靶基因和全基因组芯片上下调的差异基因进行比较对接,我们发现它们之间完全意义的一对一重合几乎没有。但运用安捷伦的差异基因通路分析软件,我们对SPLUNC1转染的差异基因对涉及到的细胞通路进行了归类和分析。我们发现SPLUNC1转染差异基因的通路分布状况和hsa-mir-141与hsa-mir-205所预测靶基因的通路分布极为相似,比如其中的MAPK,JAK-STAT,Cell cycle,wnt通路等。提示我们SPLUNC1基因影响这些肿瘤相关通路不仅可以自身直接调控,也可以通过调控miRNA来间接实现。
     [has-mir-141能通过直接作用UBAP1基因3'非编码区调控UBAP1蛋白的表达]
     我们将构建好的质粒与相应miRNA mimics或inhibitors共同转染至5-8f细胞内,通过荧光素酶检测,我们发现has-mir-141 mimics对UBAP1空白报告质粒组及UBAP1突变体组无明显影响,但对插入了UBAP13‘UTR片段的报告质粒组荧光素酶强度下降了50%,(图3-606)说明UBAP1实受hsa-mir-141直接影响,即UBAP1为hsa-mir-141的靶基因。通过western blot验证,结果表明UBAP1在5-8f及对照中低表达,在抑制hsa-mir-141和SPLUNC1转染细胞系中表达明显增强。这一结果不仅表明has-mir-141能影响UBAP1蛋白,而且说明SPLUNC1能通过下调has-mir-141来达到上调UBAP1共同发挥抑制鼻咽癌肿瘤的作用。
     [总结]
     前期研究表明SPLUNC1转染不仅影响MAPK通路中关键分子如JNK2,NF-κB等,也影响TNFR通路中的caspase3和caspase8进而导致细胞的凋亡和细胞周期的改变。我们通过western blot发现抑制hsa-mir-141有着同样的功能和作用,SPLUNC1转染引起hsa-mir-141与hsa-mir-205下调,而hsa-mir-141不仅可以影响MAPK通路的关键分子,也可以通过上调鼻咽癌候选抑瘤基因呢UBAP1,通过其对肿瘤发生的关键蛋白的抑制作用,共同扭转鼻咽癌的恶性表型。在整个假想调控通路中,差异miRNA的作用是最为关键的。SPLUNC1与has-mir-141是否确实存在共同对MAPK通路的调控作用,还需要更多的后期实验来加以证实。
Nasopharyngeal carcinoma(NPC) is a polygenetic inherited malignant tumor with a high incidence in South China and Southeast Asia. SPLUNC1 gene,considered as the NPC candidate tumor suppressor gene, is a tissue-specific gene of human nasopharyngeal epithelium with low expression in both NPC cell lines and tissue.Previous studies in our lab found that SPLUNC1 is a secreted protein which covered on the surface of epithelium and can bind to the Gram negative nanobacteria,indicating that it might function as an innate immune defensive molecule. SPLUNC1 protein can bind to bacterial lipopolysaccharide,inhibit not only P.aeruginosa,but also the EB virus.Meanwhile,our lab also have cloned some other NPC candidate tumor suppressor gene,such as BRD7, NGX6,UBAP1,LPLUNC1,NAG7,but the mechanism how those genes interact with each others which cause the tumorigenesis of NPC is far from full known.Since miRNAs are short RNAs that post transcriptionally regulate messenger RNAs,and the formation of miR-Gene network depended on the hundreds of miRNAs and their numerous target genes,which might be an answer to the puzzle of NPC candidate tumor suppressor genes above mentioned.To uncover the molecular mechanisms between SPLUNC1 and miRNA in NPC,we did the research below,and also acquired some interesting results
     [Hsa-mir-141 and hsa-mir-205 were downregulated in SPLUNC1 overexpressed NPC ceLll lines]
     We transfected the full length of SPLUNC1 into the highly invasive and matastatic NPC cell line 5-8F,and constructed a stable cell line.Via microRNAarray analysis from CapitalBio Corporation(Beijing,China), we found that 29 miRNAs were upregulated and 25 miRNAs were downregulated in SPLUNC1 overexpressed cell line.(Fold change>3) Two of the downregulated miRNA.(Fold change>10),Hsa-mir-141 and hsa-mir-205 were confirmed by northern blot and qRT-PCR in the same cell lines.We further confirmed that expression of hsa-mir-141 was upregulated in 10 laser capture microdessection NPC tissues compared to the normal nasopharyngeal epithelium tissues,while has-mir-205 showed no difference between them.
     [Hsa-mir-141 and hsa-mir-205 play a role as oncogenes in NPC cell Iine5-8f.]
     Since SPLUNC1 gene was a tumor suppressor gene that could inhibit the cell growth of NPC cell lines-HNE1,we then want to know whether the change of hsa-mir-141 level could affect cell growth.Via MTT assay, Although there were no difference among these groups during the first three days after transfection,by day 5 and 6 we detected inhibiting hsa-mir-141 group grew more slowly than other groups with about 30% inhibition,and upregulated hsa-mir-205 group grew more quickly than other groups with about 40%promotion.Since 5-8f is a highly invasive and matastatic cancer cell line,we accomplished cell wound healing assays and transwell assays to identify whether hsa-mir-141 and hsa-mir-205 could influence cell migration and invasive ability.The result showed a significant reduction in both cell migration and invasion in the hsa-mir-141 and hsa-mir-205 inhibitor groups.Via flow cytometry analysis,we further found inhibition of hsa-mir-141 and hsa-mir-205 could slightly increase the cells apoptosis rate,and arrested cells in G0-G1 with a concurrent reduction in S phase cells compared to other control groups.These data suggested the inhibition of hsa-mir-141 and hsa-mir-205 may promote the NPC cell apoptosis and delay cell cycle progression from G1 to S phase.To explore the possible mechanism involved in a delay of G1 to S phase progression by 141 and 205 inhibitor groups in 5-8F NPC cells,cell cycle-related effectors were examined by western blot.And we found an obvious change in the expression of caspase 3,caspase8,NF-κB,I-κα,JNK2,P-ERK in 141 and 205 inhibitor groups.This suggests that inhibition of 141 and 205 could inhibit cell growth and cell cycle progression in 5-8F cells by regulating MAPK/ERK and TNFR pathway.
     [The Whole Human Genome Oligo Microarray Shows the Differences in genes expression from the transfection of SPLUNC1 also involve in the same signaling pathway as hsa-mir-141 and has-mir-205's prediction target genes do]
     Firstly,we used both pictar and targetscan to search the possible targets of hsa-mir-141 and has-mir-205.Secondly,we used DAVID 2008 Functional Annotation Bioinformatics Microassay Analysis Tools to classify the function of the target gene which were predicted both from TargetScanS 4.2 and pictar.The result revealed that mostly(>50%) target genes of hsa-mir-141 and has-mir-205 involved in the signaling pathways as MAPK,Wnt,JAK-STAT,Tight junction,Cell cycle,Adherens junction,which are important for tumorigenesis and tumor development Since the celluar function showed mir-141 and has-mir-205 may play a role as oncogene in NPC cell lines,we were interested to know whether tumor suppressor genes were potential regulated by hsa-mir-141.From Tumor Suppressor Gene Database,we found some hsa-mir-141 targeted genes,such as MAP2K4,MAP3K3,DLC1,TP53BP2 were considered as classical tumor suppressor genes.More interestingly,we found UBAP1 gene,one of the NPC candidate tumor suppressor gene previously cloned from our lab,was predicted as a hsa-mir-141 targeted gene by both pictar and targetscan.We then used the same cell line of transfected SPLUNC1 for the use of the Whole Human Genome Oligo Microarray.We found 1698 upregulated genes and 2135 downregulated genes between the transgenic group and the blank group.There was almost no perfect one to one genes match between the differences in mRNA and miRNA prediction target genes,but the Differences in genes expression from the transfection of SPLUNC1 involve in the gnaling pathway such as MAPK,Wnt,JAK-STAT,Cell cycle,which was also the same pathway hsa-mir-141 and has-mir-205's prediction target genes involve in.We may draw a conclution that SPLUNC1 can influence these tumor related pathways not only in direct way,but also can regulate the pathways in indirect way by miRNA.
     [hsa-mir-141 regulated NPC tumor suppressor gene UBAP1 via directly targeting its 3'UTR]
     The UBAP1 gene was originally cloned in our lab,which has been found to be down-regulated in NPC tissues.The result showed that when co-transfected with hsa-mir-141 mimic in 5-8f cells,luciferase reporter of UBAP1 3'UTRs was dramatically inhibited(down over 50%),but no obvious changes were found when co-transfected with hsa-mir-141 inhibitor and mimic negative control;whereas mutation of the miR-141 binding sites(RL-UBAP1 M) could diminish the regulating function of miR-141 on UBAP1,which verified that the effect of the miR-141 is due to direct interaction with the binding sites in UBAP1 3'UTRs.The next experiment was to detect whether transfection with hsa-mir-141 inhibitor could affect the UBAP1 protein levels.The cell extracts from 5-8f,141 inhibitor group,inhibitor nagetive control group, 5-8F/pcDNA3.1/his-SPLUNC1 and 5-8F/pcDNA3.1/his were used for western blot.The result demonstrated that UBAP1 were upregulated in both SPLUNC1 overexpressed cells and miR-141 inhibitor group,while hardly or barely detectable in the other groups.The result not only indicated that mir-141 could influence the expression of UBAP1,but also showed that the transfection of SPLUNC1 could upregulate UBAP1 via do wnregulating hsa-mir-141.
     In our previous studies,SPLUNC1 may affect some key molecules such as JNK2,NF-icB,and also influence the expression of caspase 8 and caspase 3 in TNFR pathway,which led to the DNA fragmentation and finally cell apoptosis.In this study,we confirmed the inhibitor of hsa-mir-141 had the same affect to influence the ERK/MAPK and TNFR pathway by western blotting.With our present study,SPLUNC1 might downregulate hsa-mir-141,while the downregulation of hsa-mir-141 might upregulate its target gene UBAP1 which may inhibit tumor growth by degrading the key proteins of tumorigeness.Hsa-mir-141 played a role as a turning point in this system, the NPC tumor suppressor genes SPLUNC1 may upregulate UBAP1 via do wnregulating hsa-mir-141.Whether these genes in ERK/MAPK pathway also involve in the mechanism of tumor inhibition need to be further studied and verified.
引文
[1]Lo W,To K F,Huang D P.Focus on nasopharyngeal carcinoma.Cancer Cell.2004;5:423-428
    [2]Raab-Traub,N.Epstein-barr virus in the pathogenesis of NPC.Semin.Cancer Biol.2002;12,431-441.
    [3]Xiong,W.,Zeng,Z.Y.,Xia,J.H.,et al.A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma.Cancer Res.2004;64,1972-1974.
    [4]Chan AS,To KF,Lo KW,et al.High frequency of chromosome 3p deletion in histologically normal nasopharyngeal epithelia from southern Chinese.Cancer Res.2000,60(19):5365-5370.
    [5]Huang DP,Lo KW,Hasselt VA C,et al.A region of homozygous deletion on chromosome 9p21-22 in primary nasopharyneal carcinoma.Cancer Res.1994,54:4003-4006.
    [6]Mutirangura A,Tanunyutthawongese C,Pornthanakasem W,et al.Genomic alterations in nasopharyngeal carcinoma:loss of heterozygosity and Epstein-Barr virus infection.Br J Cancer.1997,76(6):770-776.
    [7]Levine PH,Pocinki AG,Madigan Petal.Familial nasopharyngeal carcinoma in patients who are not Chinese.Cancer 1992,70:1024-9
    [8]Albeck H,Bentzen J,Ockelmann HH et al.Familial clusters of nasopharyngeal carcinoma and salivary gland carcinomas in Greenland natives.Cancer 1993,72:196-200
    [9]Coffin CM,Rich SS,Dehner LP.Familial aggregation of nasopharyngeal carcinoma and other malignances;a clinicopathologica description.Cancer 1991,68:1323-8
    [10]Sung NS,Zeng Y,Raab-Traub.Alterations on chromosome 3 in endemic and nonendemic nasopharyngeal carcinoma.Int J Cancer 2000,86:244-50
    [11]Hui ABY,Lo KW,Leung SF et al.Loss of heterozygosity on the arm of chromosome 11 in nasopharyngeal carcinoma.Cancer Res 1996,56:3225-3229
    [12]Fang Y,Guan XY,Guo Y et al.Analysis of genetic alterations in primary nasopharyngeal caecinoma by comparative genomic hybridization.Genes,Chromosomes& Cancer 2001,30:254-260
    [13]Claudio PP,Howard CM,Fu Y et al.Mutations in the primary nasopharyngeal carcinoma.Cancer Res 2000,60:8-12
    [14]Miyoshi E,Uozumi N,Noda K,et al.Expression of alphal-6 fucosyltransferase in rat tissues and human cancer cell lines.Int J Cancer,1997,72(6):1117-1121
    [15]Zhang B,Nie X,Xiao B,et al.Identification of tissue-specific genes in nasopharyngeal epithelial tissue and differentially expressed genes in nasopharyngeal carcinoma by suppression subtractive hybridization and cDNA microarray.Genes Chromosomes Cancer,2003,38(1):80-90
    [16]张必成.人鼻咽癌组织特异性基因NASG和MGC14597的分离鉴定与功能研究:[博士学位论文].长沙.中南大学.2002
    [17]C.D.Bingle,L.Bingle,Characterisation of the human plunc gene,a gene product with an upper airways and nasopharyngeal restricted expression pattern,Biochim.Biophys.Acta 1493(2000) 363-367.
    [18]B.Ghafouri,B.Stahlbom,C.Tagesson,M.Lindahl,Newly identified proteins in human nasal lavage fluid from non-smokers and smokers using two-dimensional gel electrophoresis and peptide mass fingerprinting,Proteomics 2(2002) 112-120.
    [19]Ghafouri B,Kihlstrom E,Stahlbom B,Tagesson C,Lindahl M.PLUNC (palate,lung and nasal epithelial clone) proteins in human nasal lavage fluid.Biochem Soc Trans.2003 Aug;31(Pt 4):810-4.
    [20]M.Lindahl,B.Sta(?)hlbom,C.Tagesson,Identification of a new potentialairway irritation marker,palate lung nasal epithelial clone protein,in human nasal lavage fluid with two-dimensional electrophoresis and matrix-assisted laserdesorption/ionization-time of flight,Electrophoresis22(2001) 1795-1800.
    [21]Zhou HD,Li GY,Yang YX,Li XL,Sheng SR,Zhang WL,Zhao J.Intracellular co-localization of SPLUNC1 protein with nanobacteria in nasopharyngeal carcinoma epithelia HNE1 cells depended on the bactericidal permeability increasing protein domain. Mol Immunol. 2006 Apr;43(ll):1864-71.
    [22] Zhou HD, Wu MH, Shi L, Zhou M, Yang YX, Zhao J, Deng T, Li XL, Sheng SR, Li GY Effect of growth inhibition of the secretory protein SPLUNC1 on Pseudomonas aeruginosa Mol Cell Biochem. 2007 Nov 30 [Epub ahead of print]
    [23] Zhou HD, Li XL,Li GY,Zhou M,Liu HY,Yang YX,Deng T,Ma J,Sheng SR (2008) Effect of SPLUNC1 protein on the Pseudomonas aeruginosa and Epstein-Barr virus. Mol Cell Biochem (2008) 309:191-197
    [24] Sage C, Agami R. Immense p romises for tinymolecules uncovering miRNA functions[J ]. Cell Cycle, 2006, 5 (13): 127.
    [25] Eis P S, TamW, Sun L, et al. Accumulation ofmiR-155 and B ICRNA in human B cell lymphomas[ J ]. Proc Natl Acad Sci USA,2005,10 (102):362723632.
    [26] Costinean S, ZanesiN, Pekarsky Y, et al. Pre-B cell p roliferation and lymphoblastic leukemia / high-grade lymphoma in E {micro} -miR[ J ]. Proc NatlAcad Sci USA, 2006,103 (18): 702427029
    [27] Chan J A, Krichevsky A M, Kosik K S. MicroRNA 221 is an anti-apop totic factor in human glioblastoma cells [ J ]. Cancer Res,2005,65 (14): 602926033.
    [28] Nicholson D W . Caspase structure, proteolytic substrates, and function during apop totic cell death[ J ]. CellDeath Differ, 1999,6(11): 102821042.
    [29] ChengA M, ByromM W, Shelton J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apop tosis[ J ]. Nucleic Acids Res, 2005,33 (4) :129021297.
    [30] Johnson SM, Grosshans H, Shinagara J, et al. RAS is regulated by the Iet27 microRNA family[J ]. Cell, 2005,120 (5) : 6352647.
    [31 ] Moss E G, TangL. Conservation of the heterochronic regulatorLin-28, its developmental exp ression and microRNA comp lementary sites [ J ]. Dev Biol,2003, 258 (22): 4322442.
    [32] Wu L, Belasco J G. MicroRNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells[ J ]. Mol Cell Biol,2005,21 (25): 919829208.
    [33] Yanaihara N, Cap len N, Bowman E, et al. UniquemicroRNA molecular p rofiles in lung cancer diagnosis and p rognosis[ J ]. Cancer Cell, 2006,9(3):1892198.
    [34] Smith MF Jr, Mitchell A, Li G, et al. Toll-like receptor (TLR) 2 and TLR5,but not TLR4, are required for Helicobacter pylori-induced NF-kappa B activation and chemokine expression by epithelial cells. J Biol Chem. 2003 Aug 29;278(35):32552-60.
    [35] Chang, L. and Karin, M. Mammalian MAP kinase signaling cascades. Nature.2001.410,37-40.
    [32] Shi S, Blumenthal A, Hickey CM, et al. Expression of Many Immunologically Important Genes in Mycobacterium tuberculosis-Infected Macrophages Is Independent of Both TLR2 and TLR4 but Dependent on IFN-(alpha)(beta)Receptor and STAT1. J Immunol. 2005 Sep 1; 175(5):3318-28.
    [36] Lee JH, Choi YH, Kang HS, Choi BT. An aqueous extract of Platycodi radix inhibits LPS-induced NF-kappaB nuclear translocation in human cultured airway epithelial cells. Int J Mol Med. 2004 Jun;13(6):843-7.
    [37] Kyriakis J M, Avruch J. Mammalian Mitogen-Activated Protein Kinase SignalTransduction Pathways Activated by Stress and Inflammation. Physiological Rev. 2001; 81, (2):807-869
    [38] Freeman SM, Whartenby KA.The role of the mitogen-activated protein kinase cellular signaling pathway in tumor cell survival and apoptosis. Drug News Perspect. 2004 May; 17(4):237-42.
    [39] Wilkinson M G Millar J A. Control of the eukaryotic cell cycle by MAP kinase signaling pathways. FASEB J. 2000; 14: 2147-2157
    [40] Widmann C, Gibson S, Jarpe M B., and Johnson G L.. Mitogen-Activated Protein Kinase: Conservation of a Three-Kinase Module From Yeast to Human. Physiolgical Reviews. 1999; 79, (1): 143-180
    [41]Lavoie,J.N.,L'Allemain,G,Brunet,A.,Muller,R.,and Pouyssegur,J.Cyclin D1 expression is regulated positively by the p42/p44 MAPK and negatively by the p38/HOGMAPK pathway.J.Biol.Chem.1996;271,20608-20616
    [42]Yang Y,Zhou H,Yang Y,Li W,et al.Lipopolysaccharide(LPS) regulates TLR4 signal transduction in nasopharynx epithelial cell line 5-8F via NFkappaB and MAPKs signaling pathways.Mol Immunol.2007 Feb;44(5)
    [43]李桂源,刘华英,周鸣,周厚德,李晓玲鼻咽癌癌变的分子机理生物化学与生物物理进展Progress in Biochemistry and Biophysics,2006,33(10):922-931
    [44]宋立兵,汪慧民,曾木圣,等.鼻咽癌细胞株SUNE-1异质性研究.癌症,1998,26(5):324-327 Song L B,Wang H M,Zeng M S,Chin J Cancer,1998,26(5):324-327
    [45].宋立兵,鄢践,汪慧民,等.鼻咽癌细胞亚株不同成瘤与转移潜能的分子机制.癌症,2002,12(2):158-162 Song L B,Y an J,W ang H M,Chin J Cancer,2002,12(2):158-162
    [46]Bryan M.Turner.Histone acetylation and an epigenetic code.BioEssays 2000,22,836-845
    [47]Wei WI,Sham JS.Nasopharyngeal carcinoma.Lancet.2005 Jun 11-17;365(9476):2041-54.Review.
    [48]Chan ATC,Teo PML,Johnson PJ.Nasopharyngeal carcinoma.Ann Oncol 2002,13:1007-1015.
    [49]Thomas Jenuwein,C.David Allis.Translating the Histone Code.Science 2001;293:1074-1080
    [50]Lei Zeng,Ming-Ming Zhou.Bromodomain:an acetyl-lysine binding domain.FEBBS Lett 2002,513,124-128
    [51]Brownell,J.E.and Allis,C.D.Special HATs for special occasions:Linking histone acetylation to chromatin assembly and gene activation.Curr.Opin.Genet.Dev.1996.6,176-184.
    [52]Turner BM.Histone acetylation and an epigenetic code.Bioessays 2000.22:836-845.
    [53] Jeanmougin F, Wurtz JM, et al.The bromodomain revisited.Trends Biochem Sci. 1997 May;22(5):151-3.
    [54] Lu QL, Elia G, Lucas S, Thomas JA. Bcl2 proto-oncogene expression in Epstein-Barr virus-associated nasopharyngeal carcinoma. IntJ Cancer. 1993;53:29-35
    [55] Lai JP, Tong CL, Hong C, et al. Association between high initial tissue levels of cyclin D1 and recurrence of nasopharyngeal carcinoma. Laryngoscope. 2002;112:402-408
    [56] Porter MJ, Field JK, Leung SF, et al. The detection of the c-myc and ras oncogenes in nasopharyngeal carcinoma by immunohistochemistry. Acta Otolaryngol. 1993; 114:105-109
    [57] Qian CN, Guo X, Cao B, et al. The BT Met protein expression level correlates with survival in patients with late-stage nasopharyngeal carcinoma. Cancer Res,2002; 62:589-596
    [58]Turner BM. Histone acetylation and an epigenetic code. Bioessays 2000.22:836-845.
    [59] Kawasaki H. Son,J.et al p300 and ATF-2 are components of the DRF complex, which regulates retinoic acid- and ElA-mediated transcription of the c-jun gene in F9 cells. Genes Dev. 1998 Jan 15;12(2):233-45.
    [60] Chua, P., and G S. Roeder. Bdfl, a yeast chromosomal protein required for sporulation. Mol. Cell. Biol. 1995.15:3685-3696
    [61] Lygerou, Z., C. Conesa, P. et al. The yeast BDF1 gene encodes a transcription factor involved in the expression of a broad class of genes including snRNAs. Nucleic Acids Res. 1994. 22:5332-5340
    [62] Hui AB, LoKW, Teo PM, et al. Genome-wide detection of oncogene amplications in nasopharyngeal carcinoma by array-based comparative genomic hybridization. 2002; Int J Oncol 20:467-473
    [63] Fujii M, YamashitaT, Ishiguro R, et al. Significance of epidermal growth factor receptor and tumourassociated tissue eosinophilia in the prognosis of patients with nasopharyngeal carcinoma. Auris Nasus Larynx. 2002; 29:175-181
    [64]Denis,G.V.,M.R.Green.et al.A novel,mitogen-activated nuclear kinase is related to a Drosophila developmental regulator.Genes Dev.1996 10:261-271
    [65]余鹰,谢奕,张必成等。应用混合探针文库筛选法克隆多个肿瘤差异表达基因.癌症,2000,19(7):709-712
    [66]湛凤凰,江宁,曹利等。cDNA代表性差异分析法分离鼻咽癌上皮细胞株HNE1表达差异cDNA序列的初步研究。中华医学遗传学杂志.1998,15(6):341-344
    [67]张必成,曹利,钱骏等。人胚鼻咽上皮细cDAN文库的构建及鼻咽癌相关基因的筛选。生物化学与生物物理进展。2002,29(2):302-306
    [68]Bicheng Zhang,Xinmin Nie,Bingyi Xiao,et al.Identification of tissue-specific genes in nasopharyngeal epithelial tissue and differentially expressed genes in nasopharyngeal carcinoma by suppression subtractive hybridization and cDNA microarray.Genes Chromosomes Cancer.2003;38(1):80-90
    [69]Xinmin Nie,Bicheng Zhang,Xiaoling Li,et al.Cloning,expression,and mutation analysis of NOR1,a novel human gene down-regulated in HNE1nasopharyngeal carcinoma cell line.J Cancer Res Clin Oncol,2003;129(7):410-414
    [70]余鹰,张必成,谢奕等。鼻咽癌差异表达基因的分析与克隆.生物化学与生物物理学报。2000,32(4):327-332.
    [71]Xie,Y,Bin,L,Yang,J,et al.Molecular cloning and characterization of NAG-7:a novel gene downregulated in human nasopharyngeai carcinoma.Chinese Medical Journal,2001;114(5):530-534.
    [72]Andrew Siu Chung Chan,Ka Fai To,Kwok Wai Lo,et al.High Frequency of Chromosome 3p Deletion in Histologically Normal Nasopharyngeal Epithelia from Southern Chinese.Cancer Research 60,5365-5370,October 1,2000
    [73]Lo KW,Teo PM,Hui AB,et al.High resolution allelotype of microdissected primary nasopharyngeal carcinoma.Cancer Res.2000 Jul 1;60(13):3348-53.
    [74]Lee RC,Feinbaum RL,Ambros V.The C.elegants hetero-chronic gene lin-4encodes small RNAs with antisense complementarity to lin-14.Cell,1993,75(5): 843-854.
    [75]Reinhart BJ,Slack FJ,Basson M,Pasquinelli AE,Bet-tinger JC,Rougvie AE,Horvitz HR,Ruvkun G.The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegants.Nature,2000,403(6772):901-906.
    [76]Lagos-Quintana M,Rauhut R,Lendeckel W,Tuschl T.Identification of novel genes coding for small expressed RNAs.Science,2001,294(5543):853-858.
    [77]Gregory R I,Shiekhat tar R.MicroRNA biogenesis and cancer[J].Cancer Res,2005,65(9):3509-3512.
    [78]Lee Y,Kim M,Han J,et al.MicroRNA genes are t ranscribed by RNA polymerase Ⅱ[J],EMBO,2004,23(20):4051-4060.
    [79]Ambros V,Bartel B,Bartel D P,et al.A uniform system for mi2croRNA annotation[J].RNA,2003,9(3):277-279.
    [80]杜秋丽.microRNA及其功能研究[J].生物学通报,2004,39(8):13-15.
    [81]Calin GA,Croce CM.(2006) MicroRNA-cancer connection:the beginning of a new tale.Cancer Res 66(15):7390-4.
    [82]Kiss,A.M.,Jady,B.E.,Bertrand,et al.(2004) Human box H/ACA pseudouridylation guide RNA machinery.Mol.Cell.Biol.24(13):5797-5807.
    [83].Esquela-Kerscher A,Slack FJ.(2006) Oncomirs-microRNAs with a role in cancer.Nat Rev Cancer 6(4):259-69
    [84]Calin GA,et al.(2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.Proc Natl Acad Sci USA 99:15524-15529.
    [86]Calin GA,et al.(2004) MicroRNA profiling reveals distinct signatures in B cell chroniclymphocytic leukemias.Proc Natl Acad Sci USA 101:11755-11760.
    [87]Michael MZ,et al.(2003) Reduced accumulation of specific microRNAs in colorectal neoplasia.Mol Cancer Res 1:882-891.
    [88]IorioMV,et al.(2005)MicroRNAgene expression deregulation in human breast cancer.Cancer Res 65:7065-7070.
    [89].Hossain A,Kuo MT,Saunders GF(2006) Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA.Mol Cell Biol 26:8191-8201.
    [90]Weber F,Teresi RE,Broelsch CE,Frilling A,Eng C(2006) A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma.J Clin Endocrinol Metab 91:3584-3591.
    [91]Pallante P,et al.(2006)MicroRNA deregulation in human thyroid papillary carcinomas.Endocr Relat Cancer 13:497-508.
    [92]He H,et al.(2005) The role of microRNA genes in papillary thyroid carcinoma.Proc Natl Acad Sci USA 102:19075-19080.
    [93]Chan JA,Krichevsky AM,Kosik KS(2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells.Cancer Res 65:6029-6033.
    [94]Muriel Girard,Emmanuel Jacquemin,Arnold Munnich,Stanislas Lyonnet,Alexandra Henrion-Caude.(2008) miR-122,a paradigm for the role of microRNAs in the liver Journal of Hepatology 48(2008) 648-656
    [95]Srikumar Sengupta,et al.(2008) MicroRNA 29c is down-regulated in nasopharyngeaicarcinomas,up-regulating mRNAs encoding extraceilular matrix proteins.Proc Natl Acad Sci U S A.2008 Apr 15;105(15):5874-8.
    [96]Chen HC,Chen GH,Chen YH,Liao WL,Liu CY,Chang KP,Chang YS,Chen SJ.MicroRNA deregulation and pathway alteration in nasopharyngeal carcinoma.Br J Cancer.2009 Mar 24;100(6):1002-11
    [97].Gregory PA,Bert AG,et al.(2008)The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1.Nat Cell Biol.2008 May;10(5):593-601.
    [98]He,L.,Thomson,et al.(2005) A microRNA polycistron as a potential human oncogene.Nature 435,828-833.
    [99]O'Donnell,K.A.,Wentzel,et al.(2005) c-Myc-regulated microRNAs modulate E2F1 expression.Nature 435,839-843.
    [100]Cimmino A,Calin GA,et al(2005).miR-15 and miR-16 induce apoptosis by targeting BCL2.Proc Natl Acad Sci U S A.2005 Sep 27;102(39):13944-9.
    [101]Iorio MV,Visone R,et al.(2007)MicroRNA signatures in human ovarian cancer.Cancer Res.2007 Sep 15;67(18):8699-707.
    [102] Peterson A, Noteboom J,et al.(2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10513-8. Epub 2008 Jul 28.
    [103] Amaral FC, Torres N,et al.(2008)MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab. 2008 Oct 7.
    [104] Meng F, Henson R,et al.(2006) Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines.Gastroenterology. 2006 Jun;130(7):2113-29.
    [105] Nakada C, Matsuura K, et al.(2008)Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c.J Pathol. 2008 Dec;216(4):418-27.
    [106] Gottardo F, Liu CG, et al.(2007)Micro-RNA profiling in kidney and bladder cancers. Urol Oncol. 2007 Sep-Oct;25(5):387-92.
    [107]Markou A, Tsaroucha EG,et al.(2008)Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem. 2008 Oct;54(10):1696-704. Epub 2008 Aug 21.
    [108] Wang X, Tang S,et al.(2008)Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth.PLoS ONE. 2008 Jul 2;3(7):e2557.
    [109]. Feber A, Xi L, et al.(2007)MicroRNA expression profiles of esophageal cancerJ Thorac Cardiovasc Surg. 2008 Feb;135(2):255-60; discussion 260. Epub 2007 Dec 26
    [110] Abrahante JE, Daul AL, Li M, Volk ML, Tennessen JM, Miller EA, Rougyie AE.The Caenorhabditis elegans hunchback-like gene lin-57/hbl-l controls developmental time and is regulated by microRNAs. Dev Cell, 2003, 4(5):625-637.
    [111] John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human microRNA targets. PLoS Biol, 2004,2(11): e363.
    [112] Ambros V. The functions of animal microRNAs. Nature, 2004, 431(7006): 350-355.
    [113]Lagos-Quintana M,Rauhut R,Lendeckel W,Tuschl T.Identification of novel genes coding for small expressedRNAs.Science,2001,294(5543):853-858.
    [114]Peng C,Liu H Y,Zhou M,et al.BRD 7 supp resses the growth of nas opharyngeal carcinoma cells(HNE1) through negatively regulating beta 2catenin and ERK pathways[J].Mol Cell Bi ochem,2007,303(122):141149.
    [115]Peng S,Fan S,Li X,et al.The expression of ezrin inNPC and its interaction with NGX6,a novel candidate suppressor[J].Cancer Sci,2007,98(3):3412349.
    [116]杨一新博士学位论文LPLUNC1基因介导NFκB与MAPK信号传导通路抑制鼻咽癌发生发展的机制研究中南大学
    [117]周厚德博士学位论文固有免疫分泌性蛋白SPLUNC1的鉴定及其参与鼻咽癌细胞凋亡和分化的作用机制的研究中南大学
    [118]Merritt SE,Mata M,Nihalani D,et al.(1999).The mixed lineage kinase DLK utilizes MKK7 and not MKK4 as substrate..J.Biol.Chem.274(15):10195-202.
    [119]Orth K,Palmer LE,Bao ZQ,et al.(1999).Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector.Science 285(5435):1920-3.
    [120]Samanta AK,Huang HJ,Bast RC,Liao WS(2004).Overexpression of MEKK3 confers resistance to apoptosis through activation of NFkappaB.J.Biol.Chem.279(9):7576-83.
    [121].Coskun T,Bina HA,Schneider MA,Dunbar JD,Hu CC,Chen Y,Moller DE,Kharitonenkov A(August 2008).FGF21 Corrects Obesity in Mice Endocrinology.doi:10.1210/en.2008-0816
    [122]Nishimura T,Nakatake Y,Konishi M,Itoh N(June 2000).Identification of a novel FGF,FGF-21,preferentially expressed in the liver.Biochim.Biophys.Acta 1492(1):203-6.
    [123]Xie MH,Holcomb I,Deuel B,et al.(1999).FGF-19,a novel fibroblast growth factor with unique specificity for FGFR4.Cytokine 11(10):729-35.
    [124].Graves PR,Winkfield KM,Haystead TA(2005).Regulation of zipper-interacting protein kinase activity in vitro and in vivo by multisite phosphorylation.J.Biol.Chem.280(10):9363-74
    [125].Stelzl U,Worm U,Lalowski M,et al.(2005).A human protein-protein interaction network:a resource for annotating the proteome.Cell 122(6):957-68.
    [126]Agarwal SK,Guru SC,Heppner C,et al.Menin interacts with the AP1transcription factor JunD and represses JunD-activated transcription.Cell 1999;96:143-152
    [127]Vogt PK.Jun,the oncoprotein.Oncogene 2001;20:2365-237
    [128]Kimura K,Wakamatsu A,Suzuki Y,et al.(2006).Diversification of transcriptional modulation:large-scale identification and characterization of putative alternative promoters of human genes.Genome Res.16(1):55-65.
    [129]Yi H,Morton CC,Weremowicz S,et al.(1995).Genomic organization and chromosomal localization of the DUSP2 gene,encoding a MAP kinase phosphatase,to human 2p11.2-q11.Genomics 28(1):92-6.
    [130]Kamata H,Honda S,Maeda S,et al.(2005).Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases.Cell 120(5):649-61.
    [131]Sark(?)zi R,Miller B,Pollack V,et al.(2007).ERK1/2-driven and MKP-mediated inhibition of EGF-induced ERK5 signaling in human proximal tubular cells.J.Cell.Physiol.211(1):88-100.
    [132]Takekawa M,Maeda T,Saito H(1998).Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways.Embo J.17(16):4744-52.
    [133]Khokhlatchev A,Rabizadeh S,Xavier R,et al.(2002).Identification of a novel Ras-regulated proapoptotic pathway.Curr.Biol.12(4):253-65.
    [134]de Souza PM,Lindsay MA(2005).Mammalian Sterile20-like kinase 1 and the regulation of apoptosis.Biochem.Soc.Trans.32(Pt3):485-8.
    [135]黄琛.博士毕业论文NAG7基因通过雌激素受体促进鼻咽癌受体促进鼻咽癌细胞运动侵袭的分子机制[D].中南大学
    [136]赵瑾硕士毕业论文SPLUNC1及其BPI结构域缺失突变体对鼻咽癌细胞基因表达谱以及信号通路影响的初步研究中南大学
    [137]Ougolkov A,Zhang B,Yamashita K,et al.Associations among beta-TrCP,an E3 ubiquitin ligase receptor,beta-catenin,and NF kappaB in colorectal cancer.J Natl Cancer Inst,2004,96(15):1161.
    [138]Nagafuchi A.Molecular architecture of adherens junctions.Curr Opin Cell Biol,2001,13(5):600.
    [139]MassovaI,Kotra LP,Fridman R,Mobashery S(1998).Matrix metalloproteinases:structures,evolution,and diversification.FASEB J.12(12):1075-95.
    [140]Melkonyan HS,Chang WC,Shapiro JP,et al.(1998).SARPs:a family of secreted apoptosis-related proteins.Proc.Natl.Acad.Sci U.S.A.94(25):13636-41.
    [141]Fedi P,Bafico A,Nieto Soria A,et al.(1999).Isolation and biochemical characterization of the human Dkk-1 homologue,a novel inhibitor of mammalian Wnt signaling.J.Biol.Chem.274(27):19465-72
    [142]Rawlings JS,Rosier KM,et al.The JAK/STAT signaling pathway.J Cell Sci.2004 Mar 15;117(Pt8):1281-3.
    [143].Kishimoto,T.The biology of interleukin-6.Blood.1989:74,1-10.
    [144].Rachon D,et al.Role of tumor necrosis factor(TNF) and interleukin-6(IL-6)in the pathogenesis of late complications of menopause.Effects of hormone replacement therapy on TNF and IL-6 expression.Pol Merkuriusz Lek.2005 Jun;18(108):724-7.
    [145]Kross KW,Heimdal JH,et al.Head and neck squamous cell carcinoma spheroid- and monocyte spheroid-stimulated IL-6 and monocyte chemotactic protein-1 secretion are related to TNM stage,inflammatory state and tumor macrophage density.Acta Otolaryngol.2005,125(10):1097-104
    [146]Takeshita T,Arita T,Asao H,et al.(1996).Cloning of a novel signal-transducing adaptor molecule containing an SH3 domain and ITAM.Biochem.Biophys.Res.Commun.225(3):1035-9.
    [147]Caput D,Laurent P,Kaghad M,et al.(1996).Cloning and characterization of a specific interleukin(IL)-13 binding protein structurally related to the IL-5receptor alpha chain.J.Biol.Chem.271(28):16921-6.
    [148]Krebs DL,Hilton DJ(2001).SOCS proteins:negative regulators of cytokine signaling.Stem Cells 19(5):378-87.
    [149].Ramakers GJ(2002).Rho proteins,mental retardation and the cellular basis of cognition.Trends Neurosci.25(4):191-9.
    [150].Xu M,Sheppard KA,Peng CY,et al.(1994).Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation.Mol.Cell.Biol.14(12):8420-31.
    [151]Lee MH,Reynisdóttir I,Massagué J(1995).Cloning of p57KIP2,a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution.Genes Dev.9(6):639-49.
    [152]钱骏.博士学位论文:一个定位于9p21-11鼻咽癌高频LOH区域的新基因UBAP1的克隆及功能的初步研究.中南大学
    [153].钱骏,张晓梅,李小玲等.应用EST策略鉴定人类新基因UBAP1的数字化差异表达图谱.癌症,2002,21(3):1-5
    [154]Zeng ZY,Qian J,et al.(2005)Expression and location of UBAP1 protein associated with nasopharyngeal carcinoma.Zhong Nan Da Xue Xue Bao Yi Xue Ban.2005 Dec;30(6):621-4
    [155]Qian J,Zhang XH,et al.(2001)Cloning and Expression Analysis of a Novel Gene,UBAP1,Possibly Involved in Ubiquitin Pathway.Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao(Shanghai).2001;33(2):147-152.
    [156]Xiao B,Fan S,et al.(2006)Purification of novel UBAP1 protein and its decreased expression on nasopharyngeal carcinoma tissue microarray.Protein Expr Purif.2006 May;47(1):60-7.
    [1].Chen Z,Gibson TB,Robinson F,et al.MAP kinases.Chem Rev 2001;101:2449-2476.
    [2]Kyriakis JM,Avruch J.Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation.Physiol Rev 2001;81:807-869.
    [3]Fecher LA,Amaravadi RK,Flaherty KT.The MAPK pathway in melanoma.CurrOp in Oncol,2008,20(2):1832 189.
    [4]Engelberg D.Stress-activated protein kinases-tumor suppressorsor tumor initiators?[J].Sem in Cancer B iol,2004,14(4):271-282.
    [5]Dent P,Yacoub A,Fisher,PB,et al.MAPK pathways in radiation res ponses[J].Oncogene,2003,22(37):5885-5896.
    [6]Lawrence MC,J ivan A,Shao C,et al.The roles ofMAPKs in disease.Cell Res,2008,18(4):4362 4421
    [7].Roux PP,Blenis J.ERK and p38 MAPK-Activated Protein Kinases:a Family of Protein Kinases with Diverse Biological Functions.Microbiol Mol Biol Rev 2004;68:320-344.
    [8].Pages G,Lenormand P,L'Allemain G,Chambard JC,Meloche S,Pouyssegur J.Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation.Proc Natl Acad Sci USA 1993;90:8319-8323.
    [9].Dudley DT,Pang L,Decker SJ,Bridges AJ,Saltiel AR.A synthetic inhibitor of the mitogen-activated protein kinase cascade.Proc Natl Acad Sci USA 1995;92:7686-7689.
    [10].Alessi DR,Cuenda A,Cohen P,Dudley DT,Saltiel AR.PD 098059 is a specific inhibitorof the activation of mitogen-activated protein kinase kinase in vitro and in vivo.J Biol Chem 1995;270:27,489-27,494.
    [11]Lavoie JN,L'Allemain G,Brunet A,Muller R,Pouyssegur J.Cyclin D1expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway.J Biol Chem 1996;271:20,608-20,616.
    [12]Cheng M,Sexl V,Sherr CJ,Roussel MF.Assembly of cyclin D-dependent kinase and titrationof p27Kip1 regulated by mitogen-activated protein kinase kinase(MEK1).Proc Natl AcadSci USA 1998;95:1091-1096
    [13]Chen RH,Juo PC,Curran T,Blenis J.Phosphorylation of c-Fos at the C-terminus enhancesits transforming activity.Oncogene 1996;12:1493-1502.
    [14]Webb CP,Van Aelst L,Wigler MH,Woude GF.Signaling pathways in Ras-mediated tumorigenicity and metastasis.Proe Natl Acad Sci USA 1998;95:8773-8778.
    [15]Vial E,Pouyssegur J.Regulation of Tumor Cell Motility by ERK Mitogen-ActivatedProtein Kinases.Ann N Y Acad Sci 2004;1030:208-218.
    [16]Klemke RL,Cai S,Giannini AL,Gallagher PJ,de Lanerolle P,Cheresh DA.Regulation of cell motility by mitogen-activated protein kinase.J Cell Biol 1997;137:481-492.
    [17]Carragher NO,Westhoff MA,Fincham VJ,Schaller MD,Frame MC.A novel role for FAK as a protease-targeting adaptor protein:regulation by p42 ERK and Src.Curr Biol 2003;13:1442-1450.
    [18]Mansfield PJ,Shayman JA,Boxer LA.Regulation of polymorphonuclear leukocyte phagocytosis by myosin light chain kinase after activation of mitogen-activated protein kinase.Blood 2000;95:2407-2412.
    [19].Vial E,Sahai E,Marshall CJ.ERK-MAPK signaling coordinately regulates activity ofRacl and RhoA for tumor cell motility.Cancer Cell 2003;4:67-79.
    [20]Woo MS,Ohta Y,Rabinovitz I,Stossel TP,Blenis J.Ribosomal S6 Kinase(RSK)Regulates Phosphorylation of Filamin A on an Important Regulatory Site.Mol Cell Biol 2004;24:3025-3035.
    [21].Mitsuuchi Y,Testa JR.Cytogenetics and molecular genetics of lung cancer.Am J MedGenet 2002;115:183-188.
    [22]Grady WM,Markowitz SD.Genetic and epigenetic alterations in colon cancer.Annu Rev Genomics Hum Genet 2002;3:101-128.
    [23]Jaffee EM,Hruban RH,Canto M,Kern SE.Focus on pancreas cancer.Cancer Cell 2002;2:25-28.
    [24]Garcia-Rostan G,Zhao H,Camp RL,et al.ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer.J Clin Oncol 2003;21:3226-3235.
    [25]AppelsNM,Beijnen JH,Schellens JH.Development of farnesyl transferase inhibitors:a review[J].Oncologist,2005,10(8):565-578.
    [26]Steeghs N,Nortier JW,Gelderbl om H.Small molecule tyrosine kinase inhibitors in the treatment of solid tumors:an update ofrecent devel opments[J].Ann Surg Oncol,2007,14(2):942-953.
    [27]Turella P,Cerella C,Fil omeni G,et al.Proapop totic activity of new glutathi one S2transferase inhibitors[J].Cancer Res,2005,65(9):3751-3761.
    [28]Ols on JM,Hallahan AR.p38 MAP kinase:a convergence point in cancer therapy[J].Trends M ol M ed,2004,10(3):125-129.
    [29]Johnston SR,LearyA.Lapatinib:a novel EGFR/HER2 tyrosine kinase inhibitor for cancer[J].D rugs Today(Brac),2006,42(7):441-453.
    [30]Ens lenH,Raingeaud J,Davi s RJ.Select ive activation of p38mitogen-activated protein(MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6.J Biol Chem 1998;273:1741-1748
    [31]Raingeaud J,Whitmarsh AJ,Barrett T,Dérijard B,Davis RJ.MKK3 and MKK6-regulated gene expression is mediated by the p38mitogen-activated protein kinase signal transduction pathway.Mol Cell Biol 1996;16:1247-1255
    [32]Han J,Sun P.The pathways to tumor suppression via route p38.Trends Biochem Sci 2007;32:364-371
    [33]Cazillis M,Bringuier AF,Delautier D,Buisine M,Bernuau D,Gespach C,Groyer A.Disruption of MKK4 signaling reveals its tumor-suppressor role in embryonic stem cells.Oncogene 2004;23:4735-4744
    [34]Sun P,Yoshizuka N,New L,Moser BA,Li Y,Liao R,Xie C,Chen J,Deng Q,Yamout M,Dong MQ,Frangou CG,Yates JR 3rd,Wright PE,Han J.PRAK is essential for ras-induced senescence and tumor suppression.Cell 2007;128:295-308
    [35]Reinhardt HC,Aslanian AS,Lees JA,Yaffe MB.p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 2007; 11:175-189
    [36] Manke IA, Nguyen A, Lim D, Stewart MQ, Elia AE, Yaffe MB. MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates theG2/M transition and S phase progression in response to UV irradiation. Mol Cell 2005; 17: 37-48
    [37] Maxwell SA, Acosta SA, Davis GE. Induction and alternative splicing of the Bax gene mediated by p53 in a transformed endothelial cell line. Apoptosis 1999; 4: 109-114
    [38] Mart inez-Cabal lero S, DejeanLM, Jonas EA, Kinnal ly KW. The role of the mi tochondrial apoptosis induced channel MAC in cytochrome c release. J Bioenerg Biomembr 2005; 37:155-164
    [39] Stoneley M, Chappell SA, Jopling CL, Dickens M, MacFarlane M, Willis AE. c-Myc protein synthesis is initiated from the internal ribosome entry segment during apoptosis. Mol Cell Biol 2000; 20: 1162-1169
    [40] Liang B, Wang S, Zhu XG, Yu YX, Cui ZR, Yu YZ. Increased expression of mitogen-activated protein gastric cancer. World J Gastroenterol 2005; 11: 623-628 kinase and its upstream regulating signal in human
    [41] BURNS CJ, SQUIRES PE, PERSAUD SJ. Signaling throug the p38 and p42 /44 mitogen-activated families of protein kinases in pancreatic beta-cell proliferation [ J]. BiochemBiophys Res Commun, 2000,268( 2): 541- 546.h
    [ 43 ] Ols on JM, Hallahan AR. p38 MAP kinase: a convergence poinin cacer therapy[ J ]. Trends M ol M ed, 2004,10 (3 ): 125 -129.
    [ 44 ] Cuenda A, Rousseau S . p38 MAP-Kinases pathway regulation,function and role in human diseases[ J ]. Biochi m B iophys Acta,2007, 1773 (8) : 1358 -1375
    [45] West on C R, Davis R J . The JNK signal transducti onpathway[ J ]. CurrOp in CellBi ol, 2007,19 (2): 1422 149 .
    [ 46 ] Widmann C, Gibson S, Jar peM B, et al . Mitogen- activated protein kinase: Conservation of a three- kinase module from yeast to human[J].Physiol Rev,1999,79(1):1432 180.
    [47]Davis R J.Signal transducti on by the JNK gr oup of MAPkinases[J].Cell,2000,103(2):2392 252.
    [48].Yoshida S,Fukino K,Harada H,et al.The c-Jun NH2-terminal kinase3(JNK3) gene:genomic structure,chromosomal assignment,and loss of expression in brain tumors.J Hum Genet 2001;46:182-187.
    [49]Kim HL,Vander Griend DJ,Yang X,et al.Mitogen-activated protein kinase kinase 4 metastasis suppressor gene expression is inversely related to histological pattern in advancing human prostatic cancers.Cancer Res 2001;61:2833-2837.
    [50]Shami PJ,Saavedra JE,Wang LY,et al.JS-K,a glutathione/glutathione S2transferase- activated nitrie oxide donor of the diaze-niumdi olate class with potent antineop lastic activity[J].M olCancer Ther,2003,2(4):409-417.
    [51]Liu J,Li C,QuW,et al.Nitricoxide prodrngs and metall oche-motherapeuties:JS-K and CB-3- 100 enhance arsenic and cispla-tin cytolethality by increasing cellular accumulation[J].M ol Cancer Ther,2004,3(6):709-714

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700