用户名: 密码: 验证码:
Igκ基因SNP位点与肿瘤易感性以及肿瘤细胞表达Ig的异质性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤的发生发展过程中与免疫系统有十分密切的相互作用,肿瘤细胞可逃避、干扰以及抑制机体免疫系统,众多相关免疫蛋白和免疫分子参与其中。
     免疫球蛋白(Ig)是介导体液免疫反应的核心分子。经典免疫学理论认为,人类所有的细胞都含有胚系免疫球蛋白基因,但只有B淋巴细胞中,免疫球蛋白基因才具备转录和表达的可行性。新近多项研究发现,上皮性肿瘤细胞同样能够完成B淋巴细胞中独有的V(D)J重排以及类别转换等过程,进行Ig分子的转录与表达。
     我们前期工作从鼻咽癌中克隆了异常的人类Igκ轻链基因(Tx),具备软琼脂集落形成,裸鼠成瘤等恶性转化功能。在对Igκ基因研究中发现存在4个SNP位点。在鼻咽癌样本中分析这些SNP与鼻咽癌易感性之间的关联,结果显示SNP4-3基因型在正常人群和鼻咽癌人群中的分布具有显著性差异。其中杂合型AT-GC是鼻咽癌患病的遗传风险因子,SNP6-5则可能通过调节基因的重组和表达方式起到辅助作用;综合分析显示,4个位点均为杂合型的单倍型,在鼻咽癌患者人群中的分布频率高于其在正常人群中的分布,是鼻咽癌患病的风险因子。
     Ig在多种肿瘤细胞中表达,我们又证明了Igκ基因SNP群与鼻咽癌易感性相关。在此基础上,本论文第一部分研究Igκ轻链基因上的SNP位点与肺癌、乳腺癌、食管癌、胃癌、结肠癌以及宫颈癌遗传易感之间的关联。
     通过生物信息学预测Igκ基因恒定区SNP位点对Ig蛋白结构的影响,发现SNP3位点不同基因型可形成Igκ轻链蛋白空间结构上的差异。差异结构位于分子表面,不直接影响抗原抗体结合,可能对其功能造成一定影响。
     测定Igκ基因SNP位点基因型,分析基因型分布与多种上皮性肿瘤易感性的相关性,结果发现,SNP3、5位点不同基因型在胃癌与乳腺癌病例及对照中的分布存在统计学差异,提示与胃癌及乳腺癌发病相关。SNP3位点GG、GC型,SNP5位点CC、CT型,为胃癌、乳腺癌发病的风险因素。在胃癌全体病例与对照中,风险基因型SNP3-G,SNP5-C的OR值分别为1.64与1.67,代表携带这两种基因型的人群胃癌的发病风险分别是正常人的1.64倍与1.67倍;在乳腺癌全体病例与对照中,风险基因型SNP3-G,SNP5-C的OR值分别为1.94与1.56,代表携带这两种基因型的人群乳腺癌的发病风险分别是正常人的1.94倍与1.56倍。经测序新发现SNP位点nt3324,基因型为G/A,与SNP6-5完全连锁,连锁基因型为G-A-T与A-G-C。
     SNP具有微量效应和累积效应,SNP位点相关的发病风险可能与疾病的其他风险因素存在关联。本论文的第二部分针对每种病例中各因素对SNP位点基因型与肿瘤发病风险之间的关联进行分层分析。结果显示,在胃癌中,Igκ基因上SNP位点风险基因型SNP3-G与SNP5-C在幽门螺旋杆菌(HP)感染为阴性的人群中与胃癌发病相关,OR值为2.61(1.22—5.57)与2.57(1.20—5.49),表明SNP3、SNP5风险基因型主要在HP感染阴性的人群中发挥作用。同时,风险基因型SNP3-G与SNP5-C在<49年龄段与胃癌发病相关,OR值分别为3.06(1.23-7.60)与2.83(1.24-6.43);在58-65年龄段,风险基因型SNP3-G与胃癌发病相关,OR值为2.89(1.28-6.53)。表明SNP3、SNP5风险基因型可能在特定范围年龄的人群中发挥作用。
     乳腺癌病例与对照中,风险基因型SNP3-G与SNP5-C在>56年龄分组中与乳腺癌发病相关,OR值分别为2.53(1.31-4.88)与2.28(1.19-4.35),表明SNP3、SNP5风险基因型主要在年龄>56人群中发挥作用,可能与激素分泌水平相关。同时,雌激素受体ER与孕激素受体PR表达为阴性的乳腺癌中,风险基因型SNP3-G与SNP5-C作用更为明显。在乳腺癌ER表达为阴性的病例中,OR值分别为2.71(1.52-4.85),2.41(1.32-4.41)。在PR表达为阴性的病例中,OR值分别为2.42(1.42-4.14),2.00(1.16-3.44)。
     上述研究表明Igκ基因上的SNP位点与胃癌以及乳腺癌的遗传易感性相关,是胃癌及乳腺癌的患病风险因子,并与HP感染、年龄、ER/PR表达等因素相关。肿瘤是遗传和环境因素多方面共同作用的疾病。我们的研究首次明确了Ig基因上SNP位点与肿瘤遗传易感之间的关联,为进一步理解环境及宿主因素等与肿瘤表达Ig的内在联系提供了新的角度,也为Ig在肿瘤与免疫系统相互作用中所发挥的作用提供了实验依据。
     本论文的第三部分以包括鼻咽癌、宫颈癌、乳腺癌、胃癌与结肠癌在内的细胞系为模型,通过检测Ig的不同存在方式,探讨肿瘤细胞表达Ig的异质性。
     正常Igκ轻链单体为26KD左右分子,两条轻链与两条重链结合为一个完整的Ig四聚体。我们发现肿瘤细胞中κ轻链单体呈26KD与55KD两种分子量大小,以55KD大小为主。其中26KD的κ轻链单体可与重链结合,55KDκ轻链不与重链结合。缺陷型Ig(truncatedIg)是一类在病理状态下存在的分子量与分子结构上都不同于正常Ig的分子,根据实验结果,我们推测肿瘤细胞表达缺陷型κ轻链。
     正常的α重链分子量为55KD,与轻链结合为IgA四聚体。研究发现肿瘤细胞表达的α重链单体呈40KD与60KD两种分子量大小。其中40KD分子具备Fc段,60KD分子不具备可识别的Fc段,均为缺陷型。这些新发现提示肿瘤细胞表达Ig具有异质性,这为理解其生物学功能提供了新的启示。
     同时研究发现,上皮性肿瘤细胞中存在膜上的mIg与分泌至细胞外的sIg,其中至少包含κ轻链与α重链成分,并且在不同组织来源的肿瘤细胞中其表达水平有差异。Hela细胞中具有较高的α重链分泌水平。
     以鼻咽癌细胞为模型,从信号传导的角度,我们还初步探讨了外源性致瘤蛋白EB病毒编码的潜伏膜蛋白LMP1对肿瘤细胞mIg与sIg的调控。发现LMP1可上调细胞的sIgκ分泌水平。我们的研究在病毒致瘤因素与肿瘤细胞表达Ig的调控机制间建立了新的联系,EB病毒编码的LMP1能够上调肿瘤细胞表达的Ig,可能在LMP1致瘤中有其特殊的功能与生物学意义。
     肿瘤的发病与免疫系统密切相关,涉及多个相关免疫分子。上皮性肿瘤细胞表达Ig的异质性及其相关机制的阐明,为我们从一个新角度理解缺陷型免疫分子在肿瘤发生发展中的意义提供了启示。
Immunoglobulin(Ig) is the one of most important molecules mediating humoral immune response.By classic immunology theory, although all of the body cell contains germline gDNA that encodes Ig chains,only those in B lymphocytes are transcripted and expressed. Recently,accumulating evidences showed that cancer cells of epithelium origins could also carry out unique B cell processings such as V(D)J rearrangement and class switching,which led to Ig molecule transcription and expression.
     From a human nasopharyngeal carcinoma cell line,we have cloned an aberrant Igκgene(Tx).Aberrant Igκgene gene was shown to have transforming activity,including clone formation in soft agar and tumorigenesis in mude mice.
     Previous study identified 4 SNP loci on Igκgene,and their relationship with nasopharyngeal carcinoma(NPC) was analyzed.Results suggested that SNP3 and SNP5 were associated with NPC susceptibility. SNP3-CG genotype was distributed at a higher frequency in NPC patients than that in healthy individuals.Thus SNP loci on Igκgene gene is possibly a risk factor for NPC carcinogenesis.
     Based on that Ig expressed in cancer cells of various tissue origion and was we have confirmed its associated with NPC susceptibility,the first part of this project is focused on the relationship of SNPs on Igκgene with the susceptibility of lung,breast,esophagus,gastric,colon,and cervics cancers.
     Using bioinformatic methods,we predicted the changes of the 3-dimensional structures of Ig molecule caused by the different genotypes of SNP3,which located in the C region of Igκgene.Results implied that SNP3 could lead an amino acid change located on the surface of the Ig molecule,which had no direct impact on specific antigen-antibody binding,but might still have certain effects on its function,yet to be defined.
     Distribution for genotypes of SNPs on Igκgene was determined and analysed in all the clinical samples,which revealed significant differences between gastric,breast cancer cases and corresponding controls,implied that SNPs on Igκgene was associated with susceptibility of these two cancers.In gastric cancer cases and controls,the OR values for risk genotype SNP3-G and SNP5-G were 1.64 and 1.67 respectively, suggesting that the carriers might have 1.64 and 1.67 folds risks for developing gastric cancer compared with noncarriers.In breast cancer, the OR values were 1.94 and 1.57,suggesting that the risks for developing breast cancer was 1.94 and 1.56 folds higher in carriers than in noncarriers.By sequencing,a new SNP locus nt3324 was identified.Its genotype was G/A,completely linked with SNP6-5,the linkage genotype is G-A-T&A-G-C.
     It is known that SNPs have a micro-effect and cumulative effect.The risks for diseases associated with SNPs may correlate with other risk factors.In the second part of the research,stratified analyses for SNPs on Igκgene were carried out.The results revealed that in gastric cancer,the risks associated with SNP3-G and SNP5-C mainly presented in the cases with negative helicobacter pylori(HP) infection,OR value were 2.61(1.22-5.57) and 2.57(1.20-5.49) respectively,which suggested that risk genotypes of SNP3,5 played a role in gastric cancer carcinogenesis only in population without HP infection.Risk genotypes of SNP3 and SNP5 were associated with gastric cancer susceptibility in population aged below 49,with OR value being 3.06(1.23-7.60),2.83(1.24-6.43) respectively;SNP3-G also related to gastric cancer susceptibility in population aged between 58 and 65,with OR value being 2.89(1.28-6.53). The results implied that the risk genotypes of SNP3 and SNP5 may play a role in gastric cancer carcinogenesis in a population of a particular age group.
     In breast cancer cases and controls,the risk genotypes SNP3-G and SNP5-C were related to susceptibility in a population aged above 56,with OR value being 2.53(1.31-4.88) and 2.28(1.19-4.35),while,increased risk associated with SNP3G and SNP5 was observed in cases with negative estrogen receptor(ER) and progestogen receptor(PR) expression.The OR values for SNP3-G and SNP5-C in ER(-) cases were 2.71(1.52-4.85) and 2.41(1.32-4.41),in PR(-) cases were 2.42(1.42-4.41) and 2.00(1.16-3.44).
     The studies above revealed that SNP loci on Igκgene were risk factors for gastric cancer and breast cancer,associated with the diseases' susceptibility,and correlated with other risk factors such as HP infection, age and ER/PR expression.The investigation provided new insights into the phenomenon of cancers expressing the Ig molecule.
     The third part of this research focused on the heterogeneity of Ig expression in different cancer cells including NPC,cervical cancer,breast cancer,gastric cancer and colon cancer.Normal Igκis a 26KD molecule combined with heavy chains to form an integral Ig tetramer.It was found that there were 2 types of Igκlight chain monomers expressed in cancer cells with molecular weight being 26KD and 55KD respectively.The 55KD chain was the major one and could not combine with heavy chains. It has been reported that truncated Ig is a class of Ig molecules with abnormal molecular weight and varied structures,exsiting under pathological conditions.We speculated that the 55KD Igκbelongs to the class of truncated Ig.
     Normalαheavy chain is a 55KD molecule,combined with light chains to form an integral IgA.In cancer cells,αheavy chain also had two types of Igαmonomers,molecular weight being 40KD and 60KD respectively.The 40KD chain has an Fc domain recognizable by protein A,and the 60KD chain lacks an Fc domain,they are both truncated.
     The epithelial cancer cells were also capable of expressing mIg in cell membrane and secreting sIg into cell culture medium.The expression and secretion level were varied in cell lines of different tissue origins.Theαheavy chain secreted by Hela cell line was moderately higher than that of other cells.
     Using NPC cell lines as a model,the regulation of cancer cell's mIg and sIg by an exogenous oncoprotein latent membrane protein 1(LMP 1) encoded by EB virus was also explored.It was found that LMP1 could up-regulate the level of sIgκsecreted by NPC cancer cells.Our research established a new connection between virus oncogenic factors and the regulation mechanism of Ig expressed in cancer cells.This finding provided clues for exploring the biological significance of Ig expression in cancer cells.
     Tumor is a kind of immune deficiency disease;various clusters of related immuno-proteins are involved in carcinogenesis and tumor development.Our research focused on the SNP loci on Igκgene associated with cancer susceptibility;established the correlationship between risk genotypes of SNP loci on Igκgene and other environmental/host risk factors;and clarified heterogeneity of Ig expressed in cancer cells and its regulation mechanism.Our research have shed light on the significance of deficiency immuno-molecule in carcinogenesis.
引文
[1] Huber, R., Spatial structure of immunoglobulin molecules. Klin Wochenschr,1980. 58(22): p. 1217-31.
    [2] Lefranc, G. and M.P. Lefranc, Regulation of the immunoglobulin gene transcription. Biochimie, 1990. 72(1): p. 7-17.
    [3] Cao, Y., et al., Isolation and partial characterization of a transformation-associated sequence from human nasopharyngeal carcinoma. Mol Carcinog, 1991. 4(4): p. 297-307.
    [4] Li, M., M. Tang, and X. Deng, Positive immunoglobulin A expression in human epithelial carcinoma cell lines. Zhonghua Zhong Liu Za Zhi, 2001. 23(6): p. 451-3.
    [5] Kimoto, Y., Expression of heavy-chain constant region of immunoglobulin and T-cell receptor gene transcripts in human non-hematopoietic tumor cell lines. Genes Chromosomes Cancer, 1998. 22(1): p. 83-6.
    [6] Okabe, H., et al., Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression. Cancer Res, 2001. 61(5): p. 2129-37.
    [7] Li, J., et al., Proteomic detection of changes in protein synthesis induced by NGX6 transfected in human nasopharyngeal carcinoma cells. J Protein Chem, 2001. 20(3): p. 265-71.
    [8] Qiu, X., et al., Human epithelial cancers secrete immunoglobulin g with unidentified specificity to promote growth and survival of tumor cells. Cancer Res, 2003. 63(19): p. 6488-95.
    [9] Li, M., et al., Expression of immunoglobulin kappa light chain constant region in abnormal human cervical epithelial cells. Int J Biochem Cell Biol, 2004. 36(11): p. 2250-7.
    [10] Babbage, G, et al., Immunoglobulin heavy chain locus events and expression of activation-induced cytidine deaminase in epithelial breast cancer cell lines. Cancer Res, 2006. 66(8): p. 3996-4000.
    [11] Chen, Z. and J. Gu, Immunoglobulin G expression in carcinomas and cancer cell lines. Faseb J, 2007.21(11): p. 2931-8.
    [12] Geng, L.Y., et al., Expression of SNC73, a transcript of the immunoglobulin alpha-1 gene, in human epithelial carcinomas. World J Gastroenterol, 2007. 13(16): p. 2305-11.
    [13] Zhu, X., et al., Immunoglobulin mRNA and protein expression in human oral epithelial tumor cells. Appl Immunohistochem Mol Morphol, 2008. 16(3): p. 232-8.
    [14] Huang, J., et al., Expression of immunoglobulin gene with classical V-(D)-J rearrangement in mouse brain neurons. Int J Biochem Cell Biol, 2008. 40(8): p. 1604-15.
    [15] Zheng, H., et al., Immunoglobulin alpha heavy chain derived from human epithelial cancer cells promotes the access of S phase and growth of cancer cells. Cell Biol Int, 2007. 31(1): p. 82-7.
    [16] Gajewski T F, Meng Y and Harlin H. Immune suppression in the tumor microenvironment. J Immunother, 2006, 3 (29): 233-240.
    [17] Gajewski T F, Meng Y, Blank C, et al. Immune resistance orchestrated by the tumor microenvironment. Immunological reviews, 2006, 213): 131-145.
    [18] Wang X, Yu J, Sreekumar A, et al. Autoantibody signatures in prostate cancer. The New England journal of medicine, 2005, 12 (353): 1224-1235.
    [19] Jager E, Stockert E, Zidianakis Z, et al. Humoral immune responses of cancer patients against "Cancer-Testis" antigen NY-ESO-1: correlation with clinical events. International journal of cancer, 1999, 5 (84): 506-510.
    [20] Olubuyide IO, Salimonu LS, Adeniran SO.: Soluble immune complexes and immunoglobulin (IgG, IgA and IgM) levels in Nigerians with primary liver cell carcinoma. Afr J Med Med Sci 1993 Dec;22(4):57-62;
    [21] Gercel-Taylor C, Bazzett LB, Taylor DD.: Presence of aberrant tumor-reactive immunoglobulins in the circulation of patients with ovarian cancer. Gynecol Oncol 2001 Apr;81(1):71-6;
    [22] Taylor DD, Gercel-Taylor C.: Tumor-reactive immunoglobulins in ovarian cancer: diagnostic and therapeutic significance? Oncol Rep 1998 Nov-Dec;5(6): 1519-24;
    [23] Zheng, J., et al., Immunoglobulin gene transcripts have distinct VHDJH recombination characteristics in human epithelial cancer cells. J Biol Chem, 2009.
    [24] Zheng, H., et al., Expression and secretion of immunoglobulin alpha heavy chain with diverse VDJ recombinations by human epithelial cancer cells. Mol Immunol, 2007. 44(9): p. 2221-7.
    [25] Lee, G., et al., Molecular identity of a pan cancer marker, CA215. Cancer Biol Ther, 2008. 7(12): p. 2007-14.
    [26] Carlson, C.S., et al., Mapping complex disease loci in whole-genome association studies. Nature, 2004. 429(6990): p. 446-52.
    [27] Gibbs, J.R. and A. Singleton, Application of genome-wide single nucleotide polymorphism typing: simple association and beyond. PLoS Genet, 2006. 2(10): p. el50.
    [28] Phillips, C., Online resources for SNP analysis: a review and route map. Mol Biotechnol, 2007. 35(1): p. 65-97.
    [29] Ren, W., et al., A functional single nucleotide polymorphism site detected in nasopharyngeal carcinoma-associated transforming gene Tx. Cancer Genet Cytogenet, 2005. 157(1): p. 49-52.
    [30] Bates, P.A., et al., Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins, 2001.Suppl 5: p. 39-46.
    [31] Blin, N. and D.W. Stafford, A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res, 1976. 3(9): p. 2303-8.
    [32] Hirunsatit, R., et al., Polymeric immunoglobulin receptor polymorphisms and risk of nasopharyngeal cancer.BMC Genet,2003.4:p.3.
    [33]Cerhan,J.R.,et al.,Genetic variation in tumor necrosis factor and the nuclear factor-kappaB canonical pathway and risk of non-Hodgkin's lymphoma.Cancer Epidemiol Biomarkers Prev,2008.17(11):p.3161-9.
    [34]Bai,X.L.,et al.,[Correlation of interleukin-10-1082G/a single nucleotide polymorphism to the risk of gastric cancer in north China:a case-control study].Ai Zheng,2008.27(1):p.35-40.
    [35]Gu,F.,et al.,Interleukin and interleukin receptor gene polymorphisms and susceptibility to melanoma.Melanoma Res,2008.18(5):p.330-5.
    [36]Palmieri,R.T.,et al.,Polymorphism in the IL18 gene and epithelial ovarian cancer in non-Hispanic white women.Cancer Epidemiol Biomarkers Prev,2008.17(12):p.3567-72.
    [37]Seno,H.,et al.,Novel interleukin-4 and interleukin-1 receptor antagonist gene variations associated with non-cardia gastric cancer in Japan:comprehensive analysis of 207 polymorphisms of 11 cytokine genes.J Gastroenterol Hepatol,2007.22(5):p.729-37.
    [38]Wang,W.,K.Ni,and G.Zhou,Association of IL1B polymorphisms with gastric cancer in a Chinese population.Clin Biochem,2007.40(3-4):p.218-25.
    [1]Ribas,G.,et al.,Evaluating HapMap SNP data transferability in a large-scale genotyping project involving 175 cancer-associated genes.Hum Genet,2006.118(6):p.669-79.
    [2]Hu,C.,et al.,An evaluation of the performance of HapMap SNP data in a Shanghai Chinese population:analyses of allele frequency,linkage disequilibrium pattern and tagging SNPs transferability on chromosome 1q21-q25.BMC Genet,2008.9:p.19.
    [3]Sun,T.,et al.,Functional genetic variations in cytotoxic T-lymphocyte antigen 4and susceptibility to multiple types of cancer.Cancer Res,2008.68(17):p. 7025-34.
    [4]Sun,T.,et al.,A six-nucleotide insertion-deletion polymorphism in the CASP8promoter is associated with susceptibility to multiple cancers.Nat Genet,2007.39(5):p.605-13.
    [5]Ju,H.,et al.,TP53BP2 locus is associated with gastric cancer susceptibility,Int J Cancer,2005.117(6):p.957-60.
    [6]Kim,J.G.,et al.,TP53 codon 72 polymorphism associated with prognosis in patients with advanced gastric cancer treated with paclitaxel and cisplatin.Cancer Chemother Pharmacol,2008.
    [7]Cheng,Z.J.,L.H.Hu,and S.J.Huang,[Correlation of-31G/Cpolymorphisms of survivin promoter to tumorigenesis of gastric carcinoma].Ai Zheng,2008.27(3):p.258-63.
    [8]Wang,W.,K.Ni,and G.Zhou,Association of IL1B polymorphisms with gastric cancer in a Chinese population.Clin Biochem,2007.40(3-4):p.218-25.
    [9]Zhang,W.H.,et al.,Association of interleukin-1B(IL-1B) gene polymorphisms with risk of gastric cancer in Chinese population.Cytokine,2005.30(6):p.378-81.
    [10]Seno,H.,et al.,Novel interleukin-4 and interleukin-1 receptor antagonist gene variations associated with non-cardia gastric cancer in Japan:comprehensive analysis of 207 polymorphisms of 11 cytokine genes.J Gastroenterol Hepatol,2007.22(5):p.729-37.
    [11]Gatti,L.L.,et al.,Interleukin-6 polymorphisms,Helicobacter pylori infection in adult Brazilian patients with chronic gastritis and gastric adenocarcinoma.Arch Med Res,2007.38(5):p.551-5.
    [12]Bai,X.L.,et al.,[Correlation of interleukin-10-1082G/a single nucleotide polymorphism to the risk of gastric cancer in north China:a case-control study].Ai Zheng,2008.27(1):p.35-40.
    [13]Ko,K.P.,et al.,Soybean product intake modifies the association between interleukin-10 genetic polymorphisms and gastric cancer risk.J Nutr,2009.139(5):p.1008-12.
    [14]Zeng,Q.D.,et al.,[Relationship between cytokine gene polymorphism and development of gastric adenocarcinoma].Zhonghua Yi Xue Za Zhi,2007.87(15):p.1037-9.
    [15]Sitarz,R.,et al.,The COX-2 promoter polymorphism-765 G>C is associated with early-onset,conventional and stump gastric cancers.Mod Pathol,2008.21(6):p.685-90.
    [16]Tang,Y.,et al.,Associations of matrix metalloproteinase-9 protein polymorphisms with lymph node metastasis but not invasion of gastric cancer.Clin Cancer Res,2008.14(9):p.2870-7.
    [17]Zhang,X.J.,et al.,[The association of MMP-13 polymorphism with susceptibility to esophageal squamous cell carcinoma and gastric cardiac adenocarcinoma].Yi Chuan,2006.28(12):p.1500-4.
    [18]Reding,K.W.,et al.,Genetic Polymorphisms in the Catechol Estrogen Metabolism Pathway and Breast Cancer Risk.Cancer Epidemiol Biomarkers Prev,2009.
    [19]Sehl,M.E.,et al.,Associations between single nucleotide polymorphisms in double-stranded DNA repair pathway genes and familial breast cancer.Clin Cancer Res,2009.15(6):p.2192-203.
    [20]Shephard,N.D.,et al.,A breast cancer risk haplotype in the caspase-8 gene.Cancer Res,2009.69(7):p.2724-8.
    [21]Ng,W.,et al.,Genetic regulation of MUC1 alternative splicing in human tissues.Br J Cancer,2008.99(6):p.978-85.
    [22]Wang,G.,et al.,Genetic polymorphism in chemokine CCL22 and susceptibility to Helicobacter pylori infection-related gastric carcinoma.Cancer,2009.
    [23]Zhao,D.,et al.,Role of CD14 promoter polymorphisms in Helicobacter pylori infection—relatedgastric carcinoma.Clin Cancer Res,2007.13(8):p.2362-8.
    [24]Zhang,Y.,et al.,Association between H-RAS T81C genetic polymorphism and gastrointestinal cancer risk:a population based case-control study in China.BMC Cancer,2008.8:p.256.
    [25]Yamada,H.,et al.,Association between CDH1 haplotypes and gastric cancer risk in a Japanese population.Scand J Gastroenterol,2007.42(12):p.1479-85.
    [26]Zhang,X.F.,et al.,Association of CDH1 single nucleotide polymorphisms with susceptibility to esophageal squamous cell carcinomas and gastric cardia carcinomas.Dis Esophagus,2008.21(1):p.21-9.
    [27]Zhang,X.F.,et al.,[Correlation of E-cadherin polymorphisms to esophageal squamous cell carcinoma and gastric cardiac adenocarcinoma].Ai Zheng,2005.24(5):p.513-9.
    [28]Wright,M.E.,et al.,Genetic variation in sodium-dependent ascorbic acid transporters and risk of gastric cancer in Poland.Eur J Cancer,2009.
    [29]Kaise,M.,et al.,Inducible nitric oxide synthase gene promoter polymorphism is associated with increased gastric mRNA expression of inducible nitric oxide synthase and increased risk of gastric carcinoma.Eur J Gastroenterol Hepatol,2007.19(2):p.139-45.
    [30]Kawai,S.,et al.,Significant association between PTPN11 polymorphism and gastric atrophy among Japanese Brazilians.Gastric Cancer,2006.9(4):p.277-83.
    [31]Satiroglu-Tufan,N.L.,F.Bir,and N.Calli-Demirkan,Investigation of HER-2codon 655 single nucleotide polymorphism frequency and c-ErbB-2 protein expression alterations in gastric cancer patients.World J Gastroenterol,2006.12(20):p.3283-7.
    [32]Sakamoto,H.,et al.,Genetic variation in PSCA is associated with susceptibility to diffuse-type gastric cancer.Nat Genet,2008.40(6):p.730-40.
    [33]Tang,W.Y.,et al.,Identification and functional characterization of JWA polymorphisms and their association with risk of gastric cancer and esophageal squamous cell carcinoma in a Chinese population.J Toxicol Environ Health A,2007.70(11):p.885-94.
    [34]Zhou,R.M.,et al.,[Correlation of XPC Ala499Val and Lys939Gln polymorphisms to risks of esophageal squamous cell carcinoma and gastric cardiac adenocarcinoma].Ai Zheng,2006.25(9):p.1113-9.
    [35]Danesh,J.,Helicobacter pylori infection and gastric cancer:systematic review of the epidemiological studies.Aliment Pharmacol Ther,1999.13(7):p.851-6.
    [36]Mueller,A.,S.Falkow,and M.R.Amieva,Helicobacter pylori and gastric cancer:what can be learned by studying the response of gastric epithelial cells to the infection? Cancer Epidemiol Biomarkers Prev,2005.14(8):p.1859-64.
    [37]Imazu,H.and M.Ochiai,[Helicobacter pylori negative atrophic gastritis].Nippon Rinsho,2005.63 Suppl 11:p.617-20.
    [38]Nakamura,S.and M.Iida,[H.pylori-negative gastric MALT lymphoma].Nippon Rinsho,2005.63 Suppl 11:p.625-8.
    [39]Takagi,A.,K.Kobayashi,and R.Deguchi,[Pathogenesis of Helicobacter pylori-negativepeptic ulcer].Nippon Rinsho,2005.63 Suppl 11:p.613-6.
    [40]Kamada,T.,et al.,[The analysis of the recurrence ulcer after H.pylori eradication].Nippon Rinsho,2002.60 Suppl 2:p.501-5.
    [41]Sato,R.,K.Murakami,and T.Fujioka,[Characteristics of gastric cancer occurring after Helicobacter pylori eradication].Nippon Rinsho,2005.63Suppl 11:p.520-5.
    [42]Ganz,P.A.,Breast cancer,menopause,and long-term survivorship:critical issues for the 21st century.Am J Med,2005.118 Suppl 12B:p.136-41.
    [43]Yang,L.,et al.,Estimates of cancer incidence in China for 2000 and projections for 2005.Cancer Epidemiol Biomarkers Prev,2005.14(1):p.243-50.
    [1]Huang,J.,et al.,Expression of immunoglobulin gene with classical V-(D)-J rearrangement in mouse brain neurons.Int J Biochem Cell Biol,2008.40(8):p.1604-15.
    [2]Zheng,H.,et al.,Expression and secretion of immunoglobulin alpha heavy chain with diverse VDJ recombinations by human epithelial cancer cells.Mol Immunol,2007.44(9):p.2221-7.
    [3]Pleiman,C.M.,D.D'Ambrosio,and J.C.Cambier,The B-cell antigen receptor complex:structure and signal transduction.Immunol Today,1994.15(9):p.393-9.
    [4]Imoto,M.,et al.,Occurrence of heavy chain of 7S IgM half-molecule whose NH2-terminal sequence is identical with that of kappa light chain sequence in patients with Waldenstrom macroglobulinemia.Clin China Acta,1999.282(1-2): p.77-88.
    [5]Tamura,A.,et al.,[Immunochemical properties of free mu-chain protein in a patient with mu-heavy chain disease].Rinsho Byori,2003.51(9):p.847-51.
    [6]Cogne,M.,et al.,Complete variable region deletion in a mu heavy chain disease protein(ROUL).Correlation with light chain secretion.Leuk Res,1993.17(6):p.527-32.
    [7]Gallango,M.L.,R.Suinaga,and M.Ramirez,An unusual case of Waldenstrom macroglobulinemia with half molecules of IgG in serum and urine.Blut,1984.48(2):p.91-7.
    [8]Cheng,I.K.,et al.,Crescentic nodular glomerulosclerosis secondary to truncated immunoglobulin alpha heavy chain deposition.Am J Kidney Dis,1996.28(2):p.283-8.
    [9]Moulin,B.,et al.,Nodular glomerulosclerosis with deposition of monoclonal immunoglobulin heavy chains lacking C(H)1.J Am Soc Nephrol,1999.10(3):p.519-28.
    [10]Chen,Z.,X.Qiu,and J.Gu,Immunoglobulin expression in non-lymphoid lineage and neoplastic cells.Am J Pathol,2009.174(4):p.1139-48.
    [11]Meyer,K.B.,Induction of the Igkappa 3' enhancer by distinct pathways can be inhibited by cross-linking of the CD40 receptor.Eur J Immunol,1999.29(3):p.872-7.
    [12]Meyer,K.B.and J.Ireland,Activation of the immunoglobulin kappa 3'enhancer in pre-B cells correlates with the suppression of a nuclear factor binding to a sequence flanking the active core.Nucleic Acids Res,1994.22(9):p.1576-82.
    [13]Judde,J.G.and E.E.Max,Characterization of the human immunoglobulin kappa gene 3' enhancer:functional importance of three motifs that demonstrate B-cell-specific in vivofootprints.Mol Cell Biol,1992.12(11):p.5206-16.
    [14]Klein,F.,et al.,Tracing the pre-B to immature B cell transition in human leukemia cells reveals a coordinated sequence of primary and secondary IGK gene rearrangement,IGK deletion,and IGL gene rearrangement.J Immunol,2005.174(1):p.367-75.
    [15]Nees,M.,et al.,Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-kappaB-responsive genes in cervical keratinocytes.J Virol,2001.75(9):p.4283-96.
    [16]Chung,T.W.,Y.C.Lee,and C.H,Kim,Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and P1-3K/AKT pathways:involvement of invasive potential.Faseb J,2004.18(10):p.1123-5.
    [17]Zheng,H.,et al.,Role of Epstein-Barr virus encoded latent membrane protein 1in the carcinogenesis of nasopharyngeal carcinoma.Cell Mol Immunol,2007.4(3):p.185-96.
    [18]Liu,H.D.,et al.,Upregulated expression of kappa light chain by Epstein-Barr virus encoded latent membrane protein 1 in nasopharyngeal carcinoma cells via NF-kappaB andAP-1 pathways.Cell Signal,2007.19(2):p.419-27.
    [19]Sun,L.Q.,et al.,Catalytic nucleic acids:from lab to applications.Pharmacol Rev,2000.52(3):p.325-47.
    [20]Lu ZX,e.a.,Targeted suppression of EBV-LMP1 mRNA by deoxyribozymes as a potential strategy for EBV associated carcinoma..Cancer Gene Therapy,2005.12:p.647-654.
    [21]Zhang,X.G.,et al.,Reproducible obtaining of human myeloma cell lines as a model for tumor stem cell study in human multiple myeloma.Blood,1994.83(12):p.3654-63.
    [22]王承兴,et al.,EB病毒LMP1及其CTAR1、CTAR2导入HIVE2鼻咽癌细胞的研究:病毒学报,2001.17(4):p.295-300.
    [23]Tao,Y.G.,et al.,Epstein-Barr virus latent membrane protein 1 modulates epidermal growth factor receptor promoter activity in a nuclear factor kappa B-dependent manner.Cell Signal,2004.16(7):p.781-90.
    [1]Gajewski T F,Meng Y and Harlin H.Immune suppression in the tumor microenvironment[J].J Immunother,2006,3(29):233-240.
    [2]Blank C,Brown I,Kacha A K,et al.ICAM-1 contributes to but is not essential for tumor antigen cross-priming and CD8+ T cell-mediated tumor rejection in vivo[J].J Immunol,2005,6(174):3416-3420.
    [3]Peterson A C,Harlin H and Gajewski T F.Immunization with Melan-A peptide-pulsed peripheral blood mononuclear cells plus recombinant human interleukin-12 induces clinical activity and T-cell responses in advanced melanoma [J]. JClin Oncol, 2003, 12 (21): 2342-2348.
    [4] Valmori D, Dutoit V, Lienard D, et al. Naturally occurring human lymphocyte antigen-A2 restricted CD8+ T-cell response to the cancer testis antigen NY-ESO-1 in melanoma patients [J]. Cancer research, 2000, 16 (60): 4499-4506.
    [5] Jager E, Stockert E, Zidianakis Z, et al. Humoral immune responses of cancer patients against "Cancer-Testis" antigen NY-ESO-1: correlation with clinical events [J]. International journal of cancer, 1999, 5 (84): 506-510.
    [6] Jager D, Stockert E, Jager E, et al. Serological cloning of a melanocyte rab guanosine 5'-triphosphate-binding protein and a chromosome condensation protein from a melanoma complementary DNA library [J]. Cancer research, 2000, 13 (60): 3584-3591.
    [7] Wang X, Yu J, Sreekumar A, et al. Autoantibody signatures in prostate cancer [J]. The New England journal of medicine, 2005, 12 (353): 1224-1235.
    [8] Albert M L and Darnell R B. Paraneoplastic neurological degenerations: keys to tumour immunity [J]. Nature reviews, 2004, 1 (4): 36-44.
    [9] Prall F, Duhrkop T, Weirich V, et al. Prognostic role of CD8+ tumor-infiltrating lymphocytes in stage III colorectal cancer with and without microsatellite instability [J]. Human pathology, 2004, 7 (35): 808-816.
    [10] Zhang L, Conejo-Garcia J R, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer [J]. The New England journal of medicine, 2003, 3 (348): 203-213.
    [11] Harlin H, Kuna T V, Peterson A C, et al. Tumor progression despite massive influx of activated CD8(+) T cells in a patient with malignant melanoma ascites [J]. Cancer Immunol Immunother, 2006, 10 (55): 1185-1197.
    [12] Gajewski T F, Meng Y, Blank C, et al. Immune resistance orchestrated by the tumor microenvironment [J]. Immunological reviews, 2006, 213): 131-145.
    [13] Muller B, Fischer B and Kreutz W. An acidic microenvironment impairs the generation of non-major histocompatibility complex-restricted killer cells [J]. Immunology, 2000, 3 (99): 375-384.
    [14] Rudge G, Gleeson P A and van Driel I R. Control of immune responses by immunoregulatory T cells [J]. Arch Immunol Ther Exp(Warsz), 2006,
    [15] Kryczek I, Zou L, Rodriguez P, et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma [J]. The Journal of experimental medicine, 2006, 4 (203): 871-881.
    [16] Qin Z, Noffz G, Mohaupt M, et al. Interleukin-10 prevents dendritic cell accumulation and vaccination with granulocyte-macrophage colony-stimulating factor gene-modified tumor cells [J]. J Immunol, 1997, 2(159): 770-776.
    [17] Peng Y, Laouar Y, Li M O, et al. TGF-beta regulates in vivo expansion of Foxp3 -expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 13 (101): 4572-4577.
    [18] Dong H, Strome S E, Salomao D R, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion [J]. Nature medicine, 2002, 8 (8): 793-800.
    [19] Salceda S, Tang T, Kmet M, et al. The immunomodulatory protein B7-H4 is overexpressed in breast and ovarian cancers and promotes epithelial cell transformation [J]. Experimental cell research, 2005, 1 (306): 128-141.
    [20] Uyttenhove C, Pilotte L, Theate I, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase [J]. Nature medicine, 2003, 10 (9): 1269-1274.
    [21] Rodriguez P C, Zea A H, DeSalvo J, et al. L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes [J]. J Immunol, 2003, 3 (171): 1232-1239.
    [22] Cham C M and Gajewski T F. Metabolic mechanisms of tumor resistance to T cell effector function [J]. Immunologic research, 2005, 2 (31): 107-118.
    [23] Marincola F M, Jaffee E M, Hicklin D J, et al. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance [J]. Advances in immunology,2000,74):181-273.
    [24]Dunn G P,Sheehan K C,Old L J,et al.IFN unresponsiveness in LNCaP cells due to the lack of JAK1 gene expression[J].Cancer research,2005,8(65):3447-3453.
    [25]Peter M E,Legembre P and Barnhart B C.Does CD95 have tumor promoting activities?[J].Biochimica et biophysica acta,2005,1(1755):25-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700