用户名: 密码: 验证码:
骨髓间充质干细胞复合异种骨在兔体内的再血管化和成骨研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     近年来组织工程学的迅速发展使得利用其原理和方法再生组织或器官的特点和优势得到广泛认同。作为组织工程研究的重要领域,骨组织工程研究在多方面均取得了令人振奋的研究成果,并已在临床得到初步应用,被认为是组织工程中最具有前途和可行性的领域之一。本课题根据骨组织工程学的基本原理,设计将骨髓间充质干细胞与带部分松质骨的小牛皮质骨板复合,植入新西兰大白兔髂骨内观察其成骨及再血管化情况,为构建理想的初步组织工程骨工程化产品提供理论依据。
     方法:
     1.兔骨髓间充质干细胞的分离、培养和鉴定
     取新西兰大白兔骨髓,采用密度梯度离心法并结合传代获取、纯化细胞,观察细胞形态和表面标志物的表达,从而对其鉴定。MTT法测定第3、6代细胞的增殖情况,并绘制出生长曲线。
     2.兔骨髓间充质干细胞的诱导成骨研究
     取生长良好的传三代细胞,用成骨诱导培养基进行诱导,观察细胞形态,并分别于培养的第2天、第4天、第6天、第8天、第10天、第12天、第14天收集细胞,进行细胞内碱性磷酸酶含量测定;于诱导7天时行Ⅰ型胶原免疫细胞化学染色,于诱导14天行骨钙素免疫细胞化学染色,于诱导21天时行钙化结节染色;取传第三代,诱导7天,诱导14天,诱导21天后的的细胞行RT—PCR检测BMP—2,VEGF的mRNA含量和采用Western-blot检测BMP—2,VEGF的蛋白含量。
     3.兔骨髓间充质干细胞与小牛骨的生物相容性研究
     取第三代细胞接种在带部分松质骨的小牛皮质骨板上,接种后第4、8、12、24小时取样测定细胞的粘附率;将不同浓度的小牛骨浸提液与兔BMSCs体外培养2d,4d,7d,观察细胞的形态变化并用MTT检测,计算细胞的相对增殖度,用六级毒性分类进行分级;BMSCs与小牛骨复合培养2周后,取材行扫描电镜观察细胞在材料表面的生长增殖和基质分泌情况。
     4.兔骨髓间充质干细胞复合小牛骨植入兔体内的实验研究
     (1)分别将兔BMSCs成骨诱导后复合的异种骨(Ⅰ组),单纯异种骨(Ⅱ组),自体髂骨(Ⅲ组)随机植入兔髂骨。观察各组植入物的表面变化及周围组织反应。
     (2)术后4周,8周,12周,24周行X线片检查,观察X线片变化情况。
     (3)术后4周,8周,12周,24周取材行HE染色及VEGF,BMP-2免疫组织化学染色观察表达情况。
     (4)RT-PCR检测体内各组术后4周,8周,12周,24周时VEGF,BMP-2的mRNA的表达情况。
     结果:
     1.经密度梯度离心结合传代所得到的细胞形态均一,呈长梭形,接近融合状态时可呈现旋涡样生长,传第10代细胞的增殖能力减弱,出现宽大梭形,排列紊乱。所分离的细胞表达CD44、CD29,仅约5%表达CD34。生长曲线显示第3、6代细胞均有较强的增殖能力。
     2.兔骨髓间充质干细胞成骨诱导后,细胞形态由长梭形逐渐变为短梭形,多角形,最后成集落层叠生长;在诱导过程中,ALP含量逐渐增高,与对照组比较有显著性差异(P<0.05);于诱导7天时Ⅰ型胶原免疫细胞化学染色,诱导14天骨钙素免疫细胞化学染色,诱导21天时钙化结节染色阳性;RT-PCR和Western-Blot结果显示诱导组和对照组均有BMP-2和VEGF表达,诱导组于诱导后第7天,两者表达最强。诱导组于诱导后第7天、第14天和第21天与对照组比较VEGF和BMP2表达有显著差异(P<0.05)。
     3.细胞接种4h,8h,12h,24h,细胞粘附率分别为47±4%,65±2%,77±3%,86±2%。不同浓度的小牛骨浸提液与兔BMSCs体外培养,细胞贴壁生长,形态良好,随着培养天数的增加细胞大量增殖,毒级为0-1级。BMSCs与小牛骨复合培养2周后行扫描电镜观察,细胞均在小牛骨表面生长,并可延入材料孔隙之中,有基质分泌。
     4.各组材料复合体植入兔髂骨后,伤口生长良好,没有全身和局部的炎症和毒性反应,伤口一期愈合。X线显示髂骨组在术后12周基本达到骨质愈合,复合异种骨组在术后24周时与宿主骨结合部基本愈合,而单纯异种骨组术后24周与宿主骨愈合不满意。术后4周,8周,12周,24周取材行HE染色可观察到软骨化骨过程,各时间点VEGF,BMP-2免疫组织化学染色阳性,阳性程度Ⅲ组>Ⅰ组>Ⅱ组。术后4、8、12、24周各组均可见BMP2、VEGF的mRNA表达,BMP2在Ⅰ组、Ⅱ组、Ⅲ组之间相比,各组相比P<0.05,有统计学意义,即成骨能力:Ⅲ组>Ⅰ组>Ⅱ组。VEGF在Ⅱ组与Ⅰ组、Ⅱ组与Ⅲ组之间相比,在各时间点P<0.05,有统计学意义。Ⅰ组与Ⅲ组在术后8、12、24周时比较P>0.05,无统计学意义。
     结论:
     1.兔BMSCs分离、提取操作简便易行,且有较强的生长增殖能力,可诱导分化为成骨细胞,符合组织工程种子细胞的基本条件。其在成骨诱导过程中,BMP—2和VEGF表达均先增强后减弱,VEGF表达可能对血管生成有促进作用。
     2.带部分松质骨的小牛皮质骨可作为骨组织工程中BMSCs的细胞载体,无毒,生物相容性好,基本满足骨组织工程的需要。体内实验表明其是一种较为理想的骨组织工程支架材料,在组织相容性、力学性能及成骨效果等方面均令人满意。兔BMSCs复合带部分松质骨的小牛皮质骨支架材料经体外诱导后具有在新西兰兔体内构建组织工程骨的能力。
Objective:
     In recent years,the characteristics and advantages of tissue engineering which could renew tissues or organs have been widely recognized.As an important area of tissue engineering,bone tissue engineering which has achieved many exciting research results and preliminary clinical application,is considered to be one of the most promising and feasibility areas.The subject is according to the basic principles of bone tissue engineering.BMSCs and calf bone composites implanted into rabbit ilium,and then observe the osteogenesis and revascularization during the process of bone healing.The ideal is to provide a theoretical basis for building the initial tissue-engineered bone products.
     Methods:
     1.The isolation,cultivation and identification about the rabbit marrow mesenchymal stem cell
     Cells were isolated from the New Zealand white rabbits' bone marrow via density gradient centrifugation.Light and electron microscope was used to observed the cell morphology and Flow cytometry was used to examine the expression of cell surface antigen.The cell culture growth curve was obtained based on observation of the proliferation status of 3~(rd),6~(th) cell generation by MTT method.
     2.Study of osteoblastic differentiation potentiality of the rabbit bone marrow mesenchymal stem cell in vitro
     The well 3~(rd) generation cells were utilized for osteoblasts differentiation in osteogenic inductive conditioned medium,which was changed every three days.Light and electron microscope was used to observed the cell morphology.Cells were collected for determination of intracellular alkaline phosphatase respectively in the first 2,4,6,8,10,12, 14 days culture.TypeⅠcollagen and osteocalcin(OCN) assayed with immunocytochemical stain and calcium node detected by staining after several days' culture BMSCs under osteogenic inductive condition.Using RT-PCR detection of BMP-2,VEGF mRNA content and using Western-blot detection of BMP-2,VEGF protein content after 0 days,7 days,14 days,21 days osteogenic induction.
     3.Study of histocomapatibility of cortical strut with partial cancellous bone and its potentiality used as the carrier for BMSCs
     The well 3~(rd) generation cells were seeded in calf cortical strut with partial cancellous bone,and then the adhesion ratio was detected in the first 4,8,12,24 hours.BMSCs were cultured in calf bone leach liquor with different concentration.Then the cells were observed by contrast phase microscope,RGR(relative growth rate) were measured by MTT and cytotoxicity was graded after 2 days,4 days,7 days culture.The growth, proliferation and matrix secretion of BMSCs in calf cortical strut were observed by scanning electron microscope after 2 weeks culture.
     4.An Experimental study of rabbit BMSCs combined with calf bone implants into rabbits
     BMSCs induced osteogenic composite calf bone(groupⅠ),Simple calf bone group(groupⅡ) or autogenous iliac implant(groupⅢ) were randomly implanted in rabbit ilium.The changes of implants surface and tissue reaction around the implant were observed.All of implants were performed X-ray examination and observed the changes after 4,8,12 and 24 weeks.All of implants were performed examinations of HE stain and immunohistochemistry staining of VEGF and BMP-2 to observe the expression after operation 4,8,12,24 weeks..The expression of VEGF and BMP-2 mRNA were detected by RT-PCR after operation 4,8,12,24 weeks.
     Results:
     1.BMSCs were very purified and all in the whirlpool shape.Flow cytometry showed that more than 90%cells expressed CD44 and CD29, while only 5%of the cells expressed CD34.Cell culture growth curve showed that cells of the 3~(rd) and 6~(th) generation have high proliferation while the 10~(th) generation have lower proliferation.
     2.During rabbit BMSCs osteogenic induction,cell morphology gradually changed from a long fusiform to short fusiform,polygonal,and finally stacked into colony growth.In the induction process,ALP content was gradually increased,compared with the control group,there is a significant difference(P<0.05.Immunocytochemical staining showed TypeⅠcollagen and OCN positive.Calcium node detected by staining was also positive.RT-PCR and Western-Blot showed that BMP-2 and VEGF were expressed in induced group and control group.The strongest expression of BMP-2 and VEGF was in the 7~(th) day after BMSCs osteogenic induction.There is a significant difference(P<0.05) in the in the 7~(th) day, 14~(th) day,21~(th) day after BMSCs osteogenic induction compared to the control group.
     3.The adhesion ratio were 47%±4%,65%±2%,77%±3%,86%±2%, respectively;after seeding 4,8,12,24 hours.The rabbit BMSCs showed normal morphology and proliferation increased with culture time.The toxicity gradation was zero to one.The BMSCs could be adhered the surface of calf cortical strut and extended in the cancellous bone,and extracellular matrices were found in it.
     4.The wound was well,inflammation and toxicity reaction in body or local part were not observed in all groups.The X-ray showed that groupⅠhas reached bone healing after implant 12 weeks,groupⅡalmost got host bone junction healing after implant 24weeks,while groupⅢwere not satisfying healing.The process of ossifications from cartilages were observed in all groups by HE stain and BMP-2 and VEGF were positive by immunocytochemical stain.BMP2、VEGF mRNA were expressed in all groups.Compared between groupⅠ,Ⅱ,Ⅲ,there is statistical significance of BMP2 expression in each group(P<0.05).Compared groupⅡwith groupⅠandⅢ,there is statistical significance of BMP2 expression(P<0.05).Compared groupⅠwith groupⅢ,there is statistical significance of BMP2 expression(P>0.05).
     Conclision:
     1.The method of isolation and culture of BMSCs is simple and feasible.BMSCs could be induced into obteoblasts with stably expression of osteoblastic phenotype in vitro.BMSCs may be accorded as a kind of seed cells for tissue engineering.During BMSCs osteogenic induction, BMP-2 and VEGF were first expressed increased and then decreased.The expression of VEGF may play a role in promoting angiogenesis.
     2.The calf cortical strut with partial cancellous bone could be used for cells carrier in bone tissue engineering.It was an innocuity,better histocompatibility material and could be doubled as osteo-conductibility and osteo-inductivity for satisfying the demand of bone tissue engineering.The cortical strut with partial cancellous bone was an ideally material for bone tissue engineering which was satisfied in histocompatibiity,the speed of degradation,the efficiency of biomechanics and ossification.Rabbit BMSCs seeded in the cortical strut with partial cancellous bone could construct tissue engineering bone by osteoinductation in vivo.
引文
[1]裴国献,金丹.骨组织工程研究进展.中华创伤骨科杂志.2004;6(1):38-42.
    [2]Weng Y,Wang M,Liu W,et al.Repair of experimental alveolar bone defects by tissue-engineered bone.Tissue Eng.2006;12(6):1503-13.
    [3]Arinzeh TL.Mesenchymal stem cells for bone repair:preclinical studies and potential orthopedic applications.Foot Ankle Clin.2005;10(4):651-65.
    [4]Habal MB.Bone tissue engineering,the new concept in regenerative medicine and surgery:reflections on innovations.J Craniofac Surg.2009;20(1):4-6.
    [5]毛天球,陈富林,杨维乐,等.骨组织工程的研究进展.现代康复.2001;5(8):5-7.
    [6]Hung SC,Chen NJ,Hsieh SL,etal.Isolation and characterization of size sieved stem cells from human bone marrow.Stem Cells.2002;20(3):249-258.
    [7]Luth ES,Jun SJ,Wessen MK,et al.Bone marrow side population cells are enriched for progenitors capable of myogenic differentiation.J Cell Sci.2008;121(Pt 9):1426-34.
    [8]Sammons J,Ahmed N,El-Sheemy M,et al.The Role of BMP-6,IL-6 and BMP-4in mesenchymal stem cell-dependent bone development effects on osteoblastic differentiation induced by parathyroid hormone and vitamin D_3.Stem Ceils Dev.2004;13(3):273-280.
    [9]Feng W,McCabe NP,Mahabeleshwar GH,et al.The angiogenic response is dictated by beta3 integrin on bone marrow-derived cells.J Cell Biol.2008;183(6):1145-57.
    [10]Kalajzic Z,Li H,Wang LP,et al.Use of an alpha-smooth muscle actin GFP reporter to identify an osteoprogenitor population.Bone.2008;43(3):501-10.
    [11]Li H,Yu B,Zhang Y,et al.Jaggedl protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes.Biochem Biophys Res Commun.2006,341(2):320-325.
    [12]Pittenger MF,Mackay AM,Beck SC,et al.Multilineage potential of adult human mesenchymal stem cells.Science.1999;284(5411):143-7.
    [13]Kuo CK,Tuan RS.Mechanoactive tenogenic differentiation of human mesenchymal stem cells.Tissue Eng Part A.2008;14(10):1615-27.
    [14]Shin M,Yoshimoto H,Vacanti JP.In vivo bone tissue engineering using mesenchymal stem cells on a novel electro spun nano fibrous scaffold.Tissue Eng.2004;10(1-2):33.
    [15]Liu ZJ,Zhuge Y,Velazquez OC.Trafficking and differentiation of mesenchymal stem cells.J Cell Biochem.2009;106(6):984-991.
    [16]Baddoo M,Hill K,Wilkinson R,et al;Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection;Journal of Cellular Biochemistry;2003;89(6):1235-49.
    [17]Guo X M,WangC Y,Wang Y H,et al.Experimental study of the isolation,culture and in chondrogenic differentia-tion of human bone mesenchymal stem cell.Chin J Stoma-tol.2003;38(1):63-66.
    [18]李秀森,郭子宽,杨靖清,等.骨髓间充质干细胞的生物学特性.解放军医学杂志.2000;10(5):346-348.
    [19]叶发刚,夏长所,张卫兵,等.兔骨髓间充质干细胞的分离、培养与鉴定.青岛大学医学院学报.2006;12(4):330-332.
    [20]Bidula J,Boehm C,Powell K,et al.Osteogenic progenitors in bone marrow aspirates from smokers and nonsmokers.Clin Orthop Relat Res.2006;442:252-9.
    [21]Shamsul BS,Aminuddin BS,Ng MH,Ruszymah BH.Age and gender effect on the growth of bone marrow stromal cells in vitro.Med J Malaysia.2004;59 Suppl B:196-7.
    [22]Derubeis AR,Cancedda R.Bone marrow stromal cells(BMSCs) in boneengineering:limitations and recent advances.Ann Biomed Eng.2004;32(1):160-165.
    [23]Zimmermann S,Vos s M,Kaiser S,et al.Lack of telomerase activity in human mesenchymal stem cells.Leukemia 2003;17(6):1146-1149.
    [24]李静远,来晓瑜,罗依,等.人骨髓间充质干细胞端粒酶活性的表达.浙江大 学学报.2004;33(6): 481-485.
    [25] DeUgarte DA, Alfonso Z, Zuk PA, et al. Differential expression of stem cell mobilization- associated molecules on multi-lineage cells from adipose tissue and bone marrow. Imunol Lett. 2003;89(2-3): 267-270.
    [26] Gay IC, Chen S, MacDougall M. Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod Craniofac Res. 2007; 10(3): 149-60.
    [27] Lee RH, Kim B, Choi I, et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem. 2004; 14(4-6):311-24.
    [28] Lin Y, Luo E, Chen X, et al. Molecular and cellular characterization during chondrogenic differentiation of adipose tissue-derived stromal cells in vitro and cartilage formation in vivo. J Cell Mol Med. 2005;9(4):929-39.
    [29] Bruder SP, Ricalton NS, Boynton RE, et al. Mesenchymal stem cell surface antigen SB-10 corresponds to activated leukocyte cell adhesion molecule and is involved in osteogenic differentiation. J Bone Miner Res.l998;13(4): 655-663.
    [30] Barry FP, Boynton RE, Haynesworth S,et al. The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem Biophys Res Commun,.1999;265(l): 134-139.
    [31] Barry F, Boynton R, Murphy M, et al. The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochem Biophys Res Commun,.2001;289(2): 519-524.
    [1] White AP, Vaccaro AR, Hall JA, et al. Clinical applications of BMP-7/OP-1 in fractures, nonunions and spinal fusion.Int Orthop. 2007;31(6):735-41.
    [2] Kitagawa Y, Dai J, Zhang J, et al. Vascular endothelial growth factor contributes to prostate cancer-mediated osteoblastic activity. Cancer Res. 2005; 65(23): 10921-9.
    [3] Takayuki F, Zheng NS, Kawai A, et al. Vascular endothelial growth factor principally acts as the main angiogenic factor in the early stage of human osteoblastogenesis. J Bioehem. 2003; 133(5):633-9.
    [4] Mayr-Wohlfart U, Waltenberger J, Hausser H,et al.Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone. 2002; 30(3):472-7.
    [5] Hsu WK, Wang JC, Liu NQ, et al. Stem cells from human fat as cellular delivery vehicles in an athymic rat posterolateral spine fusion model. J Bone Joint Surg Am. 2008;90(5):1043-52.
    [6] Dragoo JL, Lieberman JR, Lee RS, et al. Tissue-engineered bone from BMP-2-transduced stem cells derived from human fat. Plast Reconstr Surg. 2005; 115(6): 1665-73.
    [7] Pittenger MF, Mackay AM, Beck SC, et al. Multiline age potential of adult human mesenchymal stem cells. Science.1999; 284(5411): 143-147.
    [8] Mauney JR, Volloch V, Kaplan DL. Matrix-mediated retention of adipogenic differentiation potential by human adult bone marrow-derived mesenchymal stem cells during ex vivo expansion. Biomaterials .2005; 26(31): 6167-6175.
    [9] Noel D, Gazit D, Bouquet C, et al. Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells. 2004; 22(1): 74-85.
    [10] Friedman MS, Long MW, Hankenson KD. Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6. Cell Biochem. 2006; 98(3): 538-554.
    [11] Vidal MA, Kilroy GE, Lopez MJ, et al. Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic canacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet Surg 2007; 36(7): 613-622.
    [12] Hu Z, Peel SA, Ho SK, et al. Role of bovine bone morphogenetic proteins in bone matrix protein and osteoblast-related gene expression during rat bone marrow stromal cell differentiation. J Craniofac Surg. 2005; 16(6): 1006-14.
    [13] Sammons J, Ahmed N. The role of BMP-6, IL-6, and BMP-4 in mesenchymal stem cell-dependent bone development:effects on osteoblastic differentiation induced by parathyroid hormone and vitam in D_3.Stem Cells,2004;13(3):273.
    [14]Kotobuki N,Matsushima A,Kato Y,et al.Small interfering RNA of alkaline phosphatase inhibits matrix mineralization.Cell Tissue Res.2008;332(2):279-88.
    [15]Maehata Y,Takamizawa S,Ozawa S,et al.Both direct and collagen-mediated signals are required for active vitamin D3-elicited differentiation of human osteoblastic cells:roles of osterix,an osteoblast-related transcription factor.Matrix Biol.2006;25(1):47-58.
    [16]J(a|¨)ger M,Fischer J,Dohm W,et al.Dexamethasone modulates BMP-2 effects on mesenchymal stem cells in vitro.J Orthop Res.2008;26(11):1440-8.
    [17]Meury T,Verrier S,Alini M.Human endothelial cells inhibit BMSC differentiation into mature osteoblasts in vitro by interfering with osterix expression.J Cell Biochem.2006;98(4):992-1006.
    [18]Mimori K,Komaki M,Iwasaki K,Ishikawa I.Extracellular signal-regulated kinase 1/2 is involved in ascorbic acid-induced osteoblastic differentiation in periodontal ligament cells.J Periodontol.2007;78(2):328-34.
    [19]Kurata K,Heino TJ,Higaki H,et al.Bone marrow cell differentiation induced by mechanically damaged osteocytes in 3D gel-embedded culture.J Bone Miner Res.2006;21(4):616-25.
    [20]Cho HH,Kyoung KM,Seo MJ,et al.Over expression of CXCR4 increases migration and proliferation of human adipose tissue stromal cells.Stem Cells Dev.2006;15(6):853-864.
    [21]Song HY,Jeon ES,Jung JS,et al.oncostatin M induces proliferation of human adipose tissue-derived mesenchymal stem cells.Int J Biochem Cell Biol.2005;37(11):2357-2365.
    [22]Dai J,Rabie AB.VEGF:an essential mediator of both angiogenesis and endochondral ossification.J Dent Res.2007;86(10):937-50.
    [23]刘建,常祺,胡蕴玉,等.骨形态发生蛋白-2对兔骨髓基质细胞生物行为的影响.中国临床康复.2003;7(20):2798-2800.
    [24]Byun JH,Park BW,Kim JR,et al.Expression of vascular endothelial growth factor and its receptors after mandibular distraction osteogenesis.Int J Oral Maxillofac Surg.2007;36(4):338-44.
    [25]Samee M,Kasugai S,Kondo H,et al.Bone morphogenetic protein-2(BMP-2)and vascular endothelial growth factor(VEGF) transfection to human periosteal cells enhances osteoblast differentiation and bone formation.J Pharmacol Sci.2008;108(1):18-31.
    [26]Chen D,Zhao M,Mundy GR.Bone morphogenetic proteins.Growth Factors.2004;22(4):233-41.
    [27]Wozney JM,Rosen V.Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair.Clin Orthop,.1998;346(I):26-37.
    [28]Hu Z,Peel SA,Ho SK,et al.Role of bovine bone morphogenetic proteins in bone matrix protein and osteoblast-related gene expression during rat bone marrow stromal cell differentiation.J Craniofac Surg.2005;16(6):1006-14.
    [1]Kasten P,Luginbuhl R,van Griensven M,et a.1 Comparison of human marrow cells seeded on calcium-deficient hydroxyapatite,13-tricalcium phosphate and demineralized bone matrix.Biomaterials,2003,24(15):2593-2603.
    [2]晏焕青,郝永强,朱邦尚.纳米锶磷灰石的体外细胞毒性研究.组织工程与重建外科杂志.2007;27(6):309-311
    [3]贾文英,史弘道.细胞毒性试验评价医用装置生物相容性的研究概况.实用美容整形外科杂;2001;12(5):253-5
    [4]Arosarena O.Tissue engineering.Curr Opin Otolaryngol Head Neck Surg.2005;13(4):233-41
    [5]Petrie Aronin CE,Cooper JA Jr,Sefcik LS,et al.Osteogenic differentiation of dura mater stem cells cultured in vitro on three-dimensional porous scaffolds of poly(epsilon-caprolactone) fabricated via co-extrusion and gas foaming.Acta Biomater.2008;4(5):1187-97.
    [6]Carpizo KH,Saran M J,Huang W,et al.Pretreatment of poly (1-1actide-co-glycolide) scaffolds with sodium hydroxide enhances osteoblastic differentiation and slows proliferation of mouse preosteoblast cells.Plast Reconstr Surg.2008;121(2):424-34.
    [7]Sandhu HS,Boden SD.Biologic enhancement of spinal fusion.Orthop Clin North Am.1998 Oct;29(4):621-31
    [8]胡蕴玉,陆裕朴,刘玮,等.重组合异种骨的实验研究与临床应用.中华外科杂志.1993;31(12):709.
    [9]刘玮,胡蕴玉,陆裕朴.重组合异种骨的研究-牛松质骨与BMP的再结合.骨与关节损伤杂志.1990;6:180.
    [10]Lunde KB,Foss OA,Skallerud B.On the applicability of bovine morsellized cortico-cancellous bone as a substitute for human morsellized cortico-cancellous bone for in vitro mechanical testing.J Biomech.2008;41(16):3469-74
    [11]Galia CR,Macedo CA,Rosito R,et al.In vitro and in vivo evaluation of lyophilized bovine bone biocompatibility.Clinics.2008;63(6):801-6.
    [12]Mauney JR,Jaqui(?)ry C,Volloch V,et al.In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering.Biomaterials.2005 26(16):3173-85.
    [13]Hewett PW.Vascular endothelial cells from human micro-and macrovessels:isolation,characterisation and culture.Methods Mol Biol.2009;467:95-111
    [14]Kurokawa K,Nakamura T,Aoki K,et al.Mechanism and role of localized activation of Rho-family GTPases in growth factor-stimulated fibroblasts and neuronal cells.Biochem Soc Trans.2005;33(Pt 4):631-4.
    [15]Arthur WT,Noren NK,Burridge K.Regulation of Rho family GTPases by cell-cell and cell-matrix adhesion.Biol Res.2002;35(2):239-46
    [16]郝杰.成骨细胞与生物材料的粘附及相关蛋白.国外医学生物医学工程分册.2003;26(1):24-28.
    [17]Anselme K,Bigerelle M,Noel B.Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughness.J Biomed Mater Res,2000,49:155-166.
    [18]Altankov GGroth T Reorganization of substratum bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility.J Mater Sci Mater Med,1994,5:732-737.
    [19]Shelton RM,Rasmussen AC,Davies JE.Protein adsorption at the interface between charged polymer substrata and migrating osteoblasts.Biomaterials,1998,9:24-29.
    [20]Chesmel KD,Clark CC,Brighton CT,et al.Cellular responses to chemical and morphologic aspects of biomaterial surfaces.Ⅱ.The biosynthetic and migratory response of bone cell populations.J Biomed Mater Res.1995;29(9):1101-10.
    [21]陶凯,毛天球,杨维东,等.松质骨基质-骨髓基质成骨细胞复合物的异位成骨作用.实用口腔医学杂志.1999;15(5):383-388.
    [22]夏万尧,曹宜林,商庆新,等.组织工程化软骨组织形成的最佳细胞浓度和最佳形成时间的实验研究.中国修复重建外科杂志.1999;13(4):244-247.
    [23]王荣,刘华松,张敏,等.骨髓基质细胞及诱导后成骨细胞在钛合金表面粘附率的研究.北京口腔医学.2006;14(2):88-91.
    [24]吕晓迎.牙科材料细胞毒性评定新方法(MTT实验)中华口腔医学杂志.1995;30(6):337-9.
    [25]郝和平.医疗器械生物学评价标准实施指南.北京;中国标准出版社,2000:100-1
    [26]Holy CE,Shoichet MS,Davies JE.Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds:investigating initial cell-seeding density and culture period.J Biomed Mater Res.2000;51(3):376-82.
    [27]Holy CE,Fialkov JA,Davies JE,et al.Use of a biomimetic strategy to engineer bone.J Biomed Mater Res A.2003;65(4):447-53.
    [28]Qiu QQ,Ducheyne P,Ayyaswamy PS.3D bone tissue engineered with bioactive microspheres in simulated microgravity.In Vitro Cell Dev Biol Anita.2001;37(3):157-65.
    [29]Solchaga LA,Tognana E,Penick K,et al.A rapid seeding technique for the assembly of large cell/scaffold composite constructs.Tissue Eng.2006;12(7):1851-63.
    [30]Roehlecke C,Witt M,Kasper M.Synergistic effect of titanium alloy and collagen type I on cell adhesion,proliferation and differentiation of osteoblast-like cell.Cells Tissues Organs.2001;168(3):178-184.
    [31]梁军,辛景义,兰旭,等.胶原-生物衍生骨材料与兔成骨细胞的相容性及其体外附着特点.中国组织工程研究与临床康复.2007;11(26):5070-5073.
    [1]Hwang NS,Elisseeff J.Application of stem cells for articular cartilage regeneration.J Knee Surg.2009;22(1):60-71.
    [2]Petrie Aronin CE,Cooper JA Jr,Sefcik LS,et al.Osteogenic differentiation of dura mater stem cells cultured in vitro on three-dimensional porous scaffolds of poly(epsilon-caprolactone) fabricated via co-extrusion and gas foaming.Acta Biomater.2008;4(5):1187-97.
    [3]Carpizo KH,Saran M J,Huang W,etal.Pretreatment of poly (1-1actide-co-glycolide) scaffolds with sodium hydroxide enhances osteoblastic differentiation and slows proliferation of mouse preosteoblast cells.Plast Reconstr Surg.2008;121(2):424-34.
    [4]Hutmacher DW,Cool S.Concepts of scaffold-based tissue engineering--the rationale to use solid free-form fabrication techniques.J Cell Mol Med.2007;11(4):654-69.
    [5]Hutmacher DW,Schantz JT,Lam CX,et al.State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective.J Tissue Eng Regen Med.2007;1(4):245-60.
    [6]李莹,张洪,荣国威,等.股骨近端异种皮质骨板组织学及生物力学实验研究.中华外科杂志.2004;42(2):107-109
    [7]汤亭亭,顾冬云.同种异体皮质骨移植的生物力学研究.中华外科杂志.1998;36(5):272-274。
    [8]周冬生,王永会,王鲁博,等.大段同种皮质骨移植后VEGF表达的实验研究.山东医药.2005;45(15):3-5.
    [9]Lee DY,Cho T J,Kim JA,et al.Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis.Bone.2008;42(5):932-41.
    [10]Roguin A,Levy AE Angiogenesis--an update.Pediatr Endocrinol Rev.2005;2(3):391-8.
    [11]Schierling W,Troidl K,Troidl C,et al.The Role of Angiogenic Growth Factors in Arteriogenesis.J Vasc Res.2009;46(4):365-374.
    [12]Semenza GL.Vasculogenesis,angiogenesis,and arteriogenesis:mechanisms of blood vessel formation and remodeling.J Cell Biochem.2007;102(4):840-7
    [13]Ferrara N,Henzel WJ.Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells.Biochem Biophys Res Commun,1989;161(2):851-8.
    [14]初同伟,王正国,朱佩芳,等.骨折愈合过程中血管内皮生长因子及其受体的表达.中华创伤杂志.2001;17(6):344-346.
    [15]Fiedler J,Leucht F,Waltenberger J,et al.VEGF-A and P1GF-1 stimulate chemotactic migration of human mesenchymal progenitor cells.Biochem Biophys Res Commun.2005;334(2):561-8.
    [16]Liao SS,Cui FZ,Zhu Y.Osteoblasts adherence and migration through three-dimensional porous mineralized collagen based composite:nHAC/PLA.Journal of Bioactive and Compatible Polymers.2004;19(3):117-130.
    [17]KaiglerD,Krebsbach P H,Polverini P J,et al.Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells.Tissue Eng.2003;9(1):95-103.
    [18]Wijelath E S,Rahman S,Murray J,et al.Fibronectin promotes VEGF2induced CD34 cell differentiation into endothelial cells.J Vasc Surg.2004;39(3):655-660.
    [19]Furumatsu T,Shen ZN,Kawai A,et al.Vascular endothelial growth factor principally acts as the main angiogenic factor in the early stage of human osteoblastogenesis.J Biochem.2003;133(5):633-9.
    [20]Deckers MM,van Bezooijen RL,van der Horst G,et al.Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A.Endocrinology.2002;143(4):1545-53.
    [21] Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part Ⅰ (basic concepts).J Tissue Eng Regen Med. 2008;2(1):l-13.
    [22] Kwong FN, Harris MB. Recent developments in the biology of fracture repair.J Am Acad Orthop Surg.2008;16(11):619-25
    [23] Smith DM, Cooper GM, Mooney MP,et al. Bone morphogenetic protein 2 therapy for craniofacial surgery. J Craniofac Surg. 2008;19(5): 1244-59
    [24] Hsu WK, Wang JC. The use of bone morphogenetic protein in spine fusion.Spine. 2008;8(3):419-25.
    [25] Urist MR. Bone formation in implants of partially and wholly demineralixed bone matrix. Clin Orthop.1970;71: 271-8.
    [1]Khan SN,Tomin E,Lane JM.Clinical applications of bone graft substitutes.Orthop Clin North Am.2000;31(3):389-98.
    [2]刘玮,陆裕朴,胡蕴玉,等.异种植骨抗原性的免疫组织化学实验研究.中华骨科杂志.1989;9(1):53-54.
    [3]罗卓荆,胡蕴玉,王茜,等.异种松质骨移植抗原分布的免疫组化研究.中国矫形外科杂志.1998;5(6):539-540.
    [4]夏胜利,杨庆秋.复合异种骨研究进展.中国矫形外科杂志.2003;11(9):622-623.
    [5]Qian J,Kang Y,Zhang W,et al.Fabrication,chemical composition change and phase evolution of biomorphic hydroxyapatite.J Mater Sci Mater Med.2008;19(11):3373-83.
    [6]Gao Y,Cao WL,Wang XY,et al.Characterization and osteoblast-like cell compatibility of porous scaffolds:bovine hydroxyapatite and novel hydroxyapatite artificial bone.J Mater Sci Mater Med.2006;17(9):815-23.
    [7]Lin FH,Liao C J,Chen KS,et al.Preparation of betaTCP/HAP biphasic ceramics with natural bone structure by heating bovine cancellous bone with the addition of(NH(4))(2)HPO(4).J Biomed Mater Res.2000;51(2):157-63.
    [8]Raspanti M,Guizzardi S,De Pasquale V,et al.Ultrastructure of heat-deproteinated compact bone.Biomaterials.1994;15(6):433-7.
    [9]Pietrzak WS,Woodell-May J,McDonald N.Assay of bone morphogenetic protein-2,-4,and-7 in human demineralized bone matrix.J Craniofac Surg.2006;17(1):84-90.
    [10]Pacaccio DJ,Stern SF.Demineralized bone matrix:basic science and clinical applications.Clin Podiatr Med Surg.2005;22(4):599-606,ⅶ.
    [11]Tiedeman JJ,Garvin KL,Kile TA,et al.The role of a composite,demineralized bone matrix and bone marrow in the treatment of osseous defects.Orthopedics.1995;18(12):1153-8.
    [12]Cheung S,Westerheide K,Ziran B.Efficacy of contained metaphyseal and periartieular defects treated with two different demineralized bone matrix allo grafts. Int Orthop.2003;27(1):56-59.
    [13]Zhang Qi,Comu Oliver,Delloye Christian.Ethylene oxide does not extinguish the osteoinductive capacity of demineralized bone:A reappraisal in rats.Acta Orthop.1997;68(2):104-8
    [14]Cho G,Wu Y,Ackerman JL.Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy.Science.2003;300(5622):1123-7.
    [15]王金成,宋志洲,陈伟,等.骨库骨的生物力学特性比较研究.骨与关节损伤杂志.2001;16(1):35-36.
    [16]McMurray GN.The evaluation of Kiel bone in spinal fusions.J Bone Joint Surg Br.1982;64(1):101-4.
    [17]Valentini P,Abensur D,Wenz B,et al.Sinus grafting with porous bone mineral(Bio-Oss) for implant placement:a 5-year study on 15 patients.Int J Periodontics Restorative Dent.2000;20(3):245-53.
    [18]Zucchelli G,Amore C,Montebugnoli L,et al.Enamel matrix proteins and bovine porous bone mineral in the treatment of intrabony defects:a comparative controlled clinical trial.J Periodontol.2003;74(12):1725-35.
    [19]Boyan BD,Ranly DM,Schwartz Z.Use of growth factors to modify osteoinductivity of demineralized bone allografts:lessons for tissue engineering of bone.Dent Clin North Am.2006;50(2):217-28,ⅷ
    [20]Giannoudis PV,Dinopoulos H,Tsiridis E.Bone substitutes:an update.Injury.2005;36 Suppl 3:S20-7.
    [21]Betz RR.Limitations of autograft and allograft:new synthetic solutions.Orthopedics.2002;25(5 Suppl):s561-70.
    [22]Connolly JF.Injectable bone marrow preparations to stimulate osteogenic repair.Clin Orthop Relat Res.1995;313(4):8-18.
    [23]Ripamonti U,Heliotis M,Ferretti C.Bone morphogenetic proteins and the induction of bone formation:from laboratory to patients.Oral Maxillofac Surg Clin North Am.2007;19(4):575-89,ⅶ.
    [24]赵和平,宋敏,李振宇,等.骨形态发生蛋白在骨缺损修复研究中的应用现状.中国矫形外科杂志.2002;10(12):1219-1221.
    [25]刘玮,胡蕴玉,陆裕朴,等.重组合异种骨的研制及其生物活性分析.中华医 学杂志.1991;71(7):378-380.
    [26]胡蕴玉,陆裕朴,刘玮,等.重组合异种骨的实验研究与临床应用.中华外科杂志.1993;31(12):709-713.
    [27]Yuan Zhi,Ma Ping,Hu yun-Yu,et al.Preparation of rhBMP2/BCB and assay of its osteoinductivity.Fouth MilMed Unt.2001;22(18):1633-1636.
    [28]Lind M.Growth factor stimulation of bone healing.Effects on osteoblasts,osteomies and implants flxation.Acta Orthop Scaod Supple.1998;283:2-37
    [29]杜俊杰,胡蕴玉,罗卓荆,等.碱性成纤维细胞生长因子增强人重组骨形态发生蛋白-2诱导成骨的调节机理.中国矫形外科杂志.1999;6(7):526-528.
    [30]初同伟,王正国,朱佩芳,等.骨折愈合过程中血管内皮生长因子及其受体的表达.中华创伤杂志.2001;17(6):344-346.
    [31]Kjaer I.Correlated appearance of ossification and nerve tissue in human fetal jaws.J Craniofac Genet Dev Biol.1990;10:329-336
    [32]陈剑飞,林坚平,吴多能,等.异种骨基质明胶的抗原性研究.中华创伤骨科杂志.2004;7(6):805-810
    [33]孙沫逸,丁鸿才,毛天球.同种异体骨基质明胶和异种部分脱蛋白骨复合移植的实验研究.中华口腔医学杂志.1993;28(3):189.
    [34]Pontikoglou C,Delorme B,Charbord P.Human bone marrow native mesenchymal stem cells.Regen Med.2008;3(5):731-41.
    [35]Smiler D,Soltan M,Albitar M.Toward the identification of mesenchymal stem cells in bone marrow and peripheral blood for bone regeneration.Implant Dent.2008;17(3):236-47.
    [36]刘彬,林月秋,孔荣,等.异种骨复合自体骨髓基质干细胞修复节段性骨缺损.安徽医科大学学报.2007;42(4):379-382.
    [37]Lieberman JR,Daluiski A,Stevenson S,et al.The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats.J Bone Joint Surg Am.1999;81(7):905-17.
    [38]Laurencin CT,Attawia MA,Lu LQ,et al.Poly(lactide-co-glycolide)/hydroxyapatite delivery of BMP-2-producing cells:a regional gene therapy approach to bone regeneration.Biomaterials.2001;22(11):1271-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700