用户名: 密码: 验证码:
寒地冬小麦东农冬麦1号抗寒机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦营养价值丰富,经济价值较高,在中国是仅次于玉米和水稻的重要粮食作物。小麦有冬小麦和春小麦两种类型。冬小麦从分蘖期到拔节期跨越整个冬季,使其种植区域受到限制,在黑龙江省等北方寒地冬季温度极低,导致冬小麦不能安全越冬,成为冬小麦种植的禁区,常年以种植春小麦为主,而春小麦分蘖能力差,成穗率低,且在生产过程中经常受到春旱、春涝、收获期高温多雨等诸多不良因素的制约,结果导致年际间产量不稳,生产成本偏高。若能种植冬小麦就能很大程度的避开春旱、春涝及收获期高温多雨对其造成的不利影响,产量比春麦可提高约30%。“东农冬麦1号”是唯一可以在黑龙江省安全越冬的冬小麦品种,田间返青率在80%以上。以往对抗寒性的研究大部分都是在室内模拟低温条件下进行品种间的抗寒性比较,与其自然生长的环境温度及光照条件(光照条件与抗寒性直接相关)存在差异,特别是不能很好实现逐级降温适应锻炼。此外,对小麦抗寒性的研究多以苗期幼嫩叶片为取材部位,而北方高寒地区小麦实现越冬的主要部位是地下器官。因此,品种室内模拟低温环境的抗寒性研究结果难以代表其在大田的实际情况,对指导作物抗寒育种及生产有一定的局限性。
     本研究以东农冬麦1号为试验材料(济麦22为对照,该材料来自山东),在田间自然降温条件下,观察幼苗习性及返青率;测定不同器官与抗寒相关的生理生化变化、解剖结构变化,揭示冬小麦抗寒性的生理基础和结构基础;通过不同方式不同浓度外源施用植物生长调节剂,探索小麦抗寒的激素调控机制;通过双向电泳结合质谱技术挖掘抗寒相关蛋白,揭示冬小麦抗寒的分子基础。该研究对于揭示冬小麦的抗寒机制、挖掘抗寒相关新蛋白,具有重要的理论和实践意义,为今后我国北方寒地选育抗寒小麦种质资源及冬小麦新品种的选育提供理论依据和技术支持。研究结果如下:
     (1)越冬麦苗的生长习性及返青率
     东农冬麦1号越冬期幼苗匍匐于地面生长,返青率与土壤含水量及温度直接相关,含水量在25%左右最适于该品种生长及返青,随着低温时间的延长及温度的降低,返青率略有下降,幅度在60%~100%。在一定范围内,温度与返青率间呈极显著正相关,含水量与返青率呈负相关。
     (2)越冬期前麦苗的生理生化变化
     东农冬麦1号各器官(根、分蘖节和叶片)在抗寒性上的代谢适应和物质准备表现为如下规律:相对含水量高低依次为分蘖节>根>叶片;可溶性糖含量依次为分蘖节>根>叶片;蛋白质含量依次为叶片>分蘖节>根;脯氨酸含量表现为前期为分蘖节>根>叶片,中期为根>分蘖节>叶片,后期为分蘖节>叶片>根;过氧化物歧化酶(POD)活性大小依次为分蘖节>根>叶片;超氧化物酶(SOD)活性大小表现为前期分蘖节>叶片>根,后期为叶片>分蘖节>根;相对电导率大小依次为根>分蘖节>叶片;脱落酸(ABA)含量表现为前期叶>节>根,后期节>叶>根;赤霉素(GA)含量依次为叶>根>节;生长素(IAA)含量前期为叶>节>根,后期为叶>节>根;玉米素(ZR)含量依次为节>叶>根。总体表现为分蘖节的抗寒代谢适应和物质准备能力最强,是小麦安全越冬的重要器官,对其第二年的返青具有直接影响。
     东农冬麦1号分蘖节中的SOD活性、可溶性蛋白、可溶性糖、脯氨酸、ABA、ZR及IAA各指标之间呈现出不同程度的相关,表明各生理指标是协同作用,共同影响小麦的抗寒性,其中可溶性糖含量与其它6项指标之间均达到了显著相关,说明可溶性糖的含量对东农冬麦1号抗寒性的影响非常重要。
     (3)植物生长调节剂对麦苗抗寒性的调节
     外源ABA对东农冬麦1号的抗冷性有很大影响,低浓度的ABA可以提高低温下麦苗的生长,而高浓度则抑制生长,ABA提高抗冷性的最适浓度为10-7M;苗期低温下,ABA可以提高叶绿素含量、可溶性糖、可溶性蛋白含量,提高SOD活性、降低膜透性。根浸ABA对提高幼苗抗冷效果要强于叶喷ABA。大田分蘖前期根际浇灌不同浓度(10-7、10-6、10-5、10-4 M)ABA、GA、6-BA可以影响东农冬麦1号的返青率,其中ABA及6-BA均提高返青率,10-5 M返青率增加效果最明显,GA降低返青率,10-4 M时返青率降为0。
     (4)抗寒相关蛋白
     在pH 4~7范围内,东农冬麦1号分蘖节蛋白质双向电泳表达图谱中发现56个蛋白质点在-30℃低温的表达量与5℃低温有明显差异(±2倍以上),通过质谱分析及数据库检索均得到了完整的肽指纹图谱。在这些蛋白中逆境蛋白占14.3%(包括抗病蛋白、类抗病蛋白、热激蛋白、热激蛋白70前体、热激蛋白70、热激蛋白90、冷诱导蛋白、干旱敏感蛋白、过氧化物酶及过氧化物酶前体等,在低温后表达量上调)、代谢相关蛋白占23.2%(包括6-磷酸葡萄糖脱氢酶、3-磷酸甘油醛脱氢酶、苹果酸脱氢酶、腺苷酸α水解酶、磷酸烯醇丙酮酸羧化酶F0-F1 ATP羧化酶α亚基、脂氧化酶、四氢叶酸还原酶、淀粉合酶、核糖核酸酶等在低温胁迫条件下它们的表达量上调或下调)、信号分子蛋白占17.9%(包括酪氨酸激酶、丝裂原活化蛋白激酶、丝苏氨酸蛋白激酶、类CBF蛋白、钙调蛋白、类钙结合蛋白、转录因子等)、未知功能蛋白占17.9%,其他类蛋白占26.8%。这些蛋白的高量或低量表达可能对东农冬麦1号抗寒具有重要作用。对蛋白液进行冰棱晶体结构观察表明,随着温度的降低,冰棱晶体结构发生明显的变化,说明已经有抗冻蛋白在分蘖节中产生。
     (5)冬小麦抗寒的组织细胞解剖结构
     东农冬麦1号各器官(根、叶、分蘖节)在-15℃左右低温下结构仍很完整。叶片细胞间隙大,根系射线细胞小,分蘖节内部交织着大量纵横交错的疏导组织。低温后叶绿体依然呈椭圆形,类囊体基粒片层和基质片层跺叠整齐,沿叶绿体的长轴平行排列,均匀分布于叶绿体中。线粒体略微肿胀,但没有嵴消失现象。这些结构特点进一步证实了东农冬麦1号的强抗寒性。
Wheat is the most important food crops in China only to rice and corn and it has rich nutritional value and the high economic value. There are two types of wheat: winter wheat and spring wheat. Throughout the whole winter, the growing period of winter wheat is from its tillering stage to jointing stage. Because that winter wheat planting is restricted in the cold area of northern China, such as Heilongjiang province, the temperature in winter is very low. These areas become restricted zones of winter wheat planting, but have to plant spring wheat. Moreover, spring wheat also has its deficiencies, for example, poor tillering, low spike rate, and restricted by bad environmental factors spring drought, spring floods, high temperature and wet in harvest time, which results in unstable annual yield and high cost. If winter wheat is planted in those cold areas, bad environmental factors could be avoided of spring wheat planting and the output could be increased in 30%.“Dongnongdongmai 1”is the only cultivar of winter wheat which could pass the winter securely in Heilongjiang province, and its greening rate is more than 85%.The previous researches on cold tolerance are mainly about comparing cold tolerance among species at the simulative low temperature indoor conditions, which is different from temperature and light (which related to the cold tolerance directly) of the natural growth conditions, especially can not realize the cooling exercise at the continually low temperature. In addition, the studies of cold tolerance of wheat seedling may use the young leaves as the materials, while in the northern cold area, underground organs are main part of winter wheat to pass the whole winter. Therefore, the studies simulated cold resistance under low-temperature indoor is difficult to represent their real findings at the actual situation and has limitations in guiding cold crop breeding and production.
     In this study, cold resistant variety Dongnongdongmai 1 (Jimai22, from Shan-dong province, as control) was used as experimental material. The seedling habit, greening rate, physiological and biochemical characteristics, and anatomical structure were investigated to reveal the physiological and structural mechanisms for cold resistance of winter wheat. In addition, the regulatory mechanism of hormone was also explored by using exogenous hormone at different ways and different concentrations. Moreover, cold proteins were obtained through the two-dimensional gel electrophoresis and mass spectrometry to reveal the molecular mechanism of cold resistance of winter wheat. This research provided the theoretical bases for revealing the mechanism of cold tolerance and finding the cold-related proteins of winter wheat, and had important theoretical and practical significance in selecting cold-resistant winter wheat germplasm resources and breeding new varieties in northern cold area of China.
     The main experimental results were as follows.
     (1)Seedling habits and greening rate
     The seedlings of Donongdongmai 1 grew prostratly in the field overwintering , and theirs greening rate had significant correlation with soil water content and temperature. The soil water content of 25% was suitable environment for growing and greening of Donongdongmai 1. Under low temperature and long time of duration of low temperature, the greening rate decreased about 60%~100%. In certain extent, greening rate had a significantly positive correlation with temperature, and negative correlation with water content.
     (2)The characteristics of physiological and biochemical before overwintering
     The organs (root, tillering node and leaf) of Dongnongdongmai1 showed the following laws in metabolic adaptation and material preparations for resisting cold: Relative water content, tillering node> root> leaf; soluble sugar content , tillering node> root> leaf; protein content, leaf> tillering node > root; proline content, tillering node > root> leaf in early stage , root> tillering node > leaf in middle stage, and tillering node > leaf> root in late stage; POD activity, tillering node > root> leaf; SOD activity, tillering node > leaves> roots in early stage, leaf > tillering node > root in late stage; relative conductivity, root> tillering node > leaf; ABA content, leaf> tillering node > root in early stage, tillering node > leaf> root in late stage; GA content, leaf> root> tillering node; IAA content, leaf> tillering node > root in early stage, leaf > tillering node > root in late stage; ZR content, tillering node > leaf> root. The general results showed that tillering node was the most important organ of winter wheat for safely overwintering because of high cold resistant metabolic adaptation and strong ability for material preparations. And it directly affected greening rate of winter wheat in next year.
     The SOD activity, soluble sugar, soluble protein, proline, ABA, ZR and IAA content in the tillering node of Dongnongdongmai 1 showed the correlation at different levels, indicating that these physiological indices had synergistic effect to cold resistance of wheat. The soluble sugar had significant correlation with other six indices and it was the important index to show cold resistance of winter wheat dongnongdongmai 1.
     (3)Regulation of plant growth regulator
     ABA had significant effects on cold resistance of dongnongdongmai 1,the low concentration could promote the growth of wheat under low temperature,but the high concentrations inhibit that. For increasing the wheat cold resistance,the optimal concentration of ABA was 10-7M. Under low temperature at seeding stage, the ABA could increase chlorophyll content, soluble sugar content, and soluble protein content, improve the activity of SOD and decrease membrane permeability. The root absorption of ABA was better than leaf-spraying. In addition, the next year greening rate was increased by watering rhizosphere with different concentrations (0, 10-4, 10-5, 10-6, 10-7 M) of the ABA, GA and 6-BA in the field at early tillering seedlings. The general results showed that ABA and 6-BA could increase the greening rate at 10-5 M, but GA had the contrary effect, and decrease the greening rate to 0 at 10-4 M.
     (4)Cold resistance ccorelated protein
     The expression level of 55 protein spots were significantly different (±more than 2 folds) after low temperature stress -30℃in protein profiles of tillering node Dongnongdongmai 1 from pH4 to pH7. The high expressed protein spots were detected by matrix-assisted laser desorption ionization time-of -flight mass spectrometry (MALDI-TOF MS), and analyzed in retrieval database. According to the peptide mass fingerprints, 14.3% were stress protein(TIR-NBS-LRR-TIR type disease resistance protein, heat shock protein 70 precursor, non-cell-autonomous heat shock cognate protein 70, chilling-inducible protein,heat shock protein, 23.5 kDa heat-shock protein, heat shock protein 90, disease resistance protein-like, resposive to dessication 22, ascorbate peroxidase and class III peroxidase 59 precursor ) ; 23.2% were metabolism correlated protein(glucose-6-phosphate dehydrogenase, subfamily of Adenine nucleotide alpha hydrolases superfamily, phosphoenolpyruvate carboxylase, glyceraldehyde-3-phosphate dehydrogenase subunit B, ribulose-1,5- bisphosphate carboxylase, F0-F1 ATPase alpha subunit, lypoxygenase, alpha-glucosidase, 5,10-methylene-tetrahydrofolate reductase, starch synthase II, cytosolic malate dehydrogenase, self-incompatibility ribonuclease); 17.9% were signaling molecule(incle Protein tyrosine kinase, CBF-like protein, calmodulin,calmodulin binding protein-like, mitigen activated protein kinase, serin/threonine protein kinase, transcription factor< PWWP domain protein> -like protein); 17.9% were un-known function protein, and other protein took up 26.8%. The results indicated that these high or low expressed proteins might play an important role in dongnongdongmai1 cold resistance. Moreover, the shape of ice crystals significant changed as the temperature decreased, which indicated that antifreeze proteins were produced in tillering node.
     (5)Anatomic structure of tissue and cell for cold resistance of winter wheat
     Structure of Dongnongdongmai 1 (leaf, root and tillering node) was integrity at about -15℃. The inter-space among the leaf cells was big, and the root ray cells were small, and there are many interlace bulks arranged in a crisscross pattern in the tillering node. After low temperature, the chloroplast was ellipse, and grana lamellae and stroma lamellae of thylakoid arranged regularly and parallel-aligned among long axis of chloroplast, distributed uniformly in chloroplast. The mitochondria were a little intumesces, but the cristae were not absent. These structural features furtherly confirmed the high cold resistance of Dongnongdongmai 1.
引文
鲍思伟. 2005.自然降温过程中云锦杜鹃抗寒适应性研究[J].福建林业科技,32(2): 13
    陈翠莲,马平福. 1989.抗冷性不同的小麦、水稻品种脯氨酸含量的比较试验.华中农业大学学报,8(2): 176-179
    陈贵,康宗利,张立军. 1998.低温胁迫对小麦生理主化特性的影响.麦类作物,18(3): 42-43
    陈龙,吴诗光,李淑梅,等. 2001.低温胁迫下冬小麦拔节期生化反应及抗性分析.华北农学报,16(4): 42-46
    陈龙,吴诗光,杨光宇,等. 2001.低温胁迫下冬小麦幼苗期和拔节期某些生理生化特性的变化.种子, 2: 19-21
    陈娜,郭尚敬,颜坤,等. 2005.甜椒甘油-3-磷酸酰基转移酶基因的克隆与表达分析.园艺学报, 32(5): 823-827
    陈善娜,郭浙红,沈云光,等. 1996.在低温胁迫下外源ABA对高原水稻自由基清除系统的影响.云南大学学报(自然科学版). 18(2): 167-172
    陈璇,李金耀,马纪,等. 2007.低温胁迫对春小麦和冬小麦叶片游离脯氨酸含量变化的影响.新疆农业科学,44(5): 553-556
    陈忠,苏维埃,汤章城. 1999.豌豆热激蛋白Hpc60研究[J].植物学报,41(10): 1090
    董合铸,孙龙华,简令成. 1980.不同抗寒性小麦品种的麦苗在冰冻-化冻后叶片细胞亚显微结构的变化.植物学报,22: 339-342
    董建国,余叔文.1984 .细胞分裂素对渍水小麦衰老的影响.植物生理学报,10: 55-62
    杜永吉,于磊,孙吉雄,等. 2008.结缕草3个品种抗寒性的综合评价.草业学报,17(3):6-16
    费云标,孙龙华,黄涛,等. 1994.沙冬青高活性抗冻蛋白的发现[J].植物学报,36: 649 - 650
    冯越,王彩玲,富炜琦,等. 2007. ABA对毛白杨抗冻性影响的研究.生物学杂志,24(6): 40-42
    傅桂荣,陈瑛,田艳艳,等. 1997.转美洲拟鲽抗冻蛋白基因(afp)番茄D4代植株可溶性蛋白分析[J].哈尔滨师范大学自然科学学报,13(4): 87
    高述民,程朋军,郭惠红,等. 2003.日本桃叶珊瑚的冷驯化及抗寒机制研究.西北植物学报,23(12): 2113-2119
    龚束芳. 2007.冷季型草坪草耐低温反应及偃麦草抗冻蛋白的研究.东北农业大学博士学位论文
    郭继萍,田惠平. 2005.科研人员首次从天山雪莲中提取出抗寒基因.农业知识,(2): 17
    郭修武,傅望衡,王光洁. 1989.葡萄根系抗寒性的研究.园艺学报,16(1): 17-22
    郭玉华, WISNIEWSKA H, CHELKOWSKI J. 2000.不同小麦基因型抗寒性与冷适应特征的评价(英文) [J].沈阳农业大学学报,31(6): 541-545
    韩善华,李劲松. 1992.沙冬青叶片结构特征及其与抗寒性的关系[J].林业科学,28:198-201
    韩善华,王双. 2000.高度抗寒植物冬季线粒体的电镜观察.西北植物学报,20(4): 539-543
    韩善华,张红,王双. 1999.冬季沙冬青细胞质中一种高电子密度结构的电镜观察.应用生态学报,10(5): 556-558
    郝再彬,苍晶,徐仲. 2004.植物生理实验.哈尔滨工业大学出版社,43-115
    黄义江,王宗清. 1982.苹果属果树抗寒性的细胞学鉴定.园艺学报,9(3): 23-30
    黄永芬,汪清胤,付桂荣,等. 1997.美洲拟鲽抗冻蛋白基因(afp)导入番茄的研究[J].生物化学杂志,13(4): 418-422
    祭美菊,安黎哲,陈拓,等. 2001.天山寒区冰缘植物珠芽蓼叶片抗冻蛋白的发现.冰川冻土,23(4): 342-345
    简令成,孙德兰,施国雄,等. 1986.不同柑桔种类叶片组织的细胞结构与抗寒性的关系[J].园艺学报,13(3): 163
    简令成,孙龙华,孙德兰. 1983.脱落酸和矮壮素对提高小麦抗寒力的作用.中国植物学会五十年年会学术报告及论文摘要汇编,789-795
    简令成,孙龙华,卫翔云,等. 1994.从细胞膜系统的稳定性与植物抗寒性关系的研究到抗寒剂的研制.植物学通报,11(特刊): 1-22
    简令成,王红. 2002.钙在植物抗寒中的作用[J].细胞生物学杂志,24(3): 166-171简令成,王红.2008.逆境植物细胞生物学.科学出版社
    简令成,吴素萱. 1965.植物抗寒性的细胞学研究—小麦越冬过程中细胞结构的变化.植物学报,13: 1-15
    简令成. 1987.植物冻害和抗冻性的细胞生物学研究[J].植物生理生化进展,(5): 1-16
    简令成. 1991.植物抗寒性的细胞及分子生物学研究进展[A].郑国昌,翟中和主编.细胞生物学进展[C].北京:高等教育出版社,296-320
    简令成. 1992.植物抗寒机理研究的新进展[J].植物学通报,9(3): 17
    简令成. 1999. 40年植物抗寒机理的细胞生物学研究的一个简单总结[J].植物学通报,16(专辑): 15-29
    简令成. 1983.生物膜与植物寒害和抗寒性的关系.植物学通报,1: 17-23
    江福英,李延,翁伯琦. 2002.植物低温胁迫及其抗性生理[J].福建农业学报,17(3): 190-195
    江勇,贾士荣,费云标,等. 1999.抗冻蛋白及其在植物抗冻生理中的作用[J].植物学报,41(7): 677
    金夏祥,朱忠政,王爱忠,等. 2007.亚甲基四氢叶酸还原酶基因C677T多态与结直肠癌遗传易感性的相关性.世界华人消化杂志,15(25): 2754-2757
    康国章,王永华,郭天财,等. 2006.植物淀粉合成的调控酶.遗传,28(1): 110-116
    李光林,陈德万,左冻意,等. 1994. ABA对杂交稻幼苗抗冷性机理的研究.西北农业大学学报,16(2): 138-143
    李守军,王洪斌. 2002. HSP70研究进展[J].黑龙江畜牧兽医,(11): 52
    李晓毓. 2006.低温胁迫下菊花蛋白质组的双向电泳分析及质谱鉴定.贵州大学硕士学位论文
    李艳军. 2005.外源化学物质诱导对番茄苗期抗冷性的影响[学位论文].北京:中国农业科学院,30
    李跃强,宣维健,盛承发. 2004.植物的低温诱导蛋白.生态学报,24(5): 1034-1039
    李志,王刚,吴忠义,等. 2005.脯氨酸与植物抗渗透胁迫基因工程改良研究进展[J].河北师范大学学报(自然科学版),29(4): 405-408
    李智念,王光明,曾之文. 2003.水稻等作物抗寒中ABA的相关研究.耕作与栽培,3: 17-19
    李宗霆,周燮. 1996.植物激素及其免疫检测技术〔M〕.南京:江苏科学出版社,1137-1421
    林伟强,边红武,王君晖,等. 2004.铁皮石斛类原球茎空气干燥法超低温保存中的脱水蛋白分析[J].园艺学报,31(1): 64
    刘德兵,魏军亚,崔百明,等. 2007.脱落酸对香蕉幼苗抗寒性的影响.热带作物学报,28(2): 1-4
    刘娥娥,宗会,郭振飞,等. 2000.干旱、盐和低温胁迫对水稻幼苗脯氨酸含量的影响[J].热带亚热带植物学报,8(3): 235-238
    刘粉霞,谭振波,朱建清,等. 2004.拟南芥CBFI与植物对低温和干旱的作用.遗传,26(3): 394-398
    刘国华,栾以玲,张艳华. 2006.自然状态下竹子的抗寒性研究.竹子研究汇刊,25(2):11-14
    刘慧民,王昆,李奇石,等. 2003.五叶地锦低温处理条件下与抗寒相关的部分生理生化指标的变化规律[J].东北林业大学学报,31(4): 74
    刘继梅,陈善娜,鄢波,等. 2000.不同抗冷性水稻中编码甘油-3-磷酸酰基转移酶的部分cDNA序列比较研究[J].云南植物研究,22(3): 317-321
    刘世彪,陈菁,胡正海. 2004. 7种番荔枝果树的叶片结构及其与抗寒性关系研究.果树学报,21(3): 241-246
    刘晓忠,李建坤,王志霞,等. 1996.应用细胞分裂素类物质提高玉米抗涝能力的效果与作用.作物学报,22(4): 403-408
    刘艳,李晓燕,王丽雪,等. 2006.苹果枝条冬季淀粉粒动态变化与抗寒力的关系.内蒙古农业大学学报,27(2): 79-83
    刘友良,毛才良,汪良驹. 1987.植物耐盐性研究进展[J].植物生理学通讯,(4): 127
    刘祖祺,张石城. 1994.植物抗性生理学.北京:中国农业出版社,8-23
    卢存福,陈玉珍,简令成,等. 2003.高山植物唐古特红景天粘液细胞及叶肉细胞表面糖蛋白与抗冻性的关系.应用与环境生物学报,9(1): 16-20
    卢存福,简令成,匡廷云. 2000.低温诱导唐古特红景天细胞分泌抗冻蛋白[J].生物化学与生物物理进展,27(5): 555-559
    吕俊. 2002.水稻抗寒性诱导性酶谱分析与分子生理学初步研究.西南大学硕士学位论文
    罗正荣. 1989.植物激素与抗寒力的关系.植物生理学通讯,3: 1-5
    马艳青,戴雄泽. 2000.低温胁迫对辣椒抗寒性相关性生理指标的影响.湖南农业大学学报,26(6): 461-462
    苗芳,冯佰俐,周春菊,等. 2003.冷型小麦叶片显微结构的一些特征.作物学报,29,(1): 155-156
    苗芳,张嵩午,王长发,等. 2005.小麦低温种质的器官结构特征.西北植物学报,25(8): 1499-1507
    邵强,闫清华,徐存拴. 2005.植物抗冻蛋白研究新进展.河南农业科学,9: 12-15
    单守明,刘国杰,李绍华,等. 2007.秋季叶面喷施IAA、6- BA或GA3对草莓植株的影响.果树学报,24(4): 545-548
    佘文琴,刘星辉. 1995.荔枝叶片细胞结构紧密度与耐寒性的关系.园艺学报,22(2): 185-186
    沈漫. 1997.不同抗寒性的杜鹃品种叶片磷脂和脂肪酸组成差异性比较分析.南京林业大学学报,21(2): 67-69
    沈漫. 2003.不同温度条件下常春藤叶片磷脂变化的比较分析.园艺学报,30(4): 431-435
    师晨娟,刘勇,荆涛. 2006.植物激素抗逆性研究进展.世界林业研究,19(5): 21-26
    孙金月,赵玉田,梁博文,等. 2004. HRGP在小麦抗寒锻炼过程中的变化及其与抗寒性的关系.植物遗传资源学报,5(1): 6-11
    孙群,胡景江. 2006.植物生理学研究技术.西北农林科技出版社,50
    孙学成,胡承孝,魏文学. 2001.施钼对冬小麦铵态氮含量及膜透性的影响.三峡大学学报(自然科学版),23(4): 381-384
    孙学成,谭启玲,胡承孝,等. 2006.低温胁迫下钼对冬小麦抗氧化酶活性的影响,中国农业科学,39(5): 952-959
    邰付菊,李扬,陈良,等. 2008.低温胁迫下棉花子叶蛋白质差异表达的双向电泳分析.华中师范大学学报(自然科学版),42(2):2 62-266
    陶雅. 2008. 22个国内外苜蓿品种抗寒性评价.中国农业科学院硕士学位论文
    汤章诚. 1984.逆境条件下植物脯氨酸的积累及其可能的意义.植物生理学通讯,(1): 1
    田昌平,马建平,孔慧,等. 2002.小麦晚霜冻后喷施植物生长调节剂效果试验[J].现代农药,(3): 46
    田士林,李莉. 2007.外源ABA对小麦叶片中ABA含量的影响.安徽农业科学,35(10): 2876,2878
    王关林,方宏筠. 2002.植物基因工程(第二版),71
    王静,魏小红,龙瑞军. 2004.植物抗寒机制的研究方法与进展.甘肃科技纵横,33(6): 72-73
    王丽雪,李荣富,马兰青. 1994.葡萄枝条中淀粉、还原糖及脂类物质变化与抗寒性的关系.内蒙古农牧学院学报,15(4): 1-7
    王连敏,王立志,张国民,等. 1999.苗期低温对玉米体内脯氨酸、电导率及光合作用的影响[J].中国农业气象,20(2): 28-31
    王三根,何立人,李正玮,等. 1996.淹水对大麦与小麦若干生理生化特性影响的比较研究.作物学报,22(2): 228-232
    王三根,梁颖. 1995 .6-BA对低温下水稻幼苗细胞膜系统保护作用的研究.中国水稻科学,9(4): 223-229
    王淑杰,王连君,王家民,等. 2000.抗寒性不同的葡萄品种叶片中氧化酶活性及变化规律.山外葡萄与葡萄酒,3: 29-30
    王艇,苏应娟,刘良式. 1997.植物低温诱导蛋白和低温诱导基因的表达调控[J].武汉植物学研究,15(1):80
    王维香. 2004.沙冬青抗冻蛋白的分离纯化及特性鉴定.大连理工大学博士学位论文
    王玮,张枫,李德全. 2002.外源ABA对渗透胁迫下玉米幼苗根系渗透调节的影响.作物学报,28(1): 121-126
    王文举,王振平,平吉成,等. 2005.乙烯利对赤霞珠葡萄几种抗寒性指标的影响.中外葡萄与葡萄酒,4: 13-14
    王孝宣,李树德,东惠茹,等. 1998.番茄品种耐寒性与ABA和可溶性糖含量的关系[J] .园艺学报,25(1): 56-60
    王玉玲,康洁. 2004.低温胁迫对冬小麦苗期和拔节期生理生化特性的影响.河南农业科学,5: 3-6
    魏先荣,王国泽. 2004.梨组织显微特性与抗寒力的关系研究.内蒙古农业大学学报,25(2): 73-75
    严寒静,谈锋. 2006.栀子对自然降温的适应性研究.植物研究,26(2): 238-241
    杨凤仙,董俊梅,杨晓霞. 2001.低温胁迫下棉叶叶绿体、液胞超微结构的变化.山西农业大学学报,2: 116-117
    杨亚军,郑雷英,王新超. 2005.低温对茶树叶片膜脂脂肪酸和蛋白质的影响[J].亚热带植物科学,34(1): 5
    姚胜蕊,曾骧,简令成. 1991.桃花芽越冬过程中多糖积累和质壁分离动态与品种抗寒性的关系.果树学报,18(1): 16-20
    殷建文. 2005.低温胁迫条件下拟南芥全细胞蛋白质的双向电泳分析.吉林大学硕士学位论文
    尹立荣,孙克娟,宋润刚,等. 1990.葡萄叶片的组织结构与抗寒力的关系.特产研究,3: 7-8,52
    尹明安,崔鸿文,樊代明,等. 2001.胡萝卜抗冻蛋白基因克隆及植物表达载体构建[J].西北农林科技大学,29(1): 6-10
    翟大勇,沈黎明. 1998.脱水蛋白研究进展[J].生物化学与生物物理进展,25(2): 119-122
    张国红. 2008 .不同品种小麦低温反应特性的研究.山西农业大学硕士学位论文
    张红,简令成,李广敏. 1994 .植物抗寒剂提高黄瓜幼苗抗寒力及细胞膜系统冷稳定性的研究,植物学通报,11: 154-162
    张淑霞. 1997. DNS法测定小麦分蘖节中糖的含量.河北农业技术师范学院学报,11(2):32-35
    张勇,汤浩茹,罗娅,等. 2008.低温锻炼对草莓组培苗抗寒性及抗氧化酶活性的影响.中国农学通报,24(1): 325-329
    张有福,陈银萍,张满效,等. 2006.两种圆柏属植物不同季节显微和超微结构变化与耐寒性的关系.应用生态学报,17(8): 1393-1397
    张羽航,鲍时翔,郑学勤,等. 1998.脂肪酸饱和酶的研究进展[J].生物技术通报,4: 1-8
    张小英. 2008.不同苜蓿品种对秋冬低温条件的生理适应性研究.内蒙古农业大学硕士学位论文
    赵春江,康书江,王纪华,等. 2000.植物内源激素与不同基因型小麦抗寒性关系的研究.华北农学报,15(3): 51-54
    赵耀新,冯天杰,杜克久,等. 2005 .鹿蹄草根状茎、叶器官的形态解剖学研究.河北农业大学学报,28(3): 23-25
    甄伟,陈溪,孙思洋,等. 2000.冷诱导基因的转录因子CBF1转化油菜和烟草及抗寒性鉴定.自然科学进展,10(12): 1104-1108
    郑殿峰,王广军,宫占元,等. 2000.不同播期对小麦抗寒力的鉴定.黑龙江八一农垦大学学报,12(2): 13-16
    郑磊,刘关君,杨传平,等. 2007.盐胁迫下西伯利亚蓼蛋白质双向电泳分析及质谱鉴定.哈尔滨师范大学自然科学学报,23(2): 101-105
    钟克亚,叶妙水,胡新文,等. 2006.与拟南芥抗寒相关的CBF3和AtGolS3基因克隆及其表达载体的构建.植物生理学通讯,42(4): 748-712
    钟秀丽,崔德才,李玉中. 2005.磷脂酶D的细胞信号转导作用.植物生理与分子生物学学报,31(5): 451-460
    周继泽,段藏禄. 1996.多效唑增强小麦幼苗抗逆性生理效应研究[J].河南职技师院学报,24(4): 27-32
    朱佳,梁永超,丁燕芳. 2006.硅对低温胁迫下冬小麦幼苗光合作用及相关生理特性的影响.中国农业科学,39(9): 1780-1788
    朱建玲. 2008.贮藏性碳水化合物对苜蓿抗寒性的影响研究.东北师范大学硕士学位论文
    宗学凤,刘大军,王三根,等. 1998.细胞分裂素对冷害水稻幼苗膜保护酶热稳定蛋白和能量代谢的影响研究.西南农业大学学报,20(6): 573-576
    Allen R D. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol, 107: 1049-1054
    Antikainen M, P ihaskaski S. 1993. Cold-induced changes in the polysome pattern and protein synthesis in winter rye (S ecale cereal) leaves. Physiol. Plant, 89: 111-116
    Antikainen M, Griffith M, Zhang J, et al.1996. Immunolocalization of antifreeze proteins in winter rye leaves, crown, and root by tissue printing [J]. Plant Physiol, 110:845-857
    Antson A A, Smith D J, Roper D I, et al. 2001. Undstading the mechanism of ice binding by type antifreeze proteins. Mol Biol, 305 (4): 875-889
    Anttonen S, Herranen J, Peura P, et al. 1995. Fatty acids and ultrastructure of ozone exposed Aleppo pine (Pinus halepensis Mill.) needles. Environ Pollut, 87: 235-242
    Anttonen S, K?renlampi L. 1996. Slightly elevated ozone exposure causes cell structural changes in needles and roots of Scots pine. Trees Struct Funct, 10: 207-217
    Ashraf M and Harris P J C. 2004 .Potential biochemical indicators of salinity tolerance in plants, Plant Sci., 166:3-16
    Autus N N. 1996. Constitutive expression of the cold-regulated Arabidopsis thsaliana cor15a gene affects both chloroplast freezing to tolerance[J]. Proc Natl Acad Sci USA, 93: 13404-13409
    Badawi M, Danyluk J , Boucho B, et al. 2007.The CBF gene family in exaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. Mol Genet Genomics, 277: 533-554
    Baek K H, Skinner D Z. 2006.Differential expression of manganese superoxide dismutase sequence variants in near isogenic lines of wheat during cold acclimation. Plant Cell Rep, 25: 223-230
    Bága M, Chodaparambil S V, et al. 2007. Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct Integr Genomics, 7:53-68
    Bondada B R, Syvertsen J P. 2005. Concurrent changes in net CO2 assimilation and chloroplast ultra structure in nitrogen deficient citrus leaves. Environ Exp.Bot, 54: 41-48
    Bravo L A, Gallardo J, N avarrete A, et al. 2003. Cryop ro tective activity of a cold induced dehydrin purified from barley. Physiol Plant, 118: 262-269
    Briggs D R. 1949. The chemistry of the living bark of the black locust tree in relation to frost hardiness. II. Seasonal variation in the electrophesis pattern of the water soluble proteins of the bark[J]. Arch Biochem, 23: 8-11
    Brockton N T. 2006. Localized depletion: the key to colorectal cancer risk mediated by MTHFR genotype and folate.Cancer Causes Control, 17: 1005-1016
    Burke M J, Gusta L V, Quamme H A. 1976 .Freezing and injury in plants. Ann Rev Plant Physiol, 27: 507-528
    Caruso G, Cavaliere C, Guarino C, et al. 2008. Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Anal Bioanal Chem, 391: 381-390
    Cater J V, Brenner M L. 1985. Plant growth regulators and. low temperature stress, Encyclopedia of plant physiol, 11: 418-443
    Chabot J F, Chabot B F. 1975. Developmental and seasonal patterns of mesophyll ultrastructure in Abiesbalsames [J]. Can.J.Bot., 53: 295-304
    Chakrabatty A. 1989. Structure function relationships in a winter flounder antifreeze polypeptide. Alteration of the component growth rates of ice by synthetic antifreeze polypeptides [J]. J Biol Chem., 264 (19): 11313-11316
    Chamnongpol S. 1994. Analysis of catalase deficiency in transgenic tobacco[J]. PlantPhysiology, 114: 101-102
    Chen H H, Li P H, Brenner M L.1983. Involvement of abscisic acid in potato cold acclimation. Plant Physiol, 71: 362-365
    Chen J-U, Yu X-M, Griffith M. 1998. Genetic studies of antifreeze proteins and their correlation with winter surviral in wheat. Euphytica, 102: 219-226
    Chen X, Dai H Q, Lu C F, et al. 2002. The effect of cold acclimation and Ca2+ signal on the synthesis of antifreeze proteins and the freezing tolerance of cells in carrot (Daucus carotz). Sci Tech & Engineering. 2(3): 23-26
    Chinnusamy V, Ohta M, Kanrar S, et al. 2003. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Gene.Dev, 17: 1043-1054
    CiamporováM, TrgiňováI. 1996. Ultrastructure of chlorop lasts in leaves and of p lastids in root tips of two maize lines differing in chilling tolerance. Biológia (Bratislava), 51: 441-447
    CiamporováM, TrgiňováI. 1999. Modifications of plant cell ultrastructure accompanying metabolic responses to low temperatures. Biológia (Bratislava), 54: 349-360
    Close T J. 1997. Dehydrins: A commonalty in the response of plants to dehydration and low tememprature[J]. Physiol Plant, 100 (2): 291-296
    Collins G G, Nie X, Saltveit M E. 1993. Heat shock protein and chilling sensitivity of mung bean hypocotyls[J]. Plant Physiol, 89: 117-124
    Cook D, Fowler S, Fiehn O, et al. 2004. From the cover:a prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. P.Natl. Acad.Sci. 101: 15243-15248
    Culter A J. 1989. Winter flounder antifreeze protein improves the cold hardiness of plant tissue[J]. J Plant Physiol., 135 (3): 351-354
    Daie J, Campbell W F. 1981. Response of tomato plants to stressful temperatures. Plant Physiol. 67: 26-29
    Danyluk J, Perron A, Houde M. 1998. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during acclimation of wheat [J]. Plant Cell, 10: 475-484
    Delauney A J, Verma D P S .1993. Proline biosynthesis and osmo-regulation in plants. Plant J, 4: 215-223
    Deveries A L. 1983. Antifreeze proteins. Curr Opin Struct Biol., 7 (6): 828-834
    Duman J G. 1994. Purification and characterization of a thermal hysteresis protein from a plant, the bittersweet nightshade Solanum dulcamara [J]. BBA, 1206: 129-135
    Fowler D B, Limin A E, Ritchie J T. 1999. Low-temperature tolerance in cereals: model and genetic interpretation. Crop Sci, 39: 626-633
    Fowler S, Thomashow M F. 2002. Arabidopsis Transcriptome Profiling Indicates That Multiple Regulatory Pathways Are Activated during Cold Acclimation in Addition to the CBF Cold Response Pathway[J]. Plant Cell, 14: 1675-1690
    Foyer C H. 1994. Protection against oxygen radical: an important defense mechanism studiesin transgenic plants [J]. Plant Cell Environ., 17: 507-523
    Galiba G., Kerepesi I., Vágújfalvi A., et al. 2001. Mapping of genes involved in glutathione, carbohydrate and COR14b cold induced protein accumulation during cold hardening in wheat. Euphytica, 119: 173-177
    Galiba G. 1994. In vitro adaptation for drought and cold hardiness in wheat. In: J. Janick (Ed.), Plant Breeding Reviews, John Wiley and Sons, 12: 115-162
    Gana J A, Sutton F and Kenefick D G. 1997. cDNA structure and expression patterns of a low-temperature-specific wheat gene tacr7. Plant Molecular Biology, 34: 643-650
    Garaham D, Patterson B D. 1982. Responses of plants to low nonfreezing temperatures proteins, metabolism and acclimation [J]. Annu Rev Plant Physiol, 33: 347-372
    Gatschett M J, Taliaferro C M, Porter D R, et al. 1996. A cold-regulated protein from bermudagrass crowns is a chitinase. Crop Sci., 36: 712-718
    Gaudet D A, L anche A , Frick M , et al. 2003. Cold induced expression of plant defensin and lipid transfer protein transcripts in winter wheat. Physiol. Plant, 117: 195-205
    Georges F, Saleem M, Cutler A J. 1990. Design and cloning of a synthesis gene for the flounder antifreeze protein and its expression in plant cells [J]. Gene, 91 (2): 159-165
    Gilmour S J, Lin C, Thomashow M F. 1996. Purification and properties of Arabidopsis thaliana COR (Cold Regulated) gene polypeptides COR15a and COR6.6 expressed in Escherich ia coli. Plant Physiol., 111: 293-299.
    Gilmour S J, Artus N N, Thomashow M F. 1992. cDNA sequence analysis and expression of two cold- regulated genes of Arabidopsis thaliana. Plant Mol Biol, 18: 13-21
    Gilmour S J, Zarka G, Stockinger E J, et al. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold–induced COR gene expression [J]. Plant J, 16: 433-442
    Gong Z, Lee H, Xiong L,et al. 2002. RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. PNAS, 99(17): 11507-11512
    Graham L A, Liou Y C, Walker V K, et al. 1997. Hyperactive antifreeze protein from beetles[J]. Nature, 388 (6644): 727-728
    Griffith M, Ala P, Yang D S C, et al. 1992. Antifreeze protein produced endogenously in winter rye leaves [J]. Plant Physiol, 100: 593-596
    Guo Q, Pan R C. 1984. Effect of ABA on the resitance of riceseedlings to chilling in jury. Acta Phytop ysiologica-Sinica. 10: 4, 295-303
    Gupta A S. 1993. Overexpression of superoxide dismutase protects plants from oxidature strees [J]. Plant Physiology, 103: 1067-1073
    Gusta L V, Wilen R W, Fu P. 1996. Low- temperature stress tolerance: the role of abscisic acid, sugars, and heat - stable proteins [J].Hortscience, 31 (1): 39-46
    Guy C L, Niemi K J, Brambl R. 1985. Altered gene expression during cold acclimation of spinach[J]. Proc Natl Acad Sci USA, 82: 3673-3677
    Guy L C. 1990. Cold acclimation and freeze tolerance: role of protein metabolism[J]. Ann Rev Plant Physiology Mol Biol., 41: 187-223
    Gyrgyey J, Németh K, Magyar Z, et al. 1997. Expression of a novel-type small proline-rich gene of alfalfa is induced by 2,4-dichlorophenoxiacetic acid in dedifferentiated callus cells. Plant Mol Biol, 34: 593-602
    Haard N F. 1973. Chilling injury of green banana fruit:kinetic anomolies of IAA oxidase at chilling tempratures. J Food Sci, 38: 907-908
    Hajela R K, Horvath D P, Gilmour S J, et al. 1990. Molecular cloning and expression of cor (Cold-regulated) genes in Arabidopdid thalina[J]. Plant Physiol, 93: 1246-1252
    Hatwell J, Gill A, Nimmo GA, et al. 1999. Phosphoenol pyruvate carboxylase kinase is a novel protein kinase regulated at the level of expression. Plant J. 20: 333-342
    Heber U. 1968. Freezing injury in relation to loss of enzyme activity and protection against freezing. Cryobiology, 5: 188-201
    Hechen Zhang, Weilun Yin, Xinli Xia, et al. 2008. Calcineurin B-like family in Populus: comparative genome analysis and expression pattern under cold,drought and salt stress treatment. Plant growth regul, 56: 129-140
    Heino P, Sandman G, Nordin K, et al. 1990. Abscisic acid deficiency prevents development of freezing tolerance in Arabidopsis thaliana (L.) Heynh. Theor Appl, Genet, 79: 801-806
    High L.1993. The primary signal in the biological perception of temperature: Pd–catalyzed hydrogenation of membrane liquids the expression of the desA gene in Synechocystie PCC6803 [J]. Proc. Nat. Acad. Sci. USA, 90: 9090-9094
    Hightower R, Cathy B, Ranela D. 1991. Expression of antifreeze proteins in transgenic plants [J]. Plant Molecular Biology, 17 (5): 1013-1021
    Hincha D K, Devries A L, Schmitt J M. 1993. Cryotoxicity of antifreeze proteins and glycoproteins to spinach thylako id membranes comparison w ith cryo toxic sugar acids. Biochim. Biophys. Acta, 1146: 258-264
    Hincha D K, Meins Jr F, Schmitt J M. 1997.β-1, 3-Glucanase is cryoprotective in vitro and is accumulated in leaves during cold acclimation.Plant Physiol, 114: 1077-1083.
    Holopainen T, Nygren P. 1989. Effect of potassium deficiency and simulated acid rain, alone or in combination, on the ultrastructure of Scots pine needles. Can J For Res, 19: 1402-1411
    Hon W C, Griffith M, Mylnarz A, et al. 1995. Antifreeze proteins in winter rye are similar to pathogenesis related proteins. Plant Physiol, 109: 879-889
    Hoshino T, Odaira M, Yoshida M, et al. 1999. Physiological and Biochemical Significance of Antifreeze Substances in Plants. J. Plant Res. 112: 255-261
    Houde M, Daniel C, L achapelle M, et al. 1995. Immuno localization of freezing to lerance associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J., 8: 583-593
    Huang T, Duman A G. 1995. Purification and characterization of thermal hysteresis protein from cold - acclimated kale, Brasica oleracea [J]. Cryobiology, 32: 577-581
    Huang T, Duman J G. 2002. Cloning and characterization of athermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade, Solanumdulcamara [J]. Plant Mol Biol, 48(4): 339-350
    Hughes M A, Dunn M A. 1996. The molecular biology of plant acclimation to low temperature. J Exp Bot. 47 (296): 291-305
    Irving R M, Lanphear F O. 1967. Environmental Control of Cold Hardiness in Woody Plants . Plant Physiol., 42 (9): 1191-1196
    Irving R M, Lanphear F O. 1968. Regulation of cold hardiness in Acer negundo. Plant Physiol, 43: 9-13
    Ismail A M, Hall A E, Close T J. 1999. Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence [J]. Proc Nat Acad Sci USA, 96 (23): 13566-13570
    Ishikawa H A. 1996.Ultrastrural features of chilling injury: injured cells and the early events durng chilling of suspension cultured mung bean cells. Am J Bot, 83: 825-835
    Jaglo K R, Kleff S, Amundsen K L, et al. 2001. Components of the Arabidopsis C-repeat/ dehydration responsive element binding factor cold response pathway are conserved in Brassica napus and other plant species. Plant physiol, 127: 910-917
    Jaglo-Ottoseu K R. 1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance[J]. Science, 280 (5360): 104-106
    Jia Z, Davies P L. 2002. Antifreeze proteins: anunusual receptorlig and interaction. Trends Biochem Sci, 27 (2): 101-106
    Jian L C, Li J H, Chen W P, et al. 1999. Cytochemical location of calcium and Ca2+-ATPase activity in plant cells under chilling stress: a comparative study between the chilling sensitive maize and the chilling insensitive winter wheat. Plant Cell Physiol. 40: 1061-1071
    Joh T, Honjoh K, Yoshimoto M. 1995. Molecular cloning and expression of hardening- induced genes in Chlorella vulgares C-27: the most abundant clone encodes alate embryogemesis abundant protein [J]. Plant Cell Physiol, 36(1): 85-93
    Karimzadeh G, Darvishzadeh R, Jalali- Javaran M, et al. 2005. Cold- induced accumulation of protein in the leaves of spring and winter barley cultivars [J]. Acta Biol Hung, 56: 83-89
    Kenward K D. 1999. TypeⅡfish antifreeze protein accumulation in transgenic tobacco does not confer frost resistance [J]. Transgenic Research, 8(2): 105-117
    Kenward K D. 1993. Accumulation of type I fish antifreeze protein in transgenic tobacco iscold specific [J]. Plant Mol Biol, 23 (2): 377-385
    Khanna H K, Daggard G E.. 2006. Targeted expression of redesigned and codon optimised synthetic gene leads to recrystallisation inhibition and reduced electrolyte leakage in spring wheat at sub-zero temperatures. Plant Cell Rep, 25: 1336-1346
    Khedr M, Karmouch A. 2003. Exploiting SIP and agents for smart context level agreements. IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, 8: 28-30
    Kim H J, Kim Y K, Park J Y, et al. 2002. Light signalling mediated by phytochrome plays animportant role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant J, 29: 693-704
    Kimball S L, Salisbury F B. 1973. Ultrastructural changes of plants exposed to low temperatures. Am J Bot, 60: 1028-1033
    Kivim?ep?? M, J?nsson A M, Stjernquist I, et al. 2004. The use of light and electronmicroscopy to assess the impact of ozone on Norway spruce needles. Environ Pollut, 127: 441-453
    Kivim?ep?? M, Selldén G, Sutinen S. 2005. Ozone induced changes in the chlorop last structure of conifer needles, and their use inozone diagnostics. Environ Pollut, 137: 466-475
    Knight C A, Cheng C C, Deveries A L. 1991. Adsoption of alfar-helical antifreeze protides on specific ice crystal surface planes. Biophys.J, 59 (2): 409-418
    Knight C A , Driggers E, Deveries A L. 1993. Adsoption to ice of fith antifreeze glycopeptides-7 and glycopeptides 8. Biophys.J, 64 (1): 252-259
    Knight C A. 2000. Structural biology-Adding to the antifreeze agenda[J].Nature, 406 (6793): 249-251
    Kobayashi F, Takumi S, Nakata M, et al. 2004. Comparative study of the expression profiles of the Cor/Lea gene family in two wheat cultivars with contrasting levels of freezing tolerance. Physiol Plant, 120: 585-594
    Kodama H. 1994. Genetic enhancement of cold resistance by expression of a gene for chloroplastω-3 fatty acid desaturases in transgenic tobacco [J]. Plant Physiology, 105: 601-605
    Kodama H. 1995. Fatty acid desaturation during chilling acclimation is one of the factors involved in conferring low temperature tolerance to young tobacco leaves[J]. Plant Physiology, 107(4): 1177-1185
    Komatsu S, Guangxiao Y, Khan M, et al. 2007. Over-expression of alcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold resistance on rice plants. Mol Genet Genomics, 277: 713-723
    Kratsch H A, Wise R R. 2000. The ultrasturcture of chilling stress. Plant Cell Environ, 23: 337-350
    Krojer T, Garrido F M , Huber R, et al. 2002. Crystal structure of DegP (HtrA) reveals a new protease chaperone machine. Nature, 416: 455-459
    Kume S, Kobayashi F, Ishibashi M, et al. 2005. Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. Genes Genet Syst, 80: 185-197
    Kuroda K, Kasuga J, A rakawa K, et al. 2003. Xylem ray parenchyma cells in boreal hardwood species respond to subfreezing temperatures by deep supercoo ling that is accompanied by incomp lete desiccation. Plant Physiol., 131: 736-744
    Lalk I, Dorffling K .1985. Hardening.abscisic acid, proline and freezing resistance in two winter wheat varieties. Physiol Plant, 63: 287-292
    Lee B M, Lee D C, Noh K A , et al. Study on the low temperature stress of rice seedlings as affected by abscisic acid. Research Reports of the Rural Development Administration, Rice. 1991, 33: 3, 87-90
    Lee J S. 1990. The redaction of the freezing point of tobacco plants transformed with the gene encoding for the antifreeze protein from winter flounder [J]. J Cell Biochem., 14 (supple): E303 Lee S, Suh S, KIm S, et al. 1997. Systemic elevation of phosphatidic acid and lysophospholipid levels in wounded plants. Plant J, 12: 547-556
    Lejeune P, Prinsen E, Onckelen H V, et al. 1998. Hormonal control of ear abortion in a stress- sensitive maize inbred. Australian J Plant Physiol, 25 (4): 481-488
    Leshem Y Y, Wurzburger J, Grossman S, 1981. Cytokinin interaction with tree radical metabolism and senescence. Physiol Plant, 53: 9-12
    Lichtenthaler H K. 1969. Plastoglobuli und lipochinongehalt der chloro-plasten von Cereus peruvianus (L.) Mill. Planta, 87: 304-310
    Liou Y C, Tocilj A, Davies P L, et al. 2000. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein[J]. Nature, 406(6793): 322-324
    Limin A E, Fowler D B. 2006. Low-temperature tolerance and genetic potential in wheat (Triticum aestivum L.): response to photoperiod, vernalization, and plant development. Planta, 224: 360-366
    Lin C, Thomashow M F. 1992. DNA sequence analysis of a complementary DNA for cold- regulated Arabidopsis gene cor15 and characterization of the COR15 polypeptide[J]. Plant Physiol, 15: 473-476
    Lin S-Z, Zhang Z-Y, Liu W-F , et al. 2005. Role of Glucose-6-Phosphate Dehydrogenase in Freezing- induced Freezing Resistance of Populus suaveolens, Jounal of Plant Physiol. and Mol. Biol., 31: 34-40
    Lin Y-Z, Lin S-Z, Zhang Z-Y, et al. 2005. Plant antifreeze proteins and their expression regulatory mechanism. Forestry studies in china, 7 (1): 46-52
    Los D. 1993. Cloning of a temperature-dependent expression of desaturase desA gene in Synechocysti PCC6803[J]. FEBS, 318 (1): 57-60
    Lyous J M. 1993. Chilling injury in plants [J]. Ann Rev Plant Physiology, 24: 445-528
    Mai A J. 1979. Fine structure of the ray parechyma cells in Populus tremuloides in relation to senscence and seasonal changes [J]. Tex.J.Sci., 24: 245-260
    Mastrangelo A M, Belloni S, Barilli S, et al.2005.Low temperature promotes intron retention in two e-cor genes of durum wheat. Planta, 221: 705-715
    Mckersie B D. 1997. Manipulating freezing tolerance in transgenic plants[J]. Acta Physiologiae Plantarum, 19 (4): 17-19
    Melanie M, Tomczak F, Hincha D K, et al. 2002. A mechanism for stabilization of membranse at low tempratures by an antifreeze protein. Biophys J, 82: 874-881
    Meyer K, Keil M, Naldrett M J. 1999. A leucine- rich repeat protein of carrot that exhibitsantifreeze activity [J]. FEBS Lett, 447: 171-178
    Michael J K, Peter L D, V irginia K W. 2001. Atheo reticalmodel of a plant antifreeze protein from Lolium perenne. Biophys. J., 81: 3560-3565
    Michael W, Robert W, Ron B, et al. 1999. Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60 : A dehydrin from peach (Prunus persica) [J]. Physiologia Plantarum, 105: 600-608
    Minami A, Nagao M, Ikegami K, et al. 2005. Cold acclimation in bryophytes: low-temperature- induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. Planta, 220: 414-423
    Moffat A S. 2002. Finding new ways to protect drought-stricken plants. Science, 296 (5571): 1226-1229
    Mundy J, Chuan H. 1988. Abscisic acid and water st ress induce t he expression of a novel rice gene [J]. Embo. J , 7 (8): 2279-2286
    Murata N. 1992. Genetically engineered alteration in the chilling sensitivity of plants[J]. Nature, 356: 710-713
    Nagao M, Minami A, Arakawa K, et al. 2005. Rapid degradation of starch in chlorop lasts and concomitant accumulation of soluble sugars associated with ABA induced freezing tolerance in the moss Physcom itrella patens. J Plant Physiol, 162: 169-180
    Nakashima K, Satoh R, Kiyosue T, et al .1998. A gene encoding praline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis. Plant Physiol, 118: 1233-1241
    Nordin K, Vahala T, Palva E T. 1993. Differential expression of two related, low- temperature -induced genes in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol , 21: 641-653
    Orvar B L, Sangwan V, Omann F, et al. 2000. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity [J]. Plant J, 23 (6): 785-794
    Palva E T. 2001. Cold acclimation and development freezing and drought tolerance in plants [J]. Acta Hort., 560: 277-284
    Pearce R S and Ashworth E N. 1992. Cell shape and localization of ice in leaves of overwintering wheat during frost stress in the field. Planta, 188: 324-331
    Pearce R S. 1999. Molecular analysis of acclimation to cold. Plant Growth Regulation, 29: 47–76
    Pihakaski M K, Tamminen L, Pieti¨ainen M, et al. 2003. Antifreeze proteins are secreted by winter rye cells in suspension culture [J]. Physiol Plant, 118: 393-398
    Pihakaski M K, Griffith M, Antikainen M. 1996. Immunogold localization of glucanaselike antif reeze protein in cold acclimated winter rye[J]. Protoplasma, 191 (324): 115-125
    Pihakaskik. 1986. Quantative seasonal variation in mitochondrial ultrastructure of mesophyll cells of Diap ensialapponica L. with reference to some effects of fixative osmolality [J].Protoplasma, 131: 107-117
    Pomeroy M K. 1977. Ultrastructrual changes during swelling and contraction of mitochondria from cold hardened and nonhardened winter wheat [J]. Plant Physiol, 59: 250-255
    Proebsting E L J, Mills H H. 1969. Effect of growth regulators. on fruit bud hardiness in Prunus .Hort Sience, 4: 254-255
    Pudney P D A, Buck ley S L, Sidebottom C M, et al. 2003. The physico chemical characterization of a boiling stable antifreeze protein from a perennial grass (L olium perene). Archives Biochem. Biophys., 410: 238-245
    Pyee J, Kolattukudy P E. 1995. The gene for the major cuticular wax associated pro tein and th ree homo logous genes form broccoli (Brassica oleracea) and their expression patterns. Plant J., 7: 49-59
    Raymond J A, Devries A L. 1977. Adsorption inhibition as a mechanism of freezing resistance in polar fishes [J]. Proc Natl Acad Sci USA, 74 (6): 2587-2593
    Reid D M, Pharis R P and Roberts D W A. 1974. Effects of Four Temperature Regimens on the Gibberellin Content of Winter Wheat cv. Kharkov , Physiol Plant, 30: 53-57
    Sangwan V, Foulds I, Singh J, et al. 2001. Cold-activation of Brassica napus BN115 promtre is mediated by structural changes in membrane and cytoskeleton ,and requires Ca2+ influx[J] .Plant J, 27 (1): 1-12
    Sarhan F, Ouellet F, Vasquez Tello A. 1997. The wheat wcs120 gene fam ily Ausefulmodel to understand the molecular genetics of freezing to lerance in cereals. Physiol. Plant, 101: 439-445
    Sarhan F. 1987. Accumulation of a high molecular weight protein during cold hardening of wheat (Triticum aestivum L.) [J]. Plant Cell Physiol, 28 (7): 1173-1179
    Seki M, Narusaka M, Abe H, et al. 2001. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell, 13: 61-72
    Sharma N, Cram D, Huebert T, et al. 2007. Exploiting the wild crucifer Thlaspi arvense to identify conserved and novel genes expressed during a plant’s response to cold stress. Plant Mol Biol, 63: 171-184
    Shinozaki K, Yamaguchi Shinozaki K. 1996. Molecular responses to drought and cold stress. Curr. Opin. Biotechnol., 7: 161-167
    Shinozaki K, Yamaguchi-Shinozaki K. 2000. Molecular responses to dehydration and low - temperature differences and crosstalk between two stress signaling pathways[J]. Curr Opin Plant Biol, 3: 217-223
    Sidebottom C, Buckley S, Pudney P, et al. 2000. Phytochemistry : Heat-stable antifreeze protein from grass [J]. Natur, 406 : 256
    Sieg F, Sch roder W, Schmitt J M , et al. 1996. Purification and characterization of a cryop ro tective protein from the leaves of cold acclimated cabbage. Plant Physiol., 111: 215-221
    Silverman F P, Assiamah A A, Douglas S B. 1998. Membrane transport and cytokine action inroot hairs of Medicagosativa. Planta, 205: 23-31
    Skinner J S, Zitzewitz J, Sz?cs P, et al. 2005. Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Molecular Biology, 59: 533-551
    Smallwood M, Worrall D, Byass L, et al. 1999. Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota) [J]. Biochem.J., 340: 385-391
    Steponkus P L, Uemura M, Webb M S, 1993. A contrast of the cryostability of the plasma membrane of winter rye and spring oat two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In : Steponkus P L ed. Advances in Low Temperature Biology. London: JAI Press, 2211-2312
    Steponkus P L. 1984. Role of the plasma membrane in freezing injury and cold acclimation [J]. Ann Rev Plant Physiology, 5: 543-548
    Stupnikova I V, Borovskii GB, Antipina A I, et al. 2001. Polymorphism of thermostable proteins in soft wheat seedlings during low- temperature acclimation[J]. Russian J Plant Physiol, 48 (6): 804-809
    Sun X-C, Hu C-X, Tan Q-L. 2006. Effects of Molybdenum on Antioxidative Defense System and Membrane Lipid Peroxidation in Winter Wheat under Low Temperature Stress.Journal of Plant Physiology and Molecular Biology, 32 (2): 175-182
    Terzioglu S, Ekmekci Y. 2004. Variation of total soluble seminal root proteins of tetraploid wild and cultivated wheat induced at cold acclimation and freezing. Acta Physiologiae Plantarum, 26 (4): 443-450
    Thomashow M F. 1998. Role of cold-responsive genes in plant freezing tolerance. Plant Physiol, 118: 1-7
    Thomashow M F. 1999. Plant cold acclimation, freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol & Plant Mol Biol, 50: 571-599
    Thomashow M F. 2001. So what’s new in the field of plant cold acclimation Lots[J]. Plant Physiol, 125: 89-93
    Townley H E, Knight M R. 2002. Calmodulin as a Potential Negative Regulator of Arabidopsis COR Gene Expression [J]. Plant Physiol, 128: 1169 -1172
    Trotel-A P, Niogret M F, Deleu C, et al. 2003. The control of praline consumption by abscisic acid during os motic stress recovery of canola leaf discs. Physiol Plantarum, 117: 213-221
    Uemura M, Gilmour S J, Thomashow M F, et al. 1996. Effects of COR6.6 and COR15a polypep tides encoded by COR (Cold Regulated) genes of Arabidopsis thaliana on the freeze induced fusion and leakage of lipo somes. Plant Physiol., 111: 313-327
    Urrutia M E, Duman J G, Knight CA. 1992. Plant thermalhys teresis proteins [J]. Biochem Biophy Acta, 1121 (1): 199-206
    Vágújfalvi G A., Galiba L, Cattivelli J, et al. 2003. The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A. Mol Gen Genomics, 269: 60-67
    Van C W. 1996. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts [J]. Plant Physiology, 112: 1703-1714
    Vierling E. 1991. The roles of heat shock proteins in plants[J].Annu. Rev . Plant Physiol . Plant Mol . Biol, 42: 579-620
    Wada H. 1990. Enhancement of chilling tolerance of a cyannobacterium by genetic manipulation of fatty acid desaturation [J]. Nature, 347: 200-203
    Waldman M, Rikin A, Dovrat A, et al. 1975. Hormonal regulation of morphogenesis and cold- resistance. J Exp Bot , 26: 853-859
    Wallis J G, W ang H, Guerra D J. 1997. Expression of a synthetic antifreeze protein in potato reduces electro lyte release at freezing temperatures. Plant Mol. Biol., 35: 323-330
    Walters C, Ried J L. 1997. Heat soluble proteins extracted from wheat embryos have tightly bound sugars and unusual hydration properties [J]. Seed Sci Res, 7: 125-127
    Wang L, Zhao C-M, Wang Y-J, et al. 2005. Overexpression of chloroplast localized small molecular heat-shock protein enhances chilling tolerance in tomato plant[J]. J Plant Physiol Molecular Biol, 31 (2): 167-175
    Wang Y-N, Liu M-Yu, Li X. 2005. Multidimensional Nature of Glycera ldehyde-3-phosphate Dehydrogenase in Plants. Acta Bot. Boreal Occident.Sin., 25 (3): 607-614
    Welin B, Olson A, Nylander M, et al. 1994. Characterization and differential expression of dhn/ lea/ rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol Biol, 26: 131-144
    Wightman R.In Scott T K. 1979. Plant regulation and word agriculture. Plenum press, 327 Wilson P W, Gould M, Deveries A L. 2002. Hexagonal shaped ice spicules in frozen antifreeze protein solutions. Cryobiology, 44 (3): 240-250
    Wolfe J. 1978. Chilling injury in plants the role of membrane lipid fluidity [J]. Plant Cell and Environment, 1: 241-247
    Wolter F P. 1992. Chilling sensivity of Arabidopsis thaliana with genetically engineered membrane liquids[J]. EMBOJ Eur Mol Biol Organ, 11(13): 4685-4692
    Worrall D, Elias L, Ashford D, et al. 1998. A carrot leucine-rich-repeat protein that inhibits ice recrystallization [J]. Science, 282 (2): 115-117
    Xiao B-Z, Huang Y-M, Tang N, et al. 2007. Over-expression of a LEA gene in rice improves drought resistance under the Weld conditions. Theor Appl Genet, 115: 35-46
    Yamada H, Mukai H, Utsunomiya N, et al. 1985. The effect of low root temperature on the cold hardiness of citrus species and avocado. J Japan Soc Hort Sci, 53: 419-426
    Yang D S, Sax M, Chakrabart T Y A, et al. 1988. Crystal structure of an antifreeze polypeptide and its mechanistic implications. Nature, 333 (6170): 232-237
    Young R. 1971. Effect of growth regulators on citrus seedling cold hardiness. J Amer. Soc. Hort. Sci, 96: 708-710
    Zeng S-X, Wang Y-R, Li M-R, et al. 1994. Change of the membrane protective system duringthe enhancement of chilling resistance induced by cold hardening and ABA treatment in rice seedlings. Journal of Tropical and Subtropical Botany, 2 (1): 44-50
    Zhu B, Choi D W, Fenton R, et al. 2000. Expression of the barley dehydrin multigene family and the development of freezing tolerance [J]. Mol Gen Genet, 264 (1/2): 145-153

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700