用户名: 密码: 验证码:
原位生长掺杂TiO_2薄膜电极及其光电转换性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO_2薄膜电极是染料敏化太阳能电池的重要组成部分。制备工艺简便,成本低廉,与基体结合牢固的TiO_2薄膜电极有利于推动染料敏化太阳能电池的实际应用进程。本论文采用微等离子体氧化法在钛表面原位生长与基体结合力好和大面积的TiO_2薄膜电极。
     研究了电解液体系、电流密度、电压、电解质浓度、反应时间和敏化工艺对的TiO_2薄膜光电性能的影响。通过优化工艺参数实现了TiO_2薄膜电极的原位生长。以(NH4)2SO4为电解液体系,当电流密度为14A/dm2、电压为245V、电解质浓度为0.5mol/L、反应时间为10min,敏化温度为25℃,染料浓度为0.2mmol/L时,所得TiO_2薄膜电极的光电性能较好,开路电压、短路电流、填充因子和光电转换效率分别为652mV、149μA/cm2、0.39和0.095%。
     研究了N、S和Nd单独掺杂及N与Nd复合掺杂对原位生长TiO_2薄膜电极光电性能的影响。结果表明,N、S、Nd单独掺杂和N与Nd复合掺杂均可显著提高原位生长TiO_2薄膜电极光电性能,其中单独掺杂TiO_2薄膜电极的光电性能优于复合掺杂,N掺杂TiO_2薄膜电极的光电性能最好,开路电压、短路电流、填充因子和光电转换效率分别达到了701mV、165μA/cm2、0.42和0.121%。
     利用SEM、XRD、XPS、UV-vis DRS和EIS等分析手段,对掺杂前后所得TiO_2薄膜电极表面形貌、晶胞参数、晶粒大小、吸收光谱及内部阻抗进行了分析。研究结果表明,所得薄膜是由金红石型TiO_2为主晶相,同时含有少量的Ti组成,并且表面存在大量分布均匀的微孔。掺杂使TiO_2的晶胞体积发生膨胀,晶粒尺寸、禁带宽度和内部阻抗减小。其中Nd掺杂使TiO_2薄膜禁带宽度减小程度最大,而N掺杂使内部阻抗减小程度最大。通过研究原位生长TiO_2薄膜电极的光诱导电子反应和光电子界面动力学行为发现,原位生长TiO_2薄膜电极能够发生光诱导电子转移,实现光生电子的快速注入,并且较小的TiO_2晶粒尺寸和内部阻抗能够减少光生电子在界面处的湮没。利用第一性原理计算了N和Nd掺杂前后原位生长TiO_2薄膜电极的能带结构,计算结果表明掺杂后的TiO_2能带结构中产生了杂质能级,使其禁带宽度变小,计算结果与实验值符合较好,这进一步证明掺杂改性可以调节原位生长TiO_2薄膜电极的能带结构,进而提高其光电性能。
     探讨了原位生长掺杂TiO_2薄膜电极的光电转换行为,发现晶粒尺寸、内部阻抗和禁带宽度对原位生长TiO_2薄膜电极光电性能的影响是三者共同作用的结果,三者之间的良好匹配能够得到较高光电性能的原位生长TiO_2薄膜电极。
The TiO_2 film electrode is the important part of the dye-sensitized solar cells. The development of simple production process and TiO_2 film with a strong adhesion will promote the practical application. In this paper, the TiO_2 thin film electrode with large area is in situ grown on titanium by micro-plasma oxidation.
     The effect of electrolyte, current density, voltage, concentration of electrolyte, time and sensitization process on photoelectric performance of thin TiO_2 film electrode is studied. The TiO_2 film electrode grown in situ has been prepared through optimizing process parameters. TiO_2 film electrode has optimum photoelectric performance in (NH4)2SO4 electrolyte when TiO_2 film is prepared under the current density of 14 A/dm2, voltage of 245 V, electrolyte concentration of 0.5 mol/L, the reaction time of 10min, sensitizing temperature for 25℃and dye concentration of 0.2 mmol/L. The open circuit voltage, short circuit current, fill factor and photoelectric transfer efficiency is 652 mV, 149μA/cm2, 0.39 and 0.095% respectivly.
     The effect of the N, S, Nd alone doping and N and Nd co-doping on optoelectric properties of TiO_2 film electrodes in-situ grown is studied. The results show that N, S, Nd alone doping and N and Nd co-doping can significantly increase photoelectric performance of the TiO_2 thin film electrode. Also, the photoelectric performance of the alone doped TiO_2 film electrode is superior to that of the co-doped TiO_2 film electrode and N-doped TiO_2 film electrode shows the best photoelectric performance. The open circuit voltage, short circuit current, fill factor and photoelectric conversion efficiency reaches 701 mV, 165μA/cm2, 0.42 and 0.121% respectivly.
     The morphology, cell parameters, grain size, absorption spectrometry and internal resistance of the TiO_2 film before and after the doping ions were analyzed by using SEM, XRD, XPS, UV-vis DRS and EIS. The results show that the film is composed of rutile TiO_2 phase and small amount of Ti and there are a lot of uniform porous on the surface of TiO_2 film. Doping ions into TiO_2 can expand the cell volume and reduces the grain size, the band gap and the internal resistance. Comparing these samples, the bandgap of Nd-doped TiO_2 film is minimum and the internal impedance of N-doped TiO_2 is minimum.
     The photo-induced electronic reaction and the dynamic behavior of photoelectrons in TiO_2 interface are researched. The results show that the photo-induced electron transfer and the rapid photo-electronic injection into TiO_2 film can be achieved successfully. Smaller crystal grain size and internal impedance can reduce the annihilation of the photoelectron at the TiO_2 interface.
     The band structure of N and Nd-doped TiO_2 electrode is calculated by the First-principles. The results show that energy bands of impurities exist in N-doped and Nd-doped TiO_2 band structure, which narrows the band gap of TiO_2 band gap. The results are in good agreement with experimental data. So, it can be conclueded that doped modification can adjust the energy band structure of TiO_2 film grow in situ, and improve the photoelectric performance of TiO_2 film.
     The photoelectric conversion behavior of the doping TiO_2 thin film grown in situ is discussed. It is found that the grain size, the internal resistance and the band gap affect the optoelectronic properties of TiO_2 film cooperatively. The good match among the three factors can bring the higher photoelectrode performance of thin TiO_2 film electrodes grown in situ.
引文
1 A. M. Omer. Power, People and Pollutions. Renew. Sust. Energ. Rev. 2008. 12(7): 1864~1889
    2 K. Takanobu, S. P. Pyong, S. Yutaka. Evaluation of Output and Unit Cost of Power Generation Systems Uutilizing Solar Energy Under Various Solar Radiation Conditions Worldwide. Electr. Eng. Japan. 1999, 127(3): 1~12
    3王建华,吴季平,徐伟.太阳能应用研究进展.水电能源科学. 2007, 25(4): 155~158
    4王玉兰,黄宇,周丽萍等.液结太阳能电池敏化研究进展.电源技术. 2005, 29(6): 416~418
    5 S. Scholz, C. Corten, K. Walzer, et al. Photochemical reactions in organic semiconductor thin films. Organic Electronics. 2007, 8(6): 709~717
    6梁宗存,沈辉,李哉洪.太阳能电池及材料研究.材料导报. 2000, 14(8): 38~40
    7邓志杰,王雁.化合物半导体光伏电池研究进展.世界有色金属. 2000, (8): 43~45
    8 B. O'Regan, M. Gratzel. A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films. Nature. 1991, 353(4): 737~740
    9 G. K. Mort, O. K. Varghese, M. Paulose, et al. A Review on Highly Ordered, Vertically Oriented TiO2 Nanotube Arrays: Fabrication, Material Properties, and Solar Energy Applications. Sol. Energ. Mat. Sol. C. 2006, 90(14): 2011~2075
    10 M. F. Hossain, S. Biswas, T. Takahashi, et al. Investigation of Sputter-Deposited TiO2 Thin Film for the Fabrication of Dye-sensitized Solar Cells. Thin Solid Films. 2008, 516(20): 7149~7154
    11 M. Adachi, Y. Murata, J. Takao, et al. Highly Efficient Dye-Sensitized Solar Cells with a Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-Like TiO2 Nanowires Made by the“Oriented Attachment”Mechanism. J. Am. Chem. Soc. 2004, 126(45): 14943~14949
    12 L. C. Du, Y. X. Weng. Photoinduced Charge Recombination at Dye Sensitized Individual TiO2 Nanoparticles and Its Application in Probe for theLocal Polarity Change around the Nanoparticle in Solution. J. Phys. Chem. C. 2007, 111(12): 4567~4577
    13 K. Okada, H. Matsui, T. Kawashima, et al. 100mm×100mm Large-sized Dye Sensitized Solar Cells. J. Photochem. Photobio. 2004, 164(1-3): 193~198
    14赵玉峰,杨世彦,韩明武.等离子体微弧氧化技术及其发展.材料导报. 2006, 20(6): 102~104
    15 X. H. Wu, Z. H Jiang, H. L. Liu, et al. TiO2 Ceramic Films Prepared by Micro-plasma Oxidation Method for Photodegradation of Rhodamine B. Mater. Chem. Phys. 2003, 80(1): 39~43
    16 K. T. Ranjit, I. Willner, S. H. Bossmann, et al. Lanthanide Oxide Doped Titanium Dioxide Photocatalysts: Effective Photocatalysts for the Enhanced Degradation of Salicylic Acid and t-Cinnamic Acid. J. Catal. 2001, 204(2): 305~313
    17 Y. Xie, C. Yuan. Photocatalysis of Neodymium Ion Modified TiO2 Sol under Visible Light Irradiation. Appl. Surf. Sci. 2004, 221(1-4): 17~24
    18 Y. Wang, C. X. Feng, Z. S. Jin, et al. A Novel N-doped TiO2 with High Visible Light Photocatalytic Activity. Journal of Molecular Catalysis A: Chemical. 2006, 260(1-2): 1~3
    19 X. B. Chena, P. A. Glans, X. F. Qiu, et al. X-ray Spectroscopic Study of the Electronic Structure of Vsible-light Responsive N-, C- and S-doped TiO2. J. Electron Spectrosc. 2008, 162(2): 67~73
    20 T. C. Pappas, W. M. S. Wickramanyake, E. Jan, et al. Nanoscale Engineering of a Cellular Interface with Semiconductor Nanoparticle Films for Photoelectric Stimulation of Neurons. Nano Lett. 2007, 7(2): 513~519
    21苏树兵,宋世庚,郑应智等. NPC电池染料敏化剂的研究进展.电子元件与材料. 2002, 21(1): 23~26
    22成志秀,王晓丽.太阳能光伏电池综述.信息记录材料. 2007, 8(2): 41~47
    23 A. Fujishima, A. Honda. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 1972, 238(2358): 37~41
    24陈文浚. III-V族化合物半导体整体多结级连太阳电池—光伏技术的新突破.电源技术. 2007, 31(2): 97~102
    25 L. Kavan, M. Gratzel. Highly Efficient Semiconductig TiO2 Photoelectrodes.Prepared by Aerosol Pyrolysis. Electrochimica Acta. 1995, 40(5): 643~652
    26 B. Tan, E. Toman, Y. G. Li, et al. Zinc Stannate (Zn2SnO4) Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2007, 129(14): 4162~4163
    27张智,赵福群,张复.全固态有机太阳能电池.化学通报. 2005, (11): 823~821
    28 D. M. Chepin, C. S. Fuller, G. L. Pearson. A New Silicon p-n Junction Photocell for Conversion Solar Radiation Electrical Power. J. Appl. Phys. 1954, 8(4): 676~679
    29毛爱华.太阳能电池研究和发展现状.包头钢铁学院学报. 2002, 21(1): 94~98
    30 J. Zhao, A. Wang, M. A. Green and F. Ferrazza. Fabrication of Single Crystalline Silicon on Glass by Smart-Cut Technique. Appl. Phys. Lett. 1998, 73(26): 1991~1993
    31 R. Szweda. Third Generation Solar Cells. III-Vs Review. 2003, 16(6): 53~55
    32李万河.太阳能电池的种类.电子工业专用设备. 2007, 159(4): 5~9
    33 D. E. Carlson, C. R. Wronski. Amorphous Silicon Solar Cell. Appl. Phys. Lett.. 1976, 28: 671~673
    34 N. Martins, P. Canhola, M. Quintela, et al. Performances of an in-Line PECVD System Used to Produce Amorphous and Nanocrystalline Silicon Solar Cells. Thin Solid Films. 2006, 511-512(26): 238~242
    35郝国强,张德贤,张延生等. Si太阳电池p层微晶结构的研究.电源技术. 2003, 27(5): 459~461
    36 A. H. Mahan, Y. Xu, E. Iwaniczko, et al. Amorphous Silicon Films and Solar Cells Deposited by HWCVD at Ultra-High Deposition Rates. J. Non-Cryst. Solids. 2002, 299-302(1): 2~8
    37邓志杰.非晶硅太阳电池进展和展望.电源技术. 1999, 23(1): 29~32
    38秦桂红,严彪,唐人剑.多晶硅薄膜太阳能电池的研制及发展趋势.上海有色金属. 2004, 25(1): 38~42
    39 M. Matsumoto, Y. Inayoshi, M. Suemitsu, et al. Low Temperature Growth of Polycrystalline Si on Polyethylene Terephthalate (PET) Films Using Pulsed-plasma CVD under Near Atmospheric Pressure. Thin Solid Films. 2008, 516(19): 6673~6676
    40 M. S. Abrahams, C. J. Buiocchi, J. J. Tietjen. Detection of SeleniumClustering in GaAs by Transmission Electron Microscopy. J. Appl. Phys. 1967, 38(2): 760~764
    41张静全,蔡伟,郑家贵等. CdTe太阳能电池研究进展.半导体光电. 2000, 21(2): 88~92
    42 T. L. Chu, S. S. Chu and F. Firszi. Deposition and Characterization of p- Type Cadmium Telluride Films. J. Appl. Phys. 1985, 58(3):1349~1355
    43 R. W. Birkmire. Recent Progress and Critical Issuesin Thin Film Polycrystalline Solar Cells and Modules. 26th IEEEPVSC. Newyork USA. 1997: 295~300
    44韩宏伟.染料敏化二氧化钛纳米晶太阳能电池研究.武汉大学博士学位论文. 2005: 8~9
    45 C. M. Fetzer, R. R. King, P. C. Colter, et al. High-Efficiency Metamorphic GaInP/GaInAs/Ge Solar Cells Grown by MOVPE. J. Cryst. Growth. 2004, 261(2-3): 341~348
    46张永刚,刘天东,朱诚等. InGaP/GaAs串接太阳电池的设计与研制.稀有金属. 2004, 28(3): 522~525
    47 E. Mellikov, M. Altosaar, M. Krunks, et al. Research in Solar Cell Technologies at Tallinn University of Technology. Thin Solid Films. 2008, 516(20): 7125~7134
    48 M. Purica, E. Budianu, E. Rusu, et al. Electrical properties of the CdS/InP heterostructures for photovoltaic applications. Thin Solid Films. 2006, 511-512(26): 468~472
    49 J. Sormunen, J. Riikonen, M. Mattila, et al. Transformation of Self-Assembled InAs/InP Quantum Dots into Quantum Rings without Capping. Nano. Lett. 2005, 5(8): 1541~1543
    50於黄忠,彭俊彪.共混型聚合物太阳电池原理及研究进展.化学进展. 2007, 19(11): 1689~1694
    51 P. Peumans, S. Uchida and S. R. Forrest. Efficient Bulk Hetero Junction Photovoltaic Cells Using Small-Molecular-Weight Organic Thin Films. Nature. 2003, 425: 158~162
    52路胜利,刘宽,杨慕杰.聚合物太阳能电池材料的研究进展.高分子材料科学与工程. 2005, 21(4): 1~4
    53 A. K. Jana. Solar Cells Based on Dyes. J. Photochem. Photobio. A. 2000,132(1-2): 1~17
    54 B. O'Regan, M. Gratzel. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature. 1991, 353(04): 737~740
    55 M. Gr?tzel. Dye-Sensitized Solar Cells. J. Photochem. Photobio. C. 2003, 4(2): 145~153
    56 S.Yanagida. Recent Research Progress of Dye-Sensitized Solar Cells in Japan. C. R. Chim. 2006, 9(5-6): 597~604
    57 K. Shankar, J. Bandara, M. Paulose, et al. Highly Efficient Solar Cells Using TiO2 Nanotube Arrays Sensitized with a Donor-Antenna Dye. Nano. Lett. 2008, 8(6): 1654~1659
    58 B. O'Regan, D. T. Schwartz. Large Enhancement in Photocurrent Efficiency Caused by UV Illumination of the Dye-Sensitized Heterojunction TiO2/RuLL'NCS/CuSCN: Initiation and Potential Mechanisms. Chem. Mater. 1998, 10(6): 1501~1509
    59 T. Kawashima, T. Ezure, K. Okada, et al. FTO/ITO DoubleLayered Transparent Conductive Oxide for Dye-Sensitized Solar Cells. J. Photochem. Photobio. A. 2004, 164(1-3): 199~202
    60 K. D. Satyen. Dye-sensitized TiO2 Thin-film Solar Cell Research at the National Renewable Energy Laboratory (NREL). Sol. Energ. Mat. Sol C. 2005, 88(1): 1~10
    61郝三存,吴季怀,黄昀昉等.染料敏化纳米晶TiO2太阳能电池研究进展.材料导报. 2003, 7(17): 35~37
    62张哲,周保学,葛伟杰等.染料敏化纳米TiO2薄膜太阳能电池中的电荷复合.科学通报. 2005, 50(18): 1929~1934
    63陈振兴.高分子电池材料.化学工业出版社, 2006: 177~178
    64 T. Hannappel, B. Burfeindt, W. Storck, et al. Measurement of Ultrafast Photoinduced Electron Transfer from Chemically Anchored Ru-Dye Molecules into Empty Electronic States in a Colloidal Anatase TiO2 Film. J. Phys. Chem. B. 1997, 101(35): 6799~6802
    65 X. Y. Pan, X. M. Ma. Phase Transformations in Nanocrystalline TiO2 Milled in Different Milling Atmospheres. J. Solid State Chem. 2004, 177(11): 4098~4103
    66鞠剑峰.纳米TiO2复合材料的制备及应用研究.南京理工大学博士学位论文. 2005: 3~4
    67王桂丽. Pt掺杂金红石相TiO2与CdTe掺杂体系的第一性原理研究.河南大学硕士学位论文. 2008: 4
    68黄祖飞. LiMnO2体系结构与性能的第一性原理研究.吉林大学博士学位论文. 2006: 25-64
    69 A. Hagfeldt, M. Graetzel. Light-Induced Redox Reactions in Nanocrystalline Systems. Chem. Rev. 1995, 95(1): 49~68
    70 M. Gratzel. Photoelectrochemical Cells. Nature. 2001, 414: 338~344
    71 R. A. Marcus. On the Theory of Electron-Transfer Reaction VI Unified Treatment for Homogeneous and Electrode Reactions. J. Chem. Phys. 1965, 43: 679~701
    72 B. Van, D. Zanden and A. Goossens. The Nature of Electron Migration in Dye-Sensitized Nanostructured TiO2. J. Phys. Chem. B. 2000, 104(30): 7171~7178
    73孔凡太,戴松元.染料敏化太阳电池研究进展.化学进展. 2006, 18(11): 1409~1424
    74 Y. Tachibana, S. A. Haque, I. P. Mercer, et al. Electron Injection and Recombination in Dye Sensitized Nanocrystalline Titanium Dioxide Films: A Comparison of Ruthenium Bipyridyl and Porphyrin Sensitizer Dyes. J. Phys. Chem. B. 2000, 104(6): 1198~1205
    75 B. C. O'Regan, I. Lopez-Duarte, M. V. Martinez-Diaz, et al. Catalysis of Recombination and Its Limitation on Open Circuit Voltage for Dye Sensitized Photovoltaic Cells Using Phthalocyanine Dyes. J. Am. Chem. Soc. 2008, 130(10): 2906~2907
    76梁茂,陶占良,陈军.染料敏化太阳能电池中的敏化剂.化学通报. 2005, 12: 889~896
    77 S. Altobello, R. Argazzi, S. Caramori, et al. Sensitization of Nanocrystalline TiO2 with Black Absorbers Based on Os and Ru Polypyridine Complexes. J. Am. Chem. Soc. 2005,127(44): 15342~15343
    78 Q. Shen, D. Arae, T. Toyoda. Photosensitization of Nanostructured TiO2 with CdSe Quantum Dots: Effects of Microstructure and Electron Transport in TiO2 Substrates. J. Photochem. Photobio. A. 2004, 164(1-3): 75~80
    79 Y. C. Shen, H. H. Deng, J. H. Fang, et al. Co-sensitization of MicroporousTiO2 Electrodes with Dye Molecules and Quantum-sized Semiconductor Particles. Coll. Surf. A. 2000, 175(1-2): 135~140
    80胡芸菲,徐刚,梁宗存.二氧化钛纳米染料敏化电池研究动态.材料科学与工程学报. 2006, 24(3): 456~461
    81 B. W. Jing, M. H. Zhang. Advances in Dye Sensitized Solar Cell. Chin. Sci. Bull. 1997, 42(23): 1937~1947
    82苏树兵,宋世庚,郑应智等.电子元件与材料. NPC电池染料敏化剂的研究进展. 2002, 21(1): 23~26
    83 C. Longo, M. A. Depaoli. Dye-Sensitized Solar Cells: A Successful Combination of Materials. J. Brazil Chem. Soc. 2003, 14(6): 889~901
    84 M. K. Nazeeruddin, M. Gratzel. Conversion of Light to Electricity by cis-X2 bis(2,2′-bipyridy1–4,4′-dicarboxylate) Ruthenium Charge Transfer Sensitizers (X=Cl-, Br-, I-, CN- and SCN-) on Nanocrystalline TiO2 Electrodes. J. Am. Chem. Soc. 1993, 115: 6382~6390
    85安佰超,乔庆东.染料敏化太阳能电池的进展及前景.化工科技. 2007, 15(1): 51~54
    86 X. L. Yong, Hagen J. and Scharath W. Titanium Dioxide Films for Photovoltaic Cells Derived from a Sol-Gel Progress. Sol. Energ. Mat. Sol. C. 1999, 56(2): 167~174
    87 F. D. Duminica, F. Maury and F. Senocq. Atmospheric Pressure MOCVD of TiO2 Thin Films Using Various Reactive Gas Mixtures. Surf. Coat. Tech. 2004, 188-189(11-12): 255~259
    88 T. N. Murakami, Y. Kijitori, N. Kawashima, et al. Low Temperature Preparation of Mesoporous TiO2 Films for Efficient Dye-Sensitized Photoelectrode by Chemical Vapor Deposition Combined with UV Light Irradiation. J. Photochem. Photobio. A. 2004, 164(1-3): 187~191
    89 B. H. Kim, J. Y. Lee, Y. H. Choa, et al. High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Sputter Deposited Ti Oxide Films. Sol. Energ. Mat. Sol. C. 2000, 64(4): 385~392
    90 T. J. Richardson, M. D. Rubin. Liquid Phase Deposition of Electrochromic Thin Films. Electrochimi. Acta. 2001, 46(13-14): 2119~2123
    91 S. Karuppuchamy, K. Nonomura, T. Yoshida, et al. Cathodic Electrodeposition of Oxide Semiconductor Thin Films and Their Applicationto Dye-sensitized Solar Cells. Solid State Ionics. 2002, 151(1-4): 19~21
    92 J. Rathousky, K. Wessels, M. Wark, et al. Texture Properties of Nanoporous TiO2 Films Prepared by Anodic Electrodeposition Using a Structure-Directing Agent. Stud. Surf. Sci. Catal. 2007, 170(2): 1494~1501
    93 C. Y. Huang, Y. C. Hsu, J. G. Chen, et al. The Effects of Hydrothermal Temperature and Thickness of TiO2 Film on the Performance of a Dye-Sensitized Solar Cell. Sol. Energ. Mat. Sol. C. 2006, 90(5): 2391~2397
    94 T. Oekermann, D. Zhang, T. Yoshida, et al. Electron Transport and Back Reaction in Nanocrystalline TiO2 Films Prepared by Hydrothermal Crystallization. J. Phys. Chem. B. 2004, 108(7): 2227~2235
    95 A. Stanley, B. Verity and D. Matthews Minimizing the Dark Current at the Dye-Sensitized TiO2 Electrode. 1998, 52(1-2): 141~154
    96 D. Zhang, J. A. Downing, F. J. Knorr, et al. Room-Temperature Preparation of Nanocrystalline TiO2 Films and the Influence of Surface Properties on Dye-Sensitized Solar Energy Conversion. J. Phys. Chem. B. 2006, 110(43): 21890~21898
    97 S. Ito, T. Takeuchi, T. Katayama, et al. Conductive and Transparent Multilayer Films for Low-Temperature-Sintered Mesoporous TiO2 Electrodes of Dye-Sensitized Solar Cells. Chem. Mater. 2003, 15(14): 2824~2828
    98 L. N. Lewis, J. L. Spivack, S. Gasaway, et al. A novel UV-Mediated Low-Temperature Sintering of TiO2 for Dye-Sensitized Solar Cells. Sol. Energ. Mat. Sol C. 2006, 90(7-8): 1041~1051
    99 H. Lindstr?m, E. Magnusson, A. Holmberg, et al. Lindquist and A. Hagfeldt. A New Method for Manufacturing Nanostructured Electrodes on Glass Substrates. Sol. Eng. Mar. Sol. C. 2002, 73(1): 91~101
    100刘风铃,骆更新,毛利信.微弧氧化与材料表面陶瓷化.材料保护. 1996, 31(3): 22~25
    101 A. L. Yerokhin, X. Nie, A. Leyland, et al. Plasma Electrolysis for Surface Engineering. Surf. Coat. Tech. 1999, 122(2-3): 73~93
    102薛文斌,邓志威,来永春等.有色金属表面微弧氧化技术评述.金属热处理. 2000, 25(1):1~3
    103 M. Saremi, A. Afrasiabi and A. Kobayashi. Microstructural Analysis of YSZ and YSZ/Al2O3 Plasma Sprayed Thermal Barrier Coatings after HighTemperature Oxidation. Surf. Coat. Tech. 2008, 202(14): 3233~3238
    104 S. H. Awad. Effects of Cathodic Component of Current on Porosity and Hardness Characteristics of Micro Plasma Oxidation (MPO) Coatings on Aluminum Alloy. T. Nonferr. Metal. Soc. 2005, 15(1): 113~118
    105赵玉峰,杨世彦,韩明武.等离子体微弧氧化技术及其发展.材料导报. 2006, 20(6): 102~104
    106 U. Beck, R. Lange and H. G. Neumann. Micro-Plasma Textured Ti-Implant Surfaces. Biomol. Eng. 2007, 24(1): 47~51
    107 W. B Xue, C. Wang, R. Y. Chen, et al. Structure and Properties Characterization of Ceramic Coatings Produced on Ti-6Al-4V Alloy by Microarc Oxidation in Aluminate Solution. Mater. Lett. 2002, 52(6): 435~441
    108 Y. M. Wang, T. Q. Lei, B. L. Jiang, et al. Growth, Microstructure and Mechanical Properties of Microarc Oxidation Coatings on Titanium Alloy in Phosphate-Containing Solution. Appl. Surf. Sci. 2004, 233(1-4): 258~267
    109 Y. L. Jiang, H. L. Liu and C. M. Lu. Kinetics of Photoelectrocatalytic Degradation of Humic Acid Using B2O3 Center Dot TiO2/Ti Photoelectrode. J. Environ. Sci. Chin. 2005, 17(2): 208~211
    110于仙仙,胡志强,高岩等.染料敏化太阳能电池阳极改性技术研究进展.材料导报. 2007, 21(3): 24~28
    111 G. L. Zhao, H. Kozuka and T. Yoko. Photoelectrochemical Properties of Dye-Sensitized TiO2 film Containing Dispersed Gold Metal Particles prepared by Sol-Gel Method. J. Ceram. Soc. Jpn. 1996, 104:164~168
    112 T. Sasaki, K. M. Beck. Comparison of Pt/TiO2 Nanocomposite Films Prepared by Sputtering and Pulsed Laser Deposition. Appl. Phys. A. Mater. 1999, 69(7): 771~774
    113董丽君,邹丽霞,白秀敏.提高二氧化钛可见光活性的掺杂方法的研究进展.中国陶瓷工业. 2007, 14(3): 34~39
    114 Y. J. Wang, Y. Z. Hao, H. M. Cheng, et al. The Photoelectrochemistry of Transition Metal-ion-doped TiO2 Nanocrystalline Electrodes and Higher Solar Cell Conversion Efficiency based on Zn2+-doped TiO2 Electrode. J. Mater. Sci. 1999, 34(12): 2773~2779
    115 H. K. Kyung, K, C. L. Young and J. J. Young. Enhanced Efficiency of Dye-Sensitized TiO2 Solar Cells (DSSC) by Doping of Metal Ions. J. Colloid. Interf. Sci. 2005, 283(2): 482~487
    116 W. Choi, A. Termin and M. R. Haffmsnn. The Role of Ion Dopants in Quantum-Sized TiO2: Correlation Between Photortactivity and Charge Carrier Recombination Dymamincs. J. Phys. Chem. 1994, 98(51): 13669~13678
    117 Y. Q. Wang, H. M. Cheng, L. Zhang, et al. The Preparation, Characterization, Photoelectrochemical and Photocatalytic Properties of Lanthanide Metal-ion-doped TiO2 Nanoparticles. J. Mol. Catal. A-Chem. 2000, 151(1-2): 205~216
    118 J. Xia, N. Masaki, K. Jiang, and S. Yanagida. Sputtered Nb2O5 as a Novel Blocking Layer at Conducting Glass/TiO2 Interfaces in Dye-Sensitized Ionic Liquid Solar Cells. J. Phys. Chem. C. 2007, 111(22): 8092~8097
    119张莉,任焱杰,蔡生民.染料敏化La3+掺杂的TiO2纳米多孔膜光电化学.电化学. 2002, 8(1): 27~31
    120 C. D. Valentin, E. Finazzi, G. Pacchioni, et al. N-doped TiO2: Theory and experiment. Chem. Phys. 2007, 339(1-3): 44~56
    121 T. Ma, M. Akiyama, E. Abe, et al. High-Efficiency Dye-Sensitized Solar Cell Based on a Nitrogen-Doped Nanostructured Titania Electrode. Nano Lett. 2005, 5(12): 2543~2547
    122 E. Palomares, J. N. Clifford, S. A. Haque, et al. Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers. J. Am. Chem. Soc. 2003, 125(2): 475~482
    123王传义,刘春艳,沈涛.半导体光催化剂的表面修饰.高等学校化学学报. 1998, 12: 2013~2019
    124 R. Vogel, P. Hoyer and H. Weller. Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors. J. Phys. Chem. B. 1994, 98(12): 3183~3188
    125 L. M. Peter, K. G. U. Wijayantha, D. J. Riley, et al. Band-Edge Tuning in Self-Assembled Layers of Bi2S3 Nanoparticles Used To Photosensitize Nanocrystalline TiO2. J. Phys. Chem. B. 2003, 107(33): 8378~8381
    126 M. R. Dhananjeyan, E. Mielczarski, K. R. Thampi, et al. Photodynamics andSurface Characterization of TiO2 and Fe2O3 Photocatalysts Immobilized on Modified Polyethylene Films. J. Phys. Chem. B. 2001, 105(48): 12046~12055
    127尚静,谢绍东,刘建国. SnO2/TiO2复合半导体纳米薄膜的研究进展.化学进展. 2005, 17(6): 1012~1018
    128 H. S. Jung, J. K. Lee, M. Nastasi, et al. Preparation of Nanoporous MgO-Coated TiO2 Nanoparticles and Their Application to the Electrode of Dye-Sensitized Solar Cells. Langmuir. 2005, 21(23): 10332~10335
    129 P. Cheng, C. S. Deng, X. M. Dai, et al. Enhanced Energy Conversion Efficiency of TiO2 Electrode Modified with WO3 in Dye-sensitized Solar Cells. J. Photoch. Photobio. A. 2008, 195(1): 144~150
    130 E. Palomares, J. N. Clifford, S. A. Haque, et al. Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers. J. Am. Chem. Soc. 2003, 125(2): 475~482
    131 Z. Y. Liu, K. Pan, M. Liu, et al. Al2O3-coated SnO2/TiO2 Composite Electrode for the Dye Sensitized Solar Cell. Electrochimica Acta. 2005, 50(13): 2583~2589
    132 G. R. A. Kumara, M. Okuya, K. Murakami, et al. Dye-sensitized Solid-state Solar Cells Made from Magnesiumoxide-coated Nanocrystalline Titanium Dioxide Films: enhancement of the efficiency. J. Photoch. Photobio. A. 2004, 164(1-3): 183~185
    133 S. S. Kim, J. H. Yum and Y. E. Sung. Improved Performance of a Dye-sensitized Solar Cell Using a TiO2/ZnO/Eosin Y Electrode. Sol. Energ. Mat. Sol. C. 2003, 79(4): 495~505
    134 E. Palomares, J. N. Clifford, S. A. Haque, et al. Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers. J. Am. Chem. Soc. 2003, 125(2): 475~482
    135 K. E. Kim, S. R. Jang, J. Park, et al. Enhancement in the Performance of Dye-sensitized Solar Cells Containing ZnO-covered TiO2 Electrodes Prepared by Thermal Chemical Vapor Deposition. Sol. Energ. Mat. Sol. C. 2007, 91(4): 366~370
    136 P. M. Sommeling, B. C. O'Regan, R. R. Haswell, et al. Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. J. Phys. Chem. B. 2006, 110(39): 19191~19197
    137张东社,刘尧,王维波等.纳米晶多孔TiO2薄膜电极的化学处理. 2000, 45(9): 929~932
    138 S. C. Hao, J. H. Wu, L. Q Fan, et al. The Influence of Acid Treatment of TiO2 Porous Film Electrode on Photoelectric Performance of Dye-sensitized Solar Cell. Sol. Energy. 2004, 76(6): 745~750
    139 B. A. Gregg. Interfacial Processes in the Dye-sensitized Solar Cell. Coordin. Chem. Rev. 2004, 248(13-14): 1215~1224
    140 S. Fettere, B. A. Gregg. Large Increases in Photocurrents and Solar Conversion Efficiencies by UV Illumination of Dye Sensitized Solar Cells. J. Phys. Chem. B. 2001, 105(32): 7602~7605
    141 P. Falaras. Synergetic Effect of Carboxylic Acid Functional Groups and Fractal Surface Characteristics for Efficient Dye Sensitization of Titanium Oxide. Sol. Energ. Mat. Sol. C. 1998, 53: 163~175
    142姜月顺,杨文胜.化学中的电子过程.科学出版社. 2004: 57
    143 W. Krysmann, P. Kurze and H. G. Dittrich. Process Characteristics and Parameters of Oxidation by Spark Discharge (ANOF). Cryst. Res. Technol. 1984, 19(7): 973~979
    144 Y. K. Wang, L. Sheng. Effect of Additives in Electrolyte on Characteristics of Ceramic Coatings formed by Microarc Oxidation. Surf. Eng. 1999, 15(2): 109~111
    145 K. Murakoshi, K. Ryuichiro and W. Yyji. Solid State Dye-sensitized Solar TiO2 Cell with Ploypyrirole as Hole Transport Layer. Chem. Lett. 1997, 91(1): 471~472
    146 R. Asahi, T. Ohwaki. Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides. Sciences. 2001, 293: 269~271
    147 R. Rodriguez, S. Vargas. Modifcation of the Phase Transition Temperatures in Titania Doped with Various Cations. J. Mater. Res. 1997, 12: 439~442
    148 D. Rehm, A. Weller. Kineties and Mechanism of Eleetron Transfer in Fluoreseens Queching in Acetonitrile. Ber. Bunsenges. Phys. Chem. 1969,73(8-9): 834~839.
    149 R. A. Marcus. On the Theory of Oxidation-reduetion Reactions Involving Electron Transfer. J. Chem. Phys. 1956, 24: 966~978
    150席珍强,陈君,杨德仁.太阳能电池发展现状及展望.新能源. 2000, 22(12): 100~102
    151 A. Hagfeldt, M. Graetzel. Light-Induced Redox Reactions in Nanocrystalline Systems. Chem. Rev. 1995, 95(1): 49~68.
    152 T. Hoshikawa, M. Yamada, R. Kikuchi, et al. Impedance Analysis of Internal Resistance Affecting the Photoelectrochemical Performance of Dye-Sensitized Solar Cells. J. Electrochem. Soc. 2005, 152: E68~E73
    153 K. M. Lee, V. Suryanarayanan and K. C. Ho. A Study on the Electron Transport Properties of TiO2 Electrodes in Dye-sensitized Solar Cells Solar Energy Materials & Solar Cells. 2007, 91: 1416~1420
    154 H. Toyohisa, K. Ryuji and E. Koichi. Impedance Analysis for Dye-sensitized Solar Cells with a Reference Electrode. J. Electroanal. Chem. 2006, 588: 59~67
    155 R. A. Frresner. An Automatic Grid Generation Scheme for Pseudospectral Self-consistent Gield Calculations on Polyatomic Molecules. J. Am. Chem. Soc. 1988, 92: 3091~3096
    156 C. H. Hodges. Quantum Corrections to the Thomas-Fermi Approximation the Kirzhnits Method. Can. J. Phys. 1973, 51: 1428~1437
    157 B. Grammmicos, A. Voros. Semidassical Approximations for Nuclear Hamiltonians,II. Spin-dependent potentials. Ann. Phys. 1979, 129:153~171
    158 D. R. Murphy. Sixth-order Term of the Gradient Expansion of the Kinetic-Energy Density Functional. Phys. Rev. A.1981, 24: 1682~1688
    159 P. C. Hohenbergh, W. Kohn. Inhomogeneous Electron Gas. Plays. Rev. 1964, 136: B864~B871
    160 D. C. Langreth, E. P. Perdew. Theory of Nonuniform Electronic Systems Phys. Rev. B. 1980, 21: 5469~5493
    161 A. D. Becke. Density-functional Thermochemistry IV a New Dynamical Correlation Functional and Implications for Exact-exchange Mixing. Chem. Phys. 1996, 4: 1040~1046

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700