用户名: 密码: 验证码:
轴向间隙对直、弯静叶轴流压气机时序效应影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代航空工业的快速发展,要求不断提高航空发动机的性能。而压气机作为航空涡轮发动机三大核心部件之一,其气动性能的改善对整个航空发动机的性能提高起着至关重要的作用。更高的效率及压比、更大的负荷与喘振裕度、更小的尺寸及更轻的重量成为压气机性能提高的目标所在。
     基于这一背景,本文通过对一台重复级低速轴流压气机流场的详细测量,分别研究了采用直静叶及正弯静叶的压气机在不同轴向间隙、不同流量工况及不同静叶时序位置下的流动特性,并通过数值模拟的手段对流场进行了验证,补充了实验过程中无法测得的流场细节。最后以此为基础,通过拓扑分析的方法,给出了带叶根间隙的压气机静叶流道内的详细涡系结构,并指出了设计工况下流场的拓扑规律和不同静叶之间的流场差异。
     根据实验结果,在原型轴向间隙方案下,采用直、弯静叶的压气机中都存在明显的时序效应,且时序效应随着流量的增加而增强。通过考察两列静叶时均尾迹相对位置与效率之间的联系,验证了经典的尾迹/前缘干涉理论:当前级叶列时均尾迹扫在后级同名叶列前缘附近时,对应效率最高的时序位置;当前级叶列时均尾迹位于后级同名叶列流道中央时,对应效率最低的时序位置。相比较而言,采用正弯静叶时由于尾迹形状复杂易于掺混耗散,因此压气机时序效应要弱于采用直静叶时,但前者效率明显高于后者。
     由于在原型间隙方案下采用正弯静叶的压气机扩压能力略弱于采用直静叶时,因此其效率提高的主要原因在于输入扭矩的减小。实验结果还表明,正弯静叶对吸力面角区低能流体的径向迁移作用减小了两端的流动损失,而正弯静叶在近喘工况下对流场的较强控制作用也是喘振裕度提高的原因所在。
     当同级动、静叶间轴向间隙减小后,一级静叶和二级动叶间距离拉长,一级静叶尾迹在进入二级动叶之前耗散加剧,无法在二级静叶流道内形成清晰的干涉作用,时序效应因此而减弱。随着轴向间隙的减小,压气机扩压能力得到提高,扭矩也随之上升,这使得效率先增后减,说明存在一个最佳轴向位置使得压气机整机效率达到最优。此外,静叶对气流的折转能力也随着轴向间隙的减小而增大,但通流能力有所减弱。
     轴向间隙减小后,采用正弯静叶的压气机压比提升的幅度要高于采用直静叶的压气机,但扭矩增长却低于后者,因此,在小轴向间隙下采用正弯静叶的压气机比采用直静叶时获得了更显著的效率提升。在近喘工况下,采用直静叶的压气机出口流场随着轴向间隙的减小而急剧恶化,而采用正弯静叶时则没有明显变化,说明正弯静叶对流场的强力控制作用在小轴向间隙下能体现出更大的优势。设计工况下,采用正弯静叶压气机的最佳轴向间隙要小于采用直静叶时,这表明采用正弯静叶的压气机能在更小的轴向间隙下获得更高的效率提升,而更小的轴向间隙同时还能带来减轻发动机重量的效果。
     针对实验结果数据量少、流场细节显示不够清晰的缺陷,选用了商业软件CFX11.0对流场进行了详细的数值模拟,对计算结果的精度校核显示,数值模拟的结果可以作为流场定性分析的依据。
     通过对数值模拟结果的拓扑分析,发现具有叶根间隙的压气机直静叶流道前后主要存在三个大尺度旋涡,分别是流道顶部的上通道涡、流道底部的刮削涡和尾缘后形成的集中脱落涡。此外还存在着若干个小尺度的旋涡结构:如马蹄涡压力面分支、壁角涡压力面分支及叶片出口吸力面叶顶附近的回流形成的旋涡以及叶根间隙内的一系列旋涡结构。相比之下,正弯静叶流道内的旋涡结构则相对较为简单,其中包括与直静叶流道中相同的上通道涡、刮削涡、一个集中脱落涡及马蹄涡压力面分支和壁角涡压力面分支,但其生成位置和旋涡尺度有所区别;另外正弯静叶流道后多衍生出一个集中脱落涡,但在叶根间隙中的旋涡结构由于增强的泄露流动而全部消失不见。
     当沿流向的压力梯度性质发生变化时(顺压梯度和逆压梯度之间的相互转化),流场内的奇点总数增加,流动混乱程度加剧,而当气流逐渐“适应”该压力梯度后,流场结构开始简化,若没有再次发生压力梯度的变化,则流场内的总奇点数将会维持在一个相对稳定的数量上。比较直、弯静叶流道内的拓扑结构,后者在流道内的总奇点数明显少于前者,主要原因在于正弯静叶的流动控制能力减少了叶片表面的半奇点数,而叶根间隙内的泄漏也对总奇点数造成了一定的影响;另外,在流道出口后,由于正弯静叶的表面径向分力对流场残留的扰动作用和尾迹的掺混加剧,导致了最终的稳定流场要比直静叶中更复杂一些。
The performance of aero-engine needs to be improved while the aviation industry develops rapidly in the modern time. The compressor, As one of the three key parts of turbine engine, its aerodynamic performance improvement is very important for aero-engine’s development. The higher efficiency and total pressure ratio, the more load and surge margin, and the less size and weight becomes the aim of performance improvement of compressoe.
     For this purpose, a detailed experimental investigation has been carried out in a low speed double stage compressor with straight stator and positive bowed stator in different axial gaps at different work condition. Then, Numerical simulation is done to verify the flow field and makeup more details which can not be measured in experiment. At last, based on the calculation results, the thesis gives out the detail vortex structure in compressor stator passage with hub tip proceeding from topological analysis method. It also gives out the topological law for flow field at design condition and between different work conditions.
     Based on the results of experiment, the clocking effect exists clearly in compressor both with straight stator and bowed stator in original axial gap and strengthens while the massflow increases. The relation between efficiency variationg and relative wake position of two stator rows is studied to validate the classical theory of wake interference. The maximum efficiency is obtained when the upstream stator wake mixes with the downstream stator’s wake and the minimum efficiency occurs when the upstream stator wake locates in the middle of the downstream stator’s passage. Comparing with straight stator and bowed stator, the wake of bowed stator dissipates more easily because of its complex shape, and its clocking effect is weaker than straight stator. In the original axial gap scheme, the diffusion capability of compressor with positive bowed stator is weaker than the one with straight stator. But its input tonque is less than the latter’s. These two factors make the efficiency of compressor with positive bowed stator is higher than the compressor with straight stator. The result of experiment also shows than the spanwise transition effect of positive bowed stator makes the low-energy fluid in both cornersl move towards midspan reduces loss near end walls. The strength ability of flow field controlity at near stall condition of positive bowed stator makes an effert for the surge margin increase.
     While the rotor-stator axial gap of the same stage reduces, the distance between the first stator and the second rotor lengthens. The wake of the first stator dissipates exacerbattingly. It can not makes a clearly interference in the second stator’s passage. That makes the clocking effect take off. While the rotor-stator axial gap of the same stage reduces, the diffusion capability of compressor increases but the input tonque also raises. These make the efficiency of compressor improves first and falls down later. It means that there is a best axial gap wxists to make the unit get a highest efficiency. Otherwise, the ability of flow turning and through-flow decreases a little.
     While the axial gap reduces, the total pressure ratio of compressor with positive bowed stator increases more than the compressor with straight stator. And its input tonque raise is less than the latter. That makes the compressor with positive bowed stator get more efficiency improvement than the compressor with straight stator in small axial gap. At near stall condition, the flow field of straight stator outlet deteriorates quickly while little change occurs for the positive bowed stator. That means the flow field controlling capability of positive bowed stator gets more advantage than straight stator in small axial gap. At dedign condition, the best axial gap of compressor with positive bowed stator is smaller than the compressor with straight stator. It shows that, with positive bowed stator, the compressor can get more efficiency in less axial size. This result also can reduce the weight of the whole aero-engine.
     With the limitation of experiment, such as poor data size and ambiguousness of flow field in detail, the numerical simulation is done with CFX11.0. With the validation between experiment and calculation results, it shows that the calculation results can be used for qualitative analysis of flow field.
     Based on the topological analysis for calculation results, there are three large scale vortexs exists in compressor stator’s passge with hub tip. They are the passage vortex at up side, the scraping vortex near hub tip and the concentrated shed vortex. There ara also several small scale votex exists, such as the horseshoe vortex at the pressure side, the corner vortex at the pressure side, the vortex near the outlet of up corner and some vortex in the stator’s hub tip.
     While the property of pressure gradient changes (from positive pressure gradient to negative pressure gradient or negative to positive),the total number of singular points will increase and the flow field becomes complex. Sooner or later, while the fluid“fits”the pressure gradient, the structure of flow field changes simply. If there is no change for property of pressure gradient, the total number of singular points will keeps a stable value. Before the separation happens, the total number of singular points increases while the mass flow reduces in compressor stator’s passage. The total number of singular points gets the maximal value while the separation happens. When the mass flow reduces continuely, the total number of singular points begins to reduce and the flow field begins to change simply. That means in a special point of view, the flow field will be simple while the separation exacerbates. And the results of experiments in different work condition also prove this conclusion.
引文
1蒋洪德.美国航空发动机和计算流体力学发展情况介绍.气动热力学发展战略研讨会专题报告汇编. 1989, 3: 29-36
    2方昌德.航空发动机的发展前景.航空发动机. 2004, 30(1): 1~5
    3季路成,陈江.从IHPTET到VAATE的技术方向探析.中国工程热物理学会热机气动热力学学术会议论文集. 2005,论文编号: 052086
    4梁春华,刘红霞.美国超高效发动机技术计划.航空发动机. 2004, 4:58
    5陈懋章,刘宝杰,大涵道比涡扇发动机风扇/压气机气动设计技术分析,航空学报, 2008, 29(3): 513-526
    6刘大响.航空动力发展的历史性机遇.航空发动机. 2005, 31(2): 1-3
    7黄顺洲.黄红超.李刚团.刘德虎.核心机技术在发动机研制中的作用和地位.航空制造技术. 2007, 1: 56-59
    8刘大响.航空发动机的历史性机遇.航空发动机. 2005, 31(2): 1-3
    9刘大响.对加快发展我国航空动力的思考.航空动力学报. 2001, 6(1): 1-7
    10 APTD计划取得阶段性成果.燃气涡轮试验与研究. 2006, 19(3): 5-7
    11赵淑芬,刘大响.我国航空发动机技术发展探索.科学决策. 2001, 1: 42-45
    12江义军.推重比12~15发动机技术途径分析.航空动力学报. 2001, 16(2): 103~107
    13 Smith L N. Wake Dispersion in Turbomachines. Journal of Basic Engineering, ASME Transaction. 1966, 88(3)
    14陈矛章.风扇/压气机技术发展和对今后工作的建议.航空动力学报. 2002, 17(1): 1~15
    15 Yang Haitao, Huang Hongyan, Feng Guotai, Su Jiexian, Sun Weirong. Numerical Simulation of Rotor Clocking Effect in A Low-Speed Compressor. Chinese Journal of Aeronautics. 2003, 16(3): 129-137
    16 W. S. Barankiewicz, M. D Hathaway. Effects of Stator Indexing on Performance in a Low Speed Multistage Axial Compressor. ASME Paper 97-GT-496. Orlando, 1997
    17 L. I. He, T. Chen. Analysis of Rotor-Rotor and Stator-Stator Interferences in Multi-Stage Turbomachines. ASME Paper 2002-GT-30355. Amsterdam,2002
    18 D. J. Dorney, O. P. Sharma. A Study of Turbine Performance Increases Though Airfoil Clocking. AIAA Paper 96-2816. 1996
    19 P. G. Cizmas, D. J. Dorney. Parallel Computation of Turbine blade Clocking. AIAA Paper 98-3598. 1998
    20 K. L. Gundy-Burlet, D. J. Dorney. Investigation of Airfoil Clocking and Inter-Blade-Row Gaps in Axial Compressors. AIAA Paper 97-3008. 1998
    21 K. L. Gundy-Burlet, D. J. Dorney. Physics of Airfoil Clocking in Axial Compressors. ASNE Paper 97-GT-44. 1997
    22 Deich. M. E, Gubalev. A. B, Filippov. G. A and Wang Zhongqi. A New Method of Profiling the Guide Vane Casade of Stages with Small Ratios of Diameter to Length. Teplienergetika. No.8: 42-46. 1962
    23叶大均,王仲奇.叶轮机械真实流动损失机理及控制方法的研究.国家自然科学基金会重大项目“工程热物理仲关键性问题的研究”第一部分学术研究总结. 1992.6
    24谭春青.透平叶栅中叶片的弯曲对流场性能影响的实验研究.哈尔滨工业大学博士学位论文. 1993.3
    25 Sullivan. T. S et al. Energy Efficient Engine Fan Test Hadware Detailed Design Report. NASA CR-165148. Oct. 1980
    26 Breugelmans. F. A. E. Influence of Incidence Angle on the Secondary Flow in Compressor Cascade with Different Dihedral Distribution. ISABE paper 85-7078. Beijing. China. 1985
    27 Bogod. A. B et al. Direct and Inverted Calculation of 2D Axisymmetric and 3D Flows in Axial Compressor Blade Rows. TsAGI. Moskow. Eussia. Nov.1992
    28 H. D. Weingold, R. J. Neubert, R. F. Behlke et al. Bowed Stator: An Example of CFD Applied to Improve Multistage Compressor Efficiency. Journal of Turbomachinery, 1997, 119: 161~168
    29钟兢军.弯曲叶片控制扩压叶栅二次流动的实验研究.哈尔滨工业大学工学博士学位论文. 1995
    30李绍斌.跨音速压气机高负荷弯扭静叶设计及其级的气动性能研究.哈尔滨工业大学博士学位论文. 2007.1
    31 Fransson, T.H., Preface in Proc. Of 8th International Symp. of UnsteadyAerodynamics & Adroelasticity of Turbomachinery, Stockholm, Sep, 1997
    32季路成.轴流叶轮机转子/静子干扰非定常探索.北京航空航天大学博士论文. 1998
    33 Valkov T, Tan C.S. Control of the unsteady flow in a statr blade row interaction with upstream moving wakes, Journal of Turbomachinery, Vol.117, January 1995
    34侯安平.叶轮机内非定常流动研究方法的初步探索.北京航空航天大学博士后研究工作报告. 2005.12
    35 Zhou Sheng, Zheng Xin-qian, Hou An-ping and Lu Ya-jun, 2005, Interaction of Unsteady Separated Flow over Multi-bodies Moving Relatively in The Same Flow-field, Journal of Sound and Vibration, Vol .288(2005), 981-1009
    36侯安平.轴流压气机非定常两代流型的机理探索.北京航空航天大学博士论文. 2003
    37 Smith, L.H., Casing Boundary Layers in Multi-Stage Axial Flow Compressors, in Flow Research on Blading, Elsever Publishing Company, Amsterdam, 1970
    38侯安平,周盛.轴流式叶轮机时序效应的机理探讨.航空动力学报. 2003, 18(1): 70-75
    39 Hodson H.P., Addison J.S., Wake-Boundary Layer Interaction in an Axial Flow Turbine Rotor at Off-design Conditions, ASME, Journal of Turbomachinery, 1989, 111(2): 181-192
    40扬中,杜建一,徐建中.沉寂效应及其在叶轮机械中的应用.中国工程热物理学会第十一届年会论文集.热机气动热力学. 2005.北京
    41 R. X. Meyer. The Effect of Wakes on the Transient Pressure and Velocity Distributions in Turbomachines. Transactions of ASME. 1958, 88: 1544-1552
    42 L. H. Jr. Smith. Wake Dispersion in Turbomachines. Journal of Basic Engineering. ASME Transaction. 1966, 88(3): 688-690
    43 J. L. Kerrebrock, A. A. Mikolajczak. Intra-Stator Transport of Rotor Wakes and its Effect on Compressor Performance. Journal of Engineering for Power. 1970, 92: 359-368
    44 L. H. Jr. Smith. Casing Boundary Layers in Multistage Axial-FlowCompressors. Proceeding of the Symposium on Flow Research on Blading. Switzerland, 1969: 275-304
    45 A. G. Van de Wall, J. R. Kadambi, J. J. Adamczyk. A Transport Model For The Deterministic Stresses Associated with Turbomachinery Blade Row Interactions. ASME Paper 2000-GT-0430. Munich, 2000
    46 J. J. Adamczyk. Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design. ASME Journal of Turbomachinery. 2000, 102(2): 189-217
    47 J. J. Adamczyk. Wake Mixing in Axial Flow Compressors. ASME Paper 96-GT-029. Birmingham, 1996
    48张玮,王元,徐忠.叶轮机械内部流动测量及动静相互作用的实验研究进展.流体机械. 2001, 29(8): 6-10
    49 O. E. Hobbs, et al. Experimental Investigation of Compressor Cascade Wakes. ASME Paper 82-GT-299. London, 1982
    50 R. P. Dring, H. D. Joslyn, L. M. Hardin. Experimental Investigation of Compressor Rotor Wakes. AFAPL-TR-79-2107. 1980
    51 T. Adachi. Y. Murakami. Three-Dimensional Velocity Distribution Between Stator Blades and Unsteady Force on a Blade Due to Passing Wakes. JSME. 1979, 22(170): 1074-1082
    52 S. Fleeter. R. L. Jay, W. A. Bennett. Wake Induced Time-Variant Aerodynamics Including Rotor-Stator Axial Spacing Effects. Nonsteady Fluid Dynamics (Proceedings of the ASME Winter Annual Meeting). San Francisco, 1978: 147-163
    53 H. E. Gallus, J. Lambertz, T. Wallman. Blade-Row Interaction in an Axial Flow Subsonic Compressor Stage. ASME Paper 79-GT-92. San Diego, 1979
    54 R. P. Dring, et al. Turbine Rotor-Stator Interaction. ASME Paper 82-GT-3. London, 1982
    55 R. L. Evans. Boundary Layer Development on Axial-flow Turbomachinery Blading. Pumps: Analysis, design and application. Volume 1. Worthington Pump, Inc. 1978: 1-15
    56 G. J. Walker. The Turbulent Boundary Layer on an Axial Compressor Blade. ASME Paper 82-GT-52. London, 1982
    57 H. Pfeil, R. Herbst, T. Schr?der. Investigation of the Laminar-Turbulent Transition of Boundary Layers Disturbed by Wakes. Journal of Engineering for Power. 1983, 105: 130-137
    58 L. Hilgenfeld, M. Pfitzner. Unsteady Boundary Layer Development due to Wake Passing Effects on a Highly Loaded Linear Comperssor Cascade. ASME Paper GT2004-53186, Vienna, 2004
    59 H. P. Hodson. Boundary Layer and Loss Measurements on the Rotor on an Axial Flow Turbine. ASME Paper 83-GT-4. Phoenix, 1983
    60 H. P. Hodson, J. S. Addison. Wake-Boundary Layer Interaction in an Axial Flow Turbine Rotor at Off-Design Conditions. ASME Paper 88-GT-233. Amsterdam, 1988
    61 D. E. Halstead, D. C. Wisler, T. H. Okiishi, G. J. Walker, H. P. Hodson, H. W. Shin. Boundary Layer Development in Axial Compressors and Turbines: Part 1-4. ASME Paper 95-GT-461/462/463/464. Houston, 1995
    62 V. Schulte, H. P. Hodson. Prediction of the Becalmed Region for LP Turbine Profile Design. ASME Paper 97-GT-398. Orlando, 1997
    63 R. E. Mayle. The Role of Laminar-Turbulent Transition in Gas Turbine Engines. ASME Paper 91-GT-261. Orlando, 1991
    64 M. T. Schobeiri, K. Read, J. Lewalle. Effect of Unsteady Wake Passing Frequency on Boundary Layer Transition: Experimental Investigation and Wavelet Analysis. ASME Paper 95-GT-437. Houston, 1995
    65 Y. H. Ho, B. Lakshminarayana. Computation of Unsteady Viscous Flow Through Turbomachinery Blade Row due to Upstream Rotor Wakes. ASME Paper 93-GT-321. Cincinnati, 1993
    66 H. D. Joslyn, R. P. Dring, O. P. Sharma. Unsteady Three-Dimensional Turbine Aerodynamics. ASME Paper 82-GT-161. London, 1982
    67 M. C. Williams. Inter and Intrablade Row Laser Velocimetry Studies of Gas Turbine Compressor Flows. ASME Journal of Turbomachinery. 1988, 110: 369-376
    68 N. Arndt. Blade Row Interaction in a Multistage Low-Pressure Turbine. ASME Journal of Turbomachinery, 1993, 115(1): 137-146
    69 V. J. Neumann, R. D. Richtmyer. A Method for the Numerical Calculation of Hydrodynamic shocks. Journal of Applied Physics. 1950, 21: 232~257
    70 J. D. Denton. A time Marching Method for Two-and Three Dimensional Blade to Blade Row. ARC R&M 3775, 1974
    71 J. J. Adamczyk. Model Equation for Simulating Flows in Multistage Turbomachines. NASA TM-86869. 1985
    72 C. M. Rhie. Development Application of a Multistage Navier-Stokes Solver: Part I– Multistage Modelling Using Bodyforces and Deterministic Stresses. ASME95-GT-342. Houston, 1995
    73孟庆国,季路成,周盛.关于叶轮机多级流动模拟的模型讨论.工程热物理学报. 1996, 17(S1): 56-59
    74孟庆国,季路成,周盛.叶轮机多级流动模拟的多种平均模型方程及熵通量守恒界面方法.第五届全国流体弹性力学学术会议论文集.重庆. 1996: 9-16
    75 K. V. Rao, R. A. Delaney. Investigation of Unsteady Flow Through a Transonic Turbine Stage: Part I– Analysis. AIAA Paper 90-2408. Orlando, 1990
    76 M. M. Rai. Three-Dimensional Navier-Stokes Simulations of Turbine Rotor-Stator Interaction: Part I– Methodology. AIAA Journal of Propulsion and Power. 1989, 15(3): 305-319
    77 A. Jameson. Time Dependent Calculations Using Multigrid with Applications to Unsteady Flows Past Airfoils and Wings. AIAA Paper 91-1596. Honolulu, 1991
    78 J. I. Erdos, E. Alzner. Computation of Unsteady Transonic Flows through Rotating and Stationary Cascades. NASA CR-2900. 1977
    79 G. A. Gerolymos, D. Vinteler, R. Haugeard, G. Tsanga, I. Vallet. On the Computation of Unsteady Turbomachinery Flows; Part 2– Rotor/Stator Interaction using Euler Equations. AGARD Report No. CP-571. 1996
    80 M. B. Giles. Numerical Methods for Unsteady Turbomachinery Flow. Von Karman Institute for Fluid Dynamics, Volume 2. 1989
    81 A. R. Jung, J. F. Mayer, H. Stetter. Simulation of 3-D Unsteady Stator/Rotor Interaction in Turbomachinery Stages of Arbitrary Pitch Ratio. ASME Paper 96-GT-69. Birmingham, 1996
    82 M. M. Rai, N. K. Madavan. Multi-Airfoils Navier-Stokes Simulations of Turbine Rotor-Stator Interaction. AIAA Paper 88-0361. Boston, 1988
    83 W. N. Dawes. A Numerical Study of the Interaction of a Transonic Compressor Rotor Overtip Leakage Vortex with the Following Stator Blade Row. ASME Paper 94-GT-156. Hague, 1994
    84邹正平,徐力平.叶轮机三维非定常流动数值模拟的研究.航空学报. 2001, 21(1): 10-14
    85 K. Funazaki, N. Tetsuka, T. Tanuma. Effects of Periodic Wake Passing upon Aerodynamic Loss of a Turbine Cascade: Part I– Measurements of Wake-Affected cascade Loss by Use of a Pnuemetic Probe. ASME Paper 99-GT-93. Indianapolis, 1999
    86 O. P. Sharma, et al. Rotor-Stator Interaction in Multi-Stage Axial-Flow Turbines. AIAA Paper 88-3013. Boston, 1988
    87 H. D. Joslyn, R. P. Dring. Three-Dimensional Flow in an Axial Turbine: Part I– Aerodynamic Mechanisms; Part II– Profile Attenuation. ASME Journal of Turbomachinery. 1992, 92(4): 61-78
    88 J. Zeschky, H. E. Gallus. Effects of Stator Wakes and Spanwise Nonuniform Inlet Conditions on the Rotor Flow of an Axial Turbine Stage. ASME Paper 91-GT-93. Orlando, 1991
    89 A. Yamamoto, F. Mimura, J. Tominaga, S. Tomihasa, E. Outa, M. Matsuki. Unsteady Three-Dimensional Flow Behavior due to Rotor-Stator Interaction in an Axial-Flow Turbine. ASME Paper 93-GT-404. Cincinnati, 1993
    90 A. Yamamoto, T. Matsunuma, K. Ikeuchi, E. Outa. Unsteady Endwall/Tip-Clearance Flows and Losses Due to Turbine Rotor-Stator Interaction. ASME Paper 94-GT-461. Hague, 1994
    91 V. S. P. Chaluvadi, A. I. Kalfas, M. R. Banieghbal, H. P. Hodson, J. D. Denton. Blade Row Interaction in a High Pressure Turbine. ISABE-99-7265. Florence, 1999
    92 V. S. P. Chaluvadi, A. I. Kalfas, H. P. Hodson, H. Ohyama, E. Watanabe. Blade Row Interaction in a High Pressure Steam Turbine. ASME Paper GT-2002-30574. Amsterdam, 2002
    93 V. S. P. Chaluvadi, A. I. Kalfas, H. P. Hodson. Vortex Transport and Blade Interactions in High Pressure Turbines. ASME Paper GT-2003-38389. Atlanta, 2003
    94 H. E. Gallus, H. W. Grollius, J. Lambertz. The Influence of Blade NumberRatio and Blade Row Spacing on Axial-Flow Compressor Stator Blade Dynamic Load and Stage Sound Pressure Level. ASME Paper 81-GT-165. Houston, 1981
    95 O. P. Sharma, R. H. Ni, S. Tanrikut. Unsteady Flows in Turbines-Impact on Design Procedure. AGARD lecture series 195. 1994
    96 F. W. Huber, P. D. Johnson, O. P. Sharma, J. B. Staubach, S. W. Gaddis. Performance Improvement Through Indexing of Turbine Airfoils Part I– Experimental Investigation. ASME Paper 95-GT-27. Houston, 1995
    97 F. Eulitz, K. Engel, H. Gebing. Numerical Investigation of the Clocking Effects in a Multistage Turbine. ASME Paper 96-GT-26. Birmingham, 1996
    98 L. W. Griffin, F. W. Huber, O. P. Sharma. Performance Improvement Through Indexing of Turbine Airfoils Part II– Numerical Simulation. ASME Paper 95-GT-28. Houston, 1995
    99 P. G. Cizmas, D. J. Dorney. Parallel Computation of Turbine Blade Clocking. AIAA Paper 98-3598. Cleveland, 1998
    100 A. Arnone, M. Marconcini, R. Pacciani, C. Schipani, E. Spano. Numerical Investigation of Airfoil Clocking in a Three-Stage Low Pressure Turbine. ASME Paper 2001-GT-0303. New Orleans, 2001
    101 D. J. Dorney, R. R. Croft, D. L. Sondak, U. E. Stang, C. Z. Twardochleb. Computational Study of Clocking an Embedded Stage in a 4-Stage Industrial Turbine. ASME Paper 2001-GT-0509. New Orleans, 2001
    102 F. Hummel. Wake-Wake Interactions and its Potential for Clocking in a Transonic High Pressure Turbine. ASME Paper 2001-GT-0302. New Orleans, 2001
    103 M. Maroncini, R. Pacciani, Numerical Investigation of Wake-Shock Interactions and Clocking in a Transonic HP Turbine. ASME Paper GT-2003-38401. Atlanta, 2003
    104 G. J. Walker. Effect of Wake-Wake Interactions on the Generation of Noise in Axial-Flow Turbomachinery. Proceedings of the 1st International Symposium on Air Breathing Engines. Paper No. A73-14129. 1972
    105 G. J. Walker, A. R. Oliver. The Effect of Interaction between Wakes from Blade Rows in an Axial flow Compressors on the Noise Generated by Blade Interaction. ASME Paper 72-GT-15, Cleveland, 1972
    106 V. E. Saren. Some Ways of Reducing Unsteady Loads Due to Blade Row Hydrodynamic Interaction in Axial Flow Turbomachines. Second International Conference EAHE. Pilsen, Czech Republic, 1994: 160-165
    107 V. E. Saren. Relative Position of Two Rows of an Axial Turbomachine and Effects on the Aerodynamics in a Row Placed Between Them. Unsteady Aerodynamics and Aeroelasticity of Turbomachines, Elsevier. 1995, (4): 421-425
    108 V. E. Saren, N. M. Savin, D. J. Dorney, R. M. Zacharias. Experimental and Numerical Investigation of Unsteady Rotor-Stator Interaction on Axial Compressor Stage (with IGV) Performance. 8th International Symposium on Unsteady Aerodynamics and Aeroelasticity of Turbomachines. Stockholm, 1997
    109 V. E. Saren, N. M. Savin, D. J. Dorney, D. L. Sondak. Experimental and Numerical Investigation of Airfoil Clocking and Inter-Blade-row Effects on Axial Compressor Stage Performance. AIAA 98-3413. 1998
    110 S. T. Hsu, A. M. Wo. Reduction of Unsteady Blade Loading by Beneficial Use of Vortical and Potential Disturbances in an Axial Compressor with Rotor Clocking. ASME Paper 97-GT-86. Orlando, 1997
    111 G. J. Walker, J. D. Hughes, I. Kohler, W. J. Solomon. The Influence of Wake-Wake Interactions on Loss Fluctuations of a Downstream Axial Compressor Blade Row. ASME Paper 97-GT-444. Orlando, 1997
    112 K. L. Gundy-Burlet, D. J. Dorney. Physics of Airfoil Clocking in Axial Compressors. ASME Paper 97-GT-44. Orlando, 1997
    113 K. L. Gundy-Burlet, D. J. Dorney. Investigation of Airfoil Clocking and Inter-Blade-Row Gaps in Axial Compressors. AIAA Paper 97-3008. Seattle, 1997
    114 L. I. He, T. Chen. Analysis of Rotor-Rotor and Stator-Stator Interferences in Multi-Stage Turbomachines. ASME Paper 2002-GT-30355. Amsterdam, 2002
    115 C. H. Wu. General Theroy of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial-, Radial-, and Mixed-Flow Types. NACA TN 2604. 1952
    116 R. P. Dring, M. F. Blair, H. D. Joslyn, G. D. Power, J. M. Vedon. TheEffects of Inlet Turbulence and Rotor/Stator Interactions on the Aerodynamics and Heat Transfer of a Large-Scale Rotating Turbine Model: I- Final Report. NASA-CR-4079. 1986
    117 R. P. Dring, M. F. Blair, H. D. Joslyn, G. D. Power, J. M. Vedon. The Effects of Inlet Turbulence and Rotor/Stator Interactions on the Aerodynamics and Heat Transfer of a Large-Scale Rotating Turbine Model: II- Heat Transfer Data Tabulation 15% Axial Spacing. NASA-CR-4079. 1986
    118 R. P. Dring, M. F. Blair, H. D. Joslyn, G. D. Power, J. M. Vedon. The Effects of Inlet Turbulence and Rotor/Stator Interactions on the Aerodynamics and Heat Transfer of a Large-Scale Rotating Turbine Model: III- Heat Transfer Data Tabulation 65% Axial Spacing. NASA-CR-4079. 1986
    119 R. P. Dring, M. F. Blair, H. D. Joslyn, G. D. Power, J. M. Vedon. The Effects of Inlet Turbulence and Rotor/Stator Interactions on the Aerodynamics and Heat Transfer of a Large-Scale Rotating Turbine Model: IV- Aerodynamic Data Tabulation. NASA-CR-4079. 1986
    120 M. G. Dunn, W. A. Bennett, R. A. Delaney, K. V. Rao. Investigation of Unsteady Flow through a Transonic Turbine Stage: Part II- Data/Prediction Comparison for Time-Averaged and Phase-Resolved Pressure Data. AIAA Paper 90-2409. Orlando, 1990
    121 S. E. Gorrell, T. H. Okiishi, W. W. Copenhaver. Stator-Rotor Interactions in a Transonic Compressor: Part 1 - Effect of Blade-Row Spacing on Performance. ASME Paper 2002-GT-30494. Amsterdam, 2002
    122 M. Y. Layachi, A. B?lcs. Effect of the Axial Spacing Between Rotor and Stator With Regard to the Indexing in an Axial Compressor. ASME Paper 2001-GT-0592. New Orleans, 2001
    123 C. W. Haldeman, M. L. Krumanaker, M. G. Dunn. Influence of Clocking and Vane/Blade Spacing on the Unsteady Surface Pressure Loading for a Modern Stage and One-Half Transonic Turbine. ASME Paper GT-2003-38724. Atlanta, 2003
    124 S. E. Gorell, W. W. Copenhaver, and R. M. Chriss.Effects of Upstream Wakes on the Performance of aTransonic Compressor Stage. 13th ISABEConference, Sept., Paper No. 97-7070, Chattanooga, 1997
    125 R.M Chriss, W.W. Copenhaver, S.E. Gorrell.“The Effects of Blade-Row spacing on the Flow Capacity of aTransonic Rotor”, ASME Paper 99-GT-209, 1999
    126 S. E. Gorrell, D. Car, S. L. Puterbaugh, J. Estevadeordal, T. H. Okiishi. An Investigation of Wake-Shock Interactions in a Transonic Compressor with DPIV and Time-Accurate CFD. ASME paper 2005-GT-69107, Reno, 2005.
    127张环,胡骏,李传鹏等.轴向间距对压气机气动稳定性的影响.航空动力学报. 2005, 20(1): 120-124
    128李传鹏,胡骏,张燎原等.轴向间距变化对轴流压气机全流量特性的影响.推进技术. 2004, 25(6): 508-511
    129李传鹏,胡骏,王英峰等.轴向间距对压气机失速特性的影响.工程热物理学报. 2005, 26(2): 246-248
    130闫朝,季路成,陈江.叶排间轴向间距对时序效应影响的数值研究.推进技术. 2004, 25(5): 416-420
    131闫朝,季路成,陈江.轴向间隙对时序效应影响的研究.工程热物理学报. 2004, 25(2): 220-222
    132 Yang Hai-tao, Huang Hong-yan, Feng Guo-tai et al. Numerical Simulation of Rotor Clocking Effect in a Low-Speed Compressor. Chinese Journal of Aeronautics. 2003, 16(3): 129-137
    133杨海涛,黄洪雁,冯国泰等.平面扩压叶栅相对位置改变对流动的影响.工程热物理学报. 2003, 24(6): 951-953
    134杨海涛.低速压气机中Clocking效应的数值模拟.哈尔滨工业大学博士学位论文. 2004.6
    135万继林.变轴向间隙对采用直、弯静叶压气机性能影响的数值分析.哈尔滨工业大学硕士学位论文. 2008.6
    136 M. E. Deich, A. B. Gubalev, G. A. Filippov, Z. Q. Wang. A New Method of Profiling the Guide Vane Cascade of Stage with Small Ratios Diameter to Length. Teplienergetika, 1962, 8: 42~46
    137 Wang Zhongqi, Lai Shengkai and Xu Wenyuan. Aerodynamic Calculation of Turbine Stator Cascades with Curvilinear Leaned Blades and Some Experimental Results. Symposium paper of 5th ISABE, India, 1981
    138王仲奇.一代新型轴流式透平机械叶片——叶片的弯扭联合气动成型理论及其实验结果.工程热物理能源利用学科气动热力学发展战略研讨会专题报告汇编. 1989: 55~65
    139 F. A. E. Breugelmans, Y. Carels, M. Demuth. Influence of Dihedral on the Secondary Flow in a Two Dimensional Compressor Cascade. Journal of Engineering for Gas Turbine and Power, 1984, 106: 578~584
    140 F.A.E. Breugelmans. Influence of Incidence Angle on the secondary Flow in Compressor Cascade with Different Dihedral Distribution. 1985, ISABE paper 85-7078
    141 T. Sasaki, F. A. E. Breugelmans. Comparison of Sweep and Dihedral Effects on Compressor Cascade Performance. Journal of Turbomachinery, 1998, 120(2): 454~464
    142王仲奇,苏杰先,钟兢军.弯曲叶片栅内减少能量损失机理研究的新进展.工程热物理学报. 1994, 15(2):147~152
    143王东.叶片弯曲对压气机叶栅气动性能影响的实验研究.哈尔滨工业大学工学博士学位论文. 2001
    144钟兢军,王苇,苏杰先,王仲奇.稠度对弯曲叶片压气机叶栅特性的影响.航空动力学报. 1997, 12(2):163~166
    145钟兢军,苏杰先,王仲奇.压气机叶栅中应用弯曲叶片的研究.航空动力学报. 1998, 13(1):7~12
    146钟兢军,苏杰先,王仲奇.压气机叶栅壁面拓扑和二次流结构分析.工程热物理学报. 1998, 19(1):40~44
    147王会社.不同叶型和叶片积叠线及弯曲角对压气机叶栅流场的影响.哈尔滨工业大学工学博士学位论文. 2001
    148 H. D. Weingold, R. J. Neubert, R. F. Behlke et al. Bowed Stator: An Example of CFD Applied to Improve Multistage Compressor Efficiency. Journal of Turbomachinery, 1997, 119: 161~168
    149张永军,陈浮,冯国泰等.低速环形压气机静叶栅采用弯叶片壁面分离流结构的数值分析.动力工程. 2006, 36(4): 486-490
    150张永军,冯国泰,苏杰先等.环形扩压叶栅弯叶片对流场性能的影响.热能动力工程. 2006, 21(2): 169-174
    151周逊,韩万金.涡轮矩形叶栅中旋涡模型的进展回顾.航空动力学报. 2001(3):199~204
    152 H. Z. Herzig, A. G. Hansen, and G. R. Costello. Visualization Study ofSecondary Flow in Cascades. NACA TN 1163, 1954
    153 N. D. Armstong. The Secondary Flow in a Cascade of Turbine Blades. ARC&M 2979, 1955
    154 A. Klein. Investigation of the Entry Boundary Layer on the Secondary Flows in the Blading of Axial Turbines. BHRAT 1004, 1966
    155 W. B. Wagner, J. A. Owczarek. An Investigation of the Corner Secondary Flows Generated in Planar Nozzles. ASME J. of Fluids Engineering. 1974, 96(3): 234
    156 S.A.Sjolander. The Endwall Boundary Layer in an Annular Cascade to Turbine Nozzle Guide Vanes. Carleton University, Canada. TRME/A75-4, 1975
    157 L. S. Langston. Cross Flow in a Turbine Cascade Passage. ASME Journal of Engineering for Power. 1980, 102:866~874
    158 P. Marchal, C. H. Sieverding. Secondary Flow Within Turbomachinery Blading. Secondary Flows in Turbomachines, AGARD, CP214, 1977
    159 J. Moore, B. L. Smith. Flow in a Turbine Cascade. Part 2: Measurement of Flow Trajectories by Ethylene Detection. ASME Paper No.83-GT-69, 1983
    160 D. G. Gregory-Smith, C. P. Graves. Secondary Flows and Losses in a turbine Cascade. Viscous Effects in Turbomachines. AGARD CP351, 1983
    161 B. Lakshminarayana and J. Horlock. Tip Clearance Flow and Losses for an Isolated Compressor Blade. Arc R&M 3316. 1963
    162 H. P. Wang. Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blade. ASME Paper, 95-GT-7, 1995
    163 X. X. Moore, Y. Y. Richardson. Skewed Boundary Layer Flow near End Walls of a Compressor Cascade. ASME J.of Engineering for Gas Turbines and Power. 1957, 79:1789~1800
    164 J. H. Horlock, J. F. Lewis, P. M. E. Percival, and B. Lakshminarayana. Wall Stall in Compressor Cascade. ASME J.of Basic Engineering. 1966
    165 J. W. Salvage. Investigation of Secondary Flow-Behaviour and End Wall Boundary Layer Development through Compressor Cascades. Von Karman Institute for Fluid Dynamics, Technical Note 107, June, 1974
    166陶德平,卢仁富,赵秀华.压气机叶栅中的二次流动.北京航空学院学报. 1982, 8(4): 77~90
    167陈芳,陈懋章,蒋浩康.平面叶栅端壁流的试验研究.工程热物理学报. 1988, 9(2): 125~130
    168唐燕平,陈懋章,陈芳.扩压叶栅中的旋涡运动.航空动力学报. 1990, 5(2): 103~112
    169 S. Kang. Investigation of the Three Dimensional Flow within a Compressor Cascade with and without Tip Clearance. Ph.D. Thesis. Dept. of Fluid Mechanics, Vrije Universiteit Brussel. 1993:Ⅰ-1-Ⅴ-44
    170 J. Delery, G. Meauze. A Detailed Experimental Analysis of the Flow in a Highly Loaded Fixed Compressor Cascade: the Iso-Cascade Co-Operative Programme on Code Validation. Aerospace Science and Technology, 2002
    171 S. A. Gbadebo, N. A. Cumpsty. Three-Dimensional Separations in Axial Compressors. ASME GT-2004-53617, 2004
    172张华良.采用叶片弯/掠及附面层抽吸控制扩压叶栅内涡结构的研究.哈尔滨工业大学博士学位论文. 2007.4
    173 A. Yamamoto. Review: Mechanism of Secondary Flows and Losses within Turbine Blade Rows. Journal of Turbomachinery. 1986, 14(4): 234-241
    174 A. Yamamoto, K. Kaba, T. Matsunuma. Measurement and Visualization of Three-Dimensional Flows in a Linear Turbine Cascade. ASME Paper 95-GT-341. 1995
    175 S. A. Sjolander and K. K. Amrud. Effects of Tip Clearance on Blade Loading in a Planar Cascade of Turbine Blades. ASME Trans. J. of Turbomachinery. 1987, 109: 237-244
    176黄洪雁.叶片弯曲对有间隙叶栅流场结构的影响及弯叶栅损失模型.哈尔滨工业大学博士论文. 1997.11
    177黄洪雁,韩万今,王仲奇.具有叶顶间隙涡轮转子叶栅流动的拓扑及旋涡结构观测.航空学报. 1997, 18(4): 257-261
    178 Yang Qinghai, Huang Hongyan, Han Wanjin. Topology and Vortex Structures of a Curving Turbine Cascade with Tip Clearance (Ⅰ)——Experimental Model and Topological Flow Patterns on Both Endwalls and Blade Surfaces. Applied Mathmatics and Mechanics (English Edition). 2002, 23(8): 948-957
    179 Yang Qinghai, Huang Hongyan, Han Wanjin. Topology and Vortex Structures of a Curving Turbine Cascade with Tip Clearance (Ⅱ)——Topological Flow Patterns and Vortex Structure in the Transverse Section of a Blade Cascade. Applied Mathmatics and Mechanics (English Edition). 2002, 23(8): 958-962
    180杨庆海.间隙尺寸及气流冲角对涡轮叶栅流场结构影响的实验研究.哈尔滨工业大学博士论文. 2006
    181 R.C.Dean. The Influence of Tip Clearance on Boundary-Layer Flow in a Rectilinear Cascade. MIT Gas Turbine Laboratory Report, No.27-3, 1954
    182 B.Lakshminarayana, J.Zhang and K.N.S.Murthky. An Experimental Study on the Effects of Tip Clearance on Flow Field and Losses in an Axial Flow Compressor Blade. ISABE Paper, No.87-7045, 1987
    183 M. Inoue, M. Kuroumaru. Three-Dimensional Structure and Decay of Vortices Behind an Axial Flow Rotation Blade Row. ASME 83-GT-69. 1983
    184 W.R.C Philips and M.R.Head. Flow Visualization in the Tip Region of a Rotating Blade Row. J. of Mesh. Science. 1980, 22: 495-521
    185 M. Inoue, M. Kuroumaru. Three-Dimensional structure and Decay of Vortices Behind an Axial Flow Rotation Blade Row. ASME J. of Eng. For Gas Turbine and Power. 1984, 106(3): 61-569
    186 Kang S, H irsch C. N umerical Simulation and Theoretical A nalysis of the 3D V iscous Flow in Centrifugal Impellers. Invited lecture p resented in the 5th ISA IF. Gd ansk, Poland. 2001
    187康顺,陈党慧.用CFD研究高压比离心叶轮内的二次流动.航空动力学报. 2005, 20(6): 1054-1060
    188 S. A. Sjolander and D. Cao. Measurements of the Flow in an Idealized Turbine Tip Gap. International Gas Tarbine and Aeroengine congress and Exposition. 94-GT-74. 1994, 175-180
    189续魁昌.《风机手册》.机械工业出版社. 2001
    190 S. E. Gorrell, T. H. Okiishi, W. W. Copenhaver. Stator-Rotor Interactions in a Transonic Compressor: Part 2 - Description of a Loss Producing Mechanism. ASME Paper 2002-GT-30495. Amsterdam, 2002
    191 Kang Shun, Wang Zhong-qi. Application of topological analysis to studying the three-dimensional flow in cascades; part I. Topological rules for skin-friction lines and section streamlines. Applied Mathematics and Mechanics. 1990, 11(5): 489-495
    192 M. F. Blair. An Experimental Study of Heat Transfer and File Cooling on Large Scale Turbine Endwalls. ASME Journal of Heat Transfer. 1974, 96(4): 524-529
    193 L. S. Langston, M. L. Nice, Hooper. Three-Dimensional flow within a Turbine Blade Passage. ASME Journal of Engineering for Power. 1977, 99(1): 21-28
    194 R. E. Gaugler and L. M. Russell. Streamline Flow Visualization Study of a Horseshoe Vortex in a Large-Scale, Two-Dimensional Turbine Stator Cascade. ASME Paper, No. 80-GT-4. 1980
    195 J. Ishii et al. A Three-Dimensional Turbulent Detached Flow with a Horseshoe Vortex. ASME Journal of Engineering for Gas Turbine and Power. 1986, 108(1): 125-130
    196 W. A. EckeMe, L. S. Langston. Horseshoe Vortex Formation around a Cylinder. ASME, Journal of Turbomachinery. Apr, 1987, 109(2): 278-285
    197 C. H. Sieverding, P. Van den bosch. The Use of Colored Smoke to Visualize Secondary Flows in a Turbine-Blade Cascade. Journal of Fluid Mechanics. 1983, 134: 85-89
    198 C. H. Sieverding. Recent Progress in Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages. ASME Journal of Eng. for Gas Turbine and Power. 1985, 107(2): 248-257
    199 O. P. Sharma, T. L. Butler. Prediction of End Wall Losses and Secondary Flows in Axial Flow Turbine Cascade. ASME Journal of Turbomachinery. 1987, 109: 229-236
    200 R. J. Goldstein, R. A. Spores. Turbulent Transport on the End Wall in the Region between Adjacent Turbine Blades. ASME of Journal of Heat Transfer. 1988, 110: 862-869
    201李宇红,叶大均,环形压气机叶栅内部分离流结构分析第二部分:流道内分离流.工程热物理学报. 1999, 20(4): 440-443

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700