用户名: 密码: 验证码:
模拟紫外环境下沥青流变行为及老化机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国海拔2000m以上的面积约占国土总面积的33%,这类地区紫外辐射强度是平原地区的4-5倍。沥青紫外老化现象严重是导致沥青路面过早的破坏的主要原因之一。本文通过改进的老化设备实现了沥青野外紫外老化的室内加速模拟试验;利用流变学的手段对紫外老化后沥青的路用性能进行研究;利用红外光谱、薄层色谱等分析方法进行紫外老化机理研究,明确了沥青的紫外老化机理;在对多种改善措施性能比较的基础上,提出了紫外老化改善措施的建议。主要研究内容及成果概括如下:
     在深入了解室外紫外线辐照规律的基础上,对原有的紫外老化设备进行了改造,选择了更合理的紫外线辐照光源,加设了冷却和供气系统,使紫外老化系统能真实地模拟室外沥青的紫外老化;确定了室内紫外老化加速率的计算方法及室内加速紫外老化的方法。
     利用动态流变学的手段全面分析了紫外老化后沥青的流变性能和与石粉的交互作用。研究表明,紫外老化后沥青在使用温度范围内复合模量变大,滞后角变小,流变性变差;利用B值对不同沥青与石粉的交互作用进行了研究,试验结果表明紫外老化后二者的交互作用降低。低温流变性变差,沥青更易发生脆性破坏;中温流变性的劣化,使沥青更易发生疲劳破坏;高温流变性变差,使车辙因子增大,对沥青的高温抗车辙能力有利,三者相比较,紫外老化后以低温流变行为的变化最显著,对沥青路用性能最不利。
     紫外老化改变了沥青的材料性质和力学行为。老化后的沥青由柔而软的材料变成了刚而脆的材料;随着老化时间的延长,粘弹转变频率逐渐向低频移动,表明老化后的沥青在较高温度下即可发生从粘性区向弹性区的转变,在低温条件下容易发生破坏。以时温等效原理的失效温度为判断方法观察到,紫外老化后沥青的聚集态转变温度发生变化。玻璃态转化温度随沥青老化深度的增加呈升高趋势,紫外老化后沥青在较高温度下就转化为玻璃态。由于处于玻璃态的分子链段松弛时间远远大于力作用时间,因此,沥青由原来的“柔而软”变为老化后的“刚而脆”。紫外老化后聚集态的变化,是沥青力学行为转变、流变特性变差的内在原因。
     对紫外老化过程中各组分自由基链反应历程的研究表明,沥青的紫外老化是各族组分共同参与的紫外光氧化反应,饱和分不仅参与了老化反应,并对芳香分和胶质的光氧化反应起促进作用,是沥青紫外老化反应的重要物质。饱和分含量高的沥青紫外老化更强烈,老化后沥青流变性的劣化更显著。紫外老化过程中,胶质沥青质之间产生较强缔和作用,这种缔和在宏观上对应沥青质的聚集沉淀,随着紫外老化反应的进行,沥青由溶胶向凝胶、由胶体向固体转变。沥青胶体结构的转变和沥青质的聚沉是导致沥青在紫外老化后发生聚集态变化的本质原因。
     最后,本文研究了改善沥青抗紫外老化能力的措施。通过不同方案的路用性能比较和验证,发现基质沥青添加改性剂比单独使用基质沥青具有更强的抗紫外老化能力;改性剂SBR的抗紫外老化效果优于SBS;紫外吸收剂、抗氧化剂及光稳定剂均具有一定的抗紫外老化能力;试验结果表明光稳定剂与SBR改性沥青联合使用时性能优于其它抗老化剂与改性剂联用,具有更好的抗紫外老化性能。
The area, about 33% of the total land area of China,is at altitude of 2000m above, in which, the UV radiation intensity is almost 4-5 times of plain areas.Severely ultraviolet aged asphalt is one of the most important reasons for early damage of asphalt pavement. In this paper, indoor accelerated simulation of outdoor ultraviolet aging of asphalt is carried out by improving original aging equipment; road performance of ultraviolet aged asphalt is studied based on rheology; ultraviolet aging mechanism is analyzed by means of infrared spectrum and thin-layer chromatography; in comparison of performance of multiple improvement measures, suggestions on anti-ultraviolet aging is proposed. All research works in the paper are outlined as following:
     In order to simulate veritably the outdoor ultraviolet aging, the original uv aging equipment is improved, selecting more reasonable ultraviolet radiation lamp and adding cooling and gas supply systems; in addition, the calculation method of indoor ultraviolet aging velocity gradient and the method of indoor accelerated ultraviolet aging are determined.
     The rheological properties of ultraviolet aged asphalt and its interaction capability with aggregate powder have been comprehensively analyzed based on dynamic rheology. Studies have shown that the complex modulus of ultraviolet aged asphalt increases, phase angle decreases and the low temperature deformability has deteriorated, so it is more susceptible to brittle cracking; what’s else, increase of rutting factor indicates that high temperature performance of ultraviolet aged asphalt has been improved in different degrees; Studies on interaction between asphalt and powder show that the interaction capability declines catholically after ultraviolet aging, no influence of asphalt type, lithology and powder size.
     Material properties and mechanical behaviors of asphalt have been altered by ultraviolet aging.Asphalt becomes more rigid and brittle after 220h ultraviolet aging; with aging time prolonged, on one hand, viscosity-elasticity transformation frequency declines and it indicates that the transition temperature increases at which ultraviolet aged asphalt is transformed from viscosity region to elastic region and therefore asphalt is more sensitive to low temperature cracking. On the other hand, the decrease of phase angle implies proportion of viscosity and elastic composition has been altered and the viscosity composition declines, consequently ,it is hard for asphalt to relax stress resulting from temperature and load and then low temperature cracks appears. Moreover, with aging time prolonged, glass transfer temperature increases, and it indicates that the relaxation time of molecular chain segment in glass state is far more than force action time, and this explains why ultraviolet aged asphalt is susceptible to brittle failure at low temperature.
     Ultraviolet aging is oxidation reaction in which aromatic and resin are main materials and saturated fragrance promotes the ultraviolet oxidation reaction of aromatic and resin. After ultraviolet aging, saturated fragrance produces small amount of resin and asphaltene, aromatic transforms into resin and asphaltene and resin and asphaltene transform into asphaltene.Studies on effect of ultraviolet aging on colloidal structure stability have shown that a strong combination, which is presented as aggregation and precipitation of asphaltene in macroscopic view, is produced between resin and asphaltene. In course of ultraviolet aging,asphalt changes from sol to gel,from colloid to solid. In IR spectra comparison of ultraviolet aged and unaged asphalt, ultraviolet aging characteristic peak is found and it is pointed out that the performance of different asphalts tends to be uniform after a period of aging. Researches on consistency and reaction degree of group composition show that saturated fragrance has a strong effect on ultraviolet aging performance of asphalt. Asphalt with a higher content of saturated fragrance ages more strongly and the rheology deterioration is more obvious.
     Through road performance comparison and verification of various schemes, it is found that modified asphalt behaves a stronger anti-ultraviolet aging ability than base asphalt; anti-ultraviolet aging effect of SBR is better than SBS;ultraviolet absorbent,antioxidant and light stabilizer all posses anti-ultraviolet aging ability; tests have proved joint use of light stabilizer and SBR show better anti-ultraviolet aging ability than combination of other anti-aging agent and modifier.
引文
1沈金安.沥青及沥青混合料路用性能.人民交通出版社, 2001.
    2 Mang Tia, Okan Sirin, Chuang-Tsair Shih. Development of a Suitable Procedure for Simulating Aging Effects of Hot-Mixing of Modified Asphalts for Use in Superpave Binder Specifcations. final report of U.F. Project No:49104504568-12& State Project No: 99700-3369-010, 2000, 7.
    3 Chris A. Bell, Dan Sosnovske. Aging: Binder Validation. SHRP-A-384, National research council Washington, D.C.1994:9~63.
    4 C.A. Bell, Alan J. Wieder, Marco J. Fellin. Laboratory Aging of Asphalt-Aggregate Mixtures: Field Validation. SHRP-A-390, National research council Washington, D.C.1994:3~12.
    5冯中良.沥青及沥青混合料抗紫外老化性能的研究.哈尔滨工业大学硕士论文. 2004:20~25.
    6叶奋.紫外线光老化对沥青性能影响分析与对策研究.同济大学博士学位论文. 2005: 3~5.
    7张昌祥,张玉贞,陈继军.两种典型道路沥青化学组成结构与使用性能的比较研究.石油沥青. 1990, 2:1~7.
    8李海军,黄晓明,曾凡奇.道路沥青老化性状分析及评价.公路交通科技. 2005, 22(4):5~8.
    9谭忆秋,邵显智,张肖宁.基于低温流变特性的沥青低温性能评价方法研究.中国公路学报. 2002, 15(3):1~5.
    10张肖宁,韩传代,朱希岭.沥青混合料低温抗裂性能评价方法的研究.中国公路学报. 1993, 6(1):3~9.
    11彭一川,孙立军.不同老化方式对沥青低温性能的影响分析.南京工业大学学报. 2007, 29(1):81~84.
    12董瑞琨,孙立军.考虑老化的沥青结合料低温感温性指标.中国公路学报. 2006, 19(4):34~39.
    13郝培文.沥青混合料抗老化性能的研究.石油沥青. 1994, 4:28~32.
    14徐鸥明,韩森,李洪军.紫外线对沥青特征官能团和玻璃化温度的影响.长安大学学报(自然科学版). 2007, 27(2):16~20.
    15戴跃玲,刘道胜,杨鹏等.道路沥青老化后组成与使用性能关系的研究.抚顺石油学院学报. 2002, 22(2):11~14.
    16莫一魁,田小革,王文强.沥青使用性能随老化时间变化关系的研究.公路与汽运. 2004, 101(2):59~61
    17张肖宁.沥青与沥青混合料的粘弹力学原理及应用.人民交通出版社, 2006.
    18张肖宁.试验粘弹原理.哈尔滨船泊工程学院出版社, 1990.
    19田小革,郑健龙,张起森.老化对沥青胶结料常规指标的影响.石油沥青. 2004, 18(2):11~15.
    20张书红,王子军,李锐.国产重交通道路沥青抗老化性能研究.石油沥青. 2003, 17(2):13~16.
    21田小革,郑健龙,张起森.老化对沥青结合料高温性能的影响.公路. 2004, 1:110~114.
    22田小革,郑健龙,张起森.老化对沥青结合料粘弹性的影响.交通运输工程学报. 2004, 14(11):3~6.
    23张争奇,梁晓莉,李平.沥青老化性能评价方法.交通运输工程学报. 2005, 5(1):1~5.
    24章洪庆,严军,黄彭.沥青与集料的粘附性及其评价方法.华东公路. 2003, 144(5):44~45.
    25宋艳茹,张玉贞.沥青粘附性能评价方法综述.石油沥. 2005, 19(3):1~6.
    26康玉芳.沥青粘附性机理与评价方法.黑龙江交通科技. 2007, 166(12):36~38.
    27叶奋,黄彭.强紫外线辐射对沥青路用性能的影响.同济大学学报(自然科学版). 2005, 33(7):909~913.
    28谭忆秋,冯中良,周兴业,王抒音.沥青抗紫外老化评价方法的研究.中国科技论文在线.
    29 J.C.Petersen, P.E.Robertson, J.F.Branthaver Binder Characterization and Evaluation (volume 1). SHRP-A-367, National research council Washington, DC, 1994:84~85.
    30 J.F.Branthaver, J.C.Petersen, P.E.Robertson, J.J.Duvall, S.S.Kim. Binder Characterization and Evaluation (volume 2: Chemistry). SHRP-A-368, National research council Washington, DC,1993: 157~286.
    31 David A. Anderson, Donald W. Christensen, Hussain U. Bahia, Raj Dongre, M.G. Sharma. Binder Characterization and Evaluation (volume 3: Physicalcharacterization). SHRP-A-369, National research council Washington, DC, 1994: 303~400.
    32 C. A. Bell, Y. AbWahab, M. E. Cristi, D. Sosnovske. Selection of Laboratory Aging Procedures for Asphalt-Aggregate Mixtures. SHRP-A-383, National research council Washington, D.C.1994: 1~41.
    33金鸣林,杨俊和,史美仁.道路沥青老化机理分析.上海应用技术学院报. 2001, 1(1):14~17.
    34朱静,魏林,金鸣林,冯安祖,史美仁.胜利100B道路沥青老化研究.公路交通科技. 2000, 17(12):1~4.
    35金鸣林,冯安祖,钱湛芬,史美仁.煤沥青橡胶改质道路沥青老化研究——沥青质结构与官能团变化.燃料化学学报. 1999, 27(6):556~561.
    36金鸣林,冯安祖,史美仁,方江邻.胜利100B沥青老化过程中官能团分析与相对分子质量分布.南京化工大学学报. 2000, 22(5):65~68
    37 M.N. Siddiqui M.F. Studies on the aging behavior of the Arabian asphalts Ali Fuel. 1999, 78:1005~1015.
    38 M.N., M.F. Investigation of chemical transformations by NMR and GPC during the laboratory aging of Arabian asphalt. Ali Fuel, 1999,78:1407~1416.
    39闫锋,魏毅,戴跃玲,杨鹏,刘道胜,廖克俭.沥青抗老化性能的研究.抚顺石油学院学报. 2002, 22(2):5~8.
    40丛玉凤,廖克俭,翟玉春.道路沥青老化动力学的研究——以软化点为参数建立沥青老化动力学模型.石油炼制与化工. 2005, 36(5):23~26.
    41金泽,赵朝辉,魏毅,廖克俭.两种道路沥青抗老化性能的比较.石油化工高等学校学报. 2002, 15(4):5~10.
    42 Glotova, N.A., Kats, B.I., Groshkov, V.S. Photoxidation of Asphalts in Tnin Films. Chemistry and Technology of Fuels and Oils, 1974, 10(11):876~879.
    43李海军,黄晓明,曾凡奇.道路沥青老化性状分析及评价公路交通科技. 2005, 22(4):10~14.
    44 Tatum, Rita. Elastomeric roofing: taming thermal shock. Construction Specifier. 1986, 39(11):94~98.
    45刘景军,李效玉.高分子材料的环境行为与老化机理研究进展.高分子通报. 2005, 6:18~25.
    46胡行俊.合成材料的大气老化(续).合成材料老化与应用. 2005, 43(3):41~45.
    47齐丽英.高分子材料老化与降解的物性预测.计算机与应用化学. 1995, 12(3): 216~219.
    48胡行俊,高聚物的老化与稳定.合成材料老化与应用. 2005, 34(1): 37~38.
    49胡行俊,合成材料的大气老化.合成材料老化与应用. 2005, 34(2): 24~28.
    50刘绍基,高分子老化与防老化.合成材料老化与应用. 1993, 8: 45~49.
    51 Sirin. Mang, Tia Byron E. Ruth. Evaluation of an improved rotavapor aging apparatus using amorton flask for simulation of hot-mixing on modified asphalts. Paper to be presented at the Meetings of the Transportation Research Board, 2000,1: 1~15.
    52叶奋,孙大权,黄彭,朱建平,周正德.沥青强紫外线光老化性能分析.中国公路学报. 2006, 19(6):34~39.
    53谭忆秋,王佳妮,冯中良,周兴业,徐慧宁.沥青结合料紫外老化机理研究.中国公路学报. 2008, 21(1):19~23.
    54朱福海.高分子材料的光稳定剂.合成材料老化与应用. 1999(2):25~28.
    55张立基.各类稳定剂对聚乙烯薄膜光氧老化的稳定作用.现代塑料加工应用. 2001,10(2):16~19.
    56杨海,辛忠.聚合物防老化稳定剂的协同作用机理.中国塑料. 2002, 16(11):57~63.
    57潘江庆.抗氧剂在高分子领域的研究和应用.高分子通报. 2002, 1:57~66.
    58张志翔.受阻胺类光稳定剂的现状及开发进展.辽宁化工. 2002, 31(10): 421~423.
    59 Sasaki Iwao, Yamaguchi, Katsuyuki, Meiarashi, Seishi. Aging and rheological properties of carbon black modified asphalt binders. Proceedings - Conference of the Australian Road Research Board, v 21, Proceedings - 21st ARRB and 11th REAAA Conference, Transport Our Highway to a Sustainable Future, 2003:769~786.
    60赵晓争,郭进存,廖克俭,闫锋,魏毅.紫外线吸收抗老化剂在沥青中的应用.石化技术与应用. 2005, 23 (3):196~198.
    61 Stepek J, Daoust H. Additives for Plastics. New York : Springer-Verlag ,1983:186.
    62 Calvert J G, Pitts Jr J N. Photochemistry. New York : John Wiley &Sons Inc, 1967: 534.
    63 Searle N D. Environ Soc Pollut Control Ser, 2000 ,21 :605~643.
    64 Hirt R C , Searle N J . J Appl Polym Sci , Appl Polym Symp , 1967,4 :61~83.
    65 Andrady A L. Adv Polym Sci , 1997 ,128 :49~94.
    66祝青林,于贵瑞,蔡福等.中国紫外辐射的空间分布特征.资源科学. 2005, 27(1):108~113.
    67曾艳,吴幼乔.紫外线辐射强度预报模型研究.南京气象学院学报. 2003, 26(5): 685~674.
    68胡波,王跃思,刘广仁.中国紫外辐射的时空分布变化.中国气象学会2006年年会“首届研究生年会”分会场论文集, 2006年
    69周允华.中国地区的太阳紫外辐射.地理学报. 1986, 41(2):131~146.
    70陈金爱.《塑料实验室光源暴露试验方法》系列标准的现状与进展.合成材料老化与应用. 200, 03: 22~27.
    71 Psiloglou B. E., Balaras A., Santamourism, et al.Evaluation of different radiation and Albedo models for the prediction of solar radiation incident on tilted surfaces, for four European locations. Journal of Solar Energy Engineering, Transactions of the ASME , 1996 ,118 (3):786~801.
    72 Li D H. W., Lamj C. Solar heat gain factors and the implications to building designs in subtropical regions. Energy and Buildings, 2000, 32(1):213~243.
    73 Gul M S. Models for obtaining solar radiation from other meteorological data. Solar Energy, 1998, 64(13):144~154.
    74 M. N.布德科地球热量平衡.北京:气象出版社,1980.
    75 St. Laurent Blvd, Ottawa, Ontario. Canadian strategic highway research program-C-SHRP. Transportation Association of Canada 2323: 4~6
    76 St. Laurent Blvd, Ottawa, Ontario. Canadian strategic highway research program-C-SHRP. Transportation Association of Canada 2323: 4~6
    77 Tayebali, A.A., J.A. Deacon, J.S. Coplantz, J.T. Harvey, and C.L. Monismith. Fatigue Response of Asphalt-Aggregate Mixes. SHRP-A-404, Strategic Highway Research Program, Nation Research Council. 1994:129~166.
    78 John T. Harvey, John A. Deacon, Bor-Wen Tsai, Carl L. Monismith. Fatigue Performance of Asphalt Concrete Mixes and Its Relationship to Asphalt Concrete Pavement Performance in California. California Department of Transportation. 1995, 105~108.
    79虞将苗.沥青混合料疲劳性能研究.华南理工大学博士论文. 2005:25~18.
    80 AASHTO Provisional Standards, Mol-93, Specification for Performance Graded Asphalt Binder. AASHTO. 1996.
    81 J.A. Deacon, J.T. Harvey, A. Tayebali, C. L. Monismith. Influence of BinderLoss Modulus on the Fatigue Performance of Asphalt Concrete Pavement. Paper Offered for Consideration at the 1997 Annual Meeting of the Association of Asphalt Paving Technoogist. 1997:108~112.
    82 Yong-Rak Kim, D. N. Little, R. L. Lytton. Fatigue and Healing Characterization of Asphalt Mixtures. Journal of Materials in Civil Engineering. 2003,15 (1): 75~83.
    83 Heukelom, W., Observations on the Rheology and Fracture of Bitumens and Asphalt Mixes. Journal of the Association of Asphalt Paving Technologists, 1966. 35:358~399.
    84 Karen S. Bonnetti, Kitae Nam, H.U.Bahia. Measuring and Defining Fatigue Behavior of Asphalt Binders. Transportation Research Board, Washington, D.C, USA. 2002:109~112.
    85李晓民.基于流变特性的沥青胶浆评价方法及性能的研究.哈尔滨工业大博士论文. 2006:99~101.
    86詹小丽.基于DMA方法对沥青粘弹性能的研究.哈尔滨工业大学博士论文. 2007:33~38.
    87吴建涛.沥青-集料界面粘附强度研究.哈尔滨工业大学学士论文. 2007:18~22.
    88过梅丽.高聚物与复合材料的动态力学热分析.化学工业出版社, 2002: 56~56.
    89 M. Marasteanu, D. Anderson. Time-Temperature Dependency of Asphalt Binders—An Improved Model, Asphalt Paving Technology, Journal of the Association of Asphalt Paving Technologists. 1996, 65:408~448.
    90 T. K. Pellinen, M. W. Witczak. Stress Dependent Master Curve Construction for Dynamic (Complex) Modulus. Journal of the Association of Asphalt Paving Technologists. 2002, 71:321~345.
    91 C. Y. Cheung, D. Cebon. Deformation Mechanisms of Pure Bitumen. J. Mater. Civ. Eng., 1997, 9(3):117~129.
    92 D. Airey Gordon, Behzad Rahimzadeh, Andrew C. Collop. Linear Rheological Behavior of Bituminous Paving Materials. Journal of Materials in Civil Engineering. 2004, 16(3):212~220.
    93郑强. PMMA/MSAN共混体系长时驰豫区域的时温等效失效与相分离的关系.高等学校化学学报. 1996, 20(6):969~973.
    94 Herrington P R , Pat rick J E , Ball G F A. Oxidation of Roading Asphalts. IndEngChemRes. 1994, 33 (11):2801.
    95 Petersen J C. Factors Affecting the Kinetics and Mechanisms of Asphalt Oxidation and the Relative Effect s of Oxidation Product s on Age Hardening. PreprPap-AmChemSoc , DivFuelChem. 1996 , 41 (4) :23-28.
    96汪金花,张兴元,戴家兵.不同软段聚氨酯的红外光谱定量分析.化学分析. 2007,35(7):964-968
    97 Remero R R, Grigsby R A, Rister E L, Pratt J K, Ridgway D. J. Cellu. Plast. , 2005, 41 (4) : 339~359
    98 Oka H, Tokunaga Y, Masuda T, Kiso H, Yoshimura H. J. Cellu. Plast. 2006, 42 (4): 307~323.
    99刘东,王宗贤,阀国和,瞿梅.渣油组分亚甲基与甲基比值和周边取代情况研究.石油大学学报(自然科学版). 1999,23(6):70~73.
    100杨照,郭天民.沥青质沉淀研究进展综述.石油勘探与开发. 1997, 24(5): 98~113.
    101 Takanohashi T, Sato S Tanaka R. Molecular dynamics simulation of structured relaxation of asphaltene aggregates. Petroleum Science and Technology. 2003, 21 (324): 491~505.
    102吴少鹏,彭龄,余剑英等.沥青光氧老化研究进展.石油沥青. 2007, 21(2):1~6
    103宋静辉,陈奠宇.用烃组成分析方法对加氢润滑油的两种氧化方式进行比较研究.无锡职业技术学院学报. 2004, 3(1): 39~41.
    104王会东,韩志群,王仁安等.不同紫外光照条件下加氢基础油性质变化研究. 2003, 18(1): 47~50.
    105梁文杰.重质油化学.石油大学出版社, 2001年.
    106 T.F.Yen,郭燕生,张玉贞等.石油沥青的宏观构造,石油沥青. 1991,2: 47~49.
    107 Herrington P R , Pat rick J E , Ball G F A. Oxidation of roading asphalts. Industrial & Engineering Chemist ry Research , 1994 , 33 (11): 2801~2809.
    108 Herrington P R. Thermal decomposition of asphalt sulfoxides. Fuel. 1995, 74 (8): 232~235.
    109唐黎平,杨志琼.重质原油及各组份数均分子量的测定及地球化学意义.石油实验地质. 1989,11(3):255~263
    110范耀华,丁国靖,刘国祥.石油沥青抗老化性能研究.石油沥青. 1997, 11(1):1~12.
    111吴茂英.聚合物光老化、光稳定机理与光稳定剂(上).高分子通报. 2006, 4:76~83.
    112根赫特R,米勒H编.塑料添加剂手册.成国祥,姚康德等译.化学工业出版社, 2000:144~151.
    113吕世光.塑料橡胶助剂手册.中国轻工业出版社, 1995:253~299.
    114吴茂英.聚合物光老化、光稳定机理与光稳定剂(下).高分子通报. 2006, 6:89~97.
    115 Briggs P J , McKellar J F. J Appl Polym Sci. 1968, 12:1825~1833.
    116 Chien J C W, Conner W P , J Am Chem Soc. 1968, 90:1001~1006.
    117 Crowan D O, Foss R P, Hammond G S. J Phys Chem. 1964, 68:3747~3752.
    118 Carlsson D J, Garton A , Wiles D M. In Scott G Ed. Development in Polymer Stabilization211 London : Applied Science Publishers Ltd. 1979:219~259.
    119 Deanin R D, Orroth S A , Eliasen R W, et al. Polym Eng Sci. 1970, 10:228~234.
    120朗比B,拉比克J F.聚合物的光降解、光氧化和光稳定.崔孟元,潘江庆,顾立莹,等译.北京:科学出版社, 1986 :380~384.
    121 Donnett J B , Bansal R C , Wang M2J , editors. Carbon Black , Science and Technology , 2nd ed. New York : Dekker (Marcel). 1993.
    122 Studebaker ML, Rinehart R WJr. Rubber Chem Technol, 1972, 45:106~116.
    123 Mwila J, Miraftab M, Horrocks A R. Polymer Degradation and Stability. 1994, 44(3):351~356.
    124 Szwarc M. The action of carbon black in stabilizing polymeric materials. J Polym Sci. 1956, 19:589~590.
    125潘江庆.抗氧剂在高分子领域的研究和应用.高分子通报. 2002, 1:57~66.
    126何光耀.聚合物光稳定化进展.合成材料老化与应用. 1998, 2:36~47.
    127刘祖愉,秦建忠,闫儒峰.剥落率法定量测定沥青与石料的粘附性.太原理工大学学报. 1998, 29(2):150~152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700