用户名: 密码: 验证码:
炭基材料的汽油吸附脱硫研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料油品中含硫化合物的脱除是清洁油品生产中的关键过程。作为非加氢脱硫技术的一种,基于吸附过程的脱硫技术得到研究者的广泛关注。该方法可以在常温常压的条件下选择性地脱除油品中的含硫化合物,因而具有潜在的应用前景。研究显示具有选择性吸附脱除噻吩类化合物能力的吸附剂种类较多,但现有研究大多集中在吸附材料的筛选方面,对吸附剂和吸附质之间的作用方式和油品中竞争吸附物对吸附过程影响的研究还比较薄弱。因此,本文以炭材料为吸附材料,以模型汽油溶液为处理对象,系统考察了氧化改性对活性炭表面性质的改变及其对吸附脱除噻吩类化合物性能的影响、模型竞争组分对炭材料吸附脱硫性能的影响及其机理,以及活性炭吸附噻吩过程的热力学和动力学特征,并对新型吸附脱硫炭材料的制备及其吸附脱硫性能进行了初步的研究;同时也考察了炭材料对催化裂化(FCC)汽油的吸附脱硫效果。
     对多种炭材料进行初步筛选,确定采用椰壳活性炭作为吸附研究的基础材料。然后分别采用过硫酸铵溶液和臭氧作为氧化介质,对椰壳活性炭进行了氧化改性以改变其表面化学性质,以吸附脱除噻吩-环己烷溶液中噻吩的能力作为考察指标,确定了两种改性方法的最佳条件。结果表明,经过硫酸铵和臭氧氧化改性后,活性炭噻吩的静态平衡吸附容量(以单位质量活性炭的硫容量计)由8.47 mg-S/g分别提高为15.52和21.50 mg-S/g,动态吸附的穿透容量由2.03 mg-S/g分别提高到8.10和14.21 mg-S/g。分别以环己烯和甲苯作为汽油中烯烃和芳烃的模型化合物,以环己烷、正庚烷和正癸烷作为汽油中烷烃的模型化合物,考察了这些化合物对噻吩在活性炭表面的竞争吸附作用。结果表明,烯烃和芳烃对噻吩的吸附具有强烈的竞争作用,导致活性炭对噻吩的吸附容量大大降低,其中芳烃的竞争作用高于烯烃;而烷烃化合物对噻吩的竞争吸附作用较弱。分别采用N2吸附、Boehm滴定、FT-IR和XPS等表征手段对活性炭的孔结构和表面化学性质进行了表征,结果表明过硫酸铵氧化对活性炭孔结构的影响低于臭氧氧化;两种氧化过程均使炭表面的含氧官能团数量大量增加,两种氧化方法增加的酚羟基数量接近,而臭氧氧化能够在炭表面引入更多的羧基。通过关联活性炭的物理、化学性质与其噻吩吸附性能,发现活性炭对噻吩的吸附能力主要决定于其表面化学性质,即氧化过程引入的含氧官能团是氧化改性活性炭对噻吩吸附能力增强的主要原因。
     从微观角度对活性炭与吸附质分子的相互作用进行了分析,并采用硬软酸碱(HSAB)理论对模型汽油体系中的各种化合物的化学硬度进行了计算,结果表明,各种化合物的化学硬度与其竞争吸附作用的强弱具有很高的相关性,表明化学硬度能够作为评价化合物在炭表面吸附能力的指标。对活性炭进行氧化改性也能够改变其表面的局部化学硬度,使其与目标脱除物质分子的化学硬度相匹配,从而提高吸附选择性和吸附容量。活性炭对噻吩吸附过程的热力学研究表明,噻吩在活性炭表面的吸附等温线可很好地符合Langmuir吸附模型;热力学函数的分析显示活性炭吸附噻吩的过程为放热、减熵的自发过程,氧化处理能够提高炭表面对噻吩分子的亲和力。吸附动力学考察显示噻吩在活性炭上的吸附过程可用拟二级吸附动力学方程来描述,颗粒内扩散是该过程的速率控制步骤之一,吸附速率同时还受颗粒外扩散过程的控制。
     将对模型汽油吸附脱硫性能较好的臭氧氧化改性活性炭用于FCC汽油的处理,对该方法中的吸附条件进行了考察,确定了最优条件。在优化吸附条件下,可使硫含量为796μg/g的FCC汽油的初始流出液的硫含量降低到18μg/g。饱和吸附后的活性炭经再生3次后使用,仍能使初始流出液的硫含量降低到45μg/g。
     以酚醛系弱酸性阳离子交换树脂为炭前驱体,制备了负载金属的球形活性炭材料,并对其吸附脱硫性能进行了初步的考察。对模型汽油的处理结果显示,由于金属负载对噻吩吸附作用方式的改变,该材料对竞争吸附物具有比较好的抑制作用。对FCC汽油的处理结果显示该材料对汽油中的噻吩类化合物的选择性吸附脱除能力较强。
Removal of sulfur containing compounds in fuels is one of the key processes in production of clean fuels. As a kind of non-hydrogenation desulfurization approach, adsorptive desulfurization has gained attention worldwidely. By this means, the sulfur containing compounds can be removed from fuels under ambient temperature and pressure. Many adsorbents show adsorptive removal performance of thiophenic compounds, while most researches focus on screening of materials and only minor efforts have been put on study of interactions of adsorbates and adsorbents, and influences of competitive compounds on adsorption process. In this paper, carbon materials were chosen as adsorption materials and model gasoline chosen as treatment object to explore the adsorptive desulfurization process. The change of surface chemistry of carbon materials by oxidation and its influence on adsorption performance for removal of thiophene, influence of model adsorption competitive compounds on thiophene removal and mechanism, and both thermodynamic and kinetics character of the process were investigated systematically. And a new adsorption carbonaceous material was synthesized for primarily exploring of its adsorptive desulfurization. The desulfurization performance of these materials for FCC gasoline was evaluated as well.
     Firstly, various carbonaceous materials were screened and coconut activated carbon was chosen for further study. Ammonium persulfate and ozone were used as oxidizing agent to modify coconut activated carbon by changing its surface chemistry. The optimized condition was verified by evaluation of capacity for removal of thiophene in thiophene-cyclohexane solution as model gasoline. Results show that after oxidation by ammonium persulfate and ozone, the static equilibrium adsorption capacity of activated carbon, counted by sulfur capacity per unit mass, has increased from 8.47 mg-S/g to 15.52 and 21.50 mg-S/g, respectively. And dynamic breakthrough adsorption capacity has increased from 2.03 mg-S/g to 8.10 and 14.21 mg-S/g, respectively. With cyclohexene as olefin model compound, toluene as aromatic model compound, and cyclohexane, n-heptane and n-decane as paraffin model compounds, the competitive effects of these compounds for thiophene on carbon surfaces were investigated. Results show that olefins and aromatics strongly competitive with thiophene on carbon surfaces, and aromatics show more severe effect, which makes the adsorption capacity of thiophene reduce enormously. However, the competitive effect of paraffins is weak, which hardly influences thiophene adsorption capacity. The pore structure and surface chemistry of activated carbons was characterized by N2 adsorption, Boehm titration, FT-IR, and XPS. Results show that the influence of ammonium persulfate treatment on pore structure is greater than that of ozonation. Both the two treatments increase oxygen-containing functional groups on carbon surfaces considerably with close number of phenolic groups and more carboxyl groups for ozonation. Correlation of thiophene adsorption performance with physical and chemical properties of activated carbon indicates that the surface chemistry plays an important role in the process of thiphene adsorption, from which it can be deduced that the oxygen-containing functional groups introduced by oxidation is the main reason for thiophene adsorption capacity boosting.
     The interactions of activated carbon with adsorbate molecules were analyzed within microscopic domain. The chemical hardness in HSAB theory of compounds in model gasoline system was calculated by quantum chemistry method. The chemical hardness of these compounds shows good correlation with results of competitive adsorption experiments, which render the chemical hardness as an acceptable criterion for competitive adsorption ability. The analysis of local chemical hardness of activated carbon also elucidates the change in local chemical hardness can adopt it with adsorbate molecules to increase the interaction strength to improve the adsorption selectivity and capacity. The isotherm of thiophene adsorption on activated carbon fits well with Longmuir model. And analysis of kinetically functions indicates that thiophene adsorption is an exothermic, entropy-reducing, and spontaneous process. Oxidation can improve the affinity of carbon surface with thiophene molecules. Investigation of adsorption dynamics also shows that the process can be described with pseudo-second-order dynamic equation. The intra-particle diffusion is one of the rate-determining steps of the total process, and the adsorption rate is also controlled by external diffusion processes.
     The ozone-oxidized carbon, with comparatively better thiophene adsorptive removal capacity, was chosen for treatment of FCC gasoline. Optimized conditions were determined by breakthrough experiments. Under optimized conditions, the initial effluent of treated FCC gasoline with sulfur content of 796μg/g is reduced to 18μg/g. The saturated activated carbon can still reduced the initial effluent sulfur content to 45μg/g even after 3 cycles of regeneration.
     Phenolic weak acidic cation exchange resin was chosen as carbon precursor to prepare metal-loaded spherical activated carbon, and its adsorptive desulfurization performance was investigated primarily. The treatment results for model gasoline show that this type of actived carbon can reduce the competitive effects for thiophene adsorption with altered adsorptive interactions between thiophene and adsorbent. The treatment for FCC gasoline shows its good performance for removal of thiophenic compounds.
引文
[1]Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel[J]. Catalysis Today, 2003, 86: 211-263
    [2]Babich I. V., Moulijn J. A. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review[J]. Fuel, 2003, 82: 607-631
    [3]张晶华,梁晓乐,张宝军.清洁汽油生产技术进展[J].精细石油化工进展, 2004, 5(11): 50-52
    [4]梁文杰.石油化学[M].东营:石油大学出版社, 2004
    [5]凌凤香,王少军,姚银堂,等. FCC汽油GS中硫化物的分布特点[J].燃料化学学报, 2003, 31(1): 174-176
    [6]邢金仙,刘晨光.催化裂化汽油中硫和族组成及硫化物类型的馏分分布[J].炼油技术与工程, 2003, 33(6): 6-9
    [7]殷长龙,夏道宏.催化裂化汽油中类型硫含量分布[J].燃料化学学报, 2001, 29(3): 256-258
    [8]朱根权,夏道宏,阙国和.催化裂化过程中硫化物的分布及转化规律[J].石油化工高等学校学报, 2000, 13(2): 40-44
    [9]张哲民,石亚华,傅军.降低催化裂化汽油硫和烯烃含量的技术途径[J].石油炼制与化工, 2003, 34(7): 28-32
    [10]Brunet S., Mey D., Perot G., et al. On the hydrodesulfurization of FCC gasoline: a review[J]. Applied Catalysis A: General, 2005, 278(2): 143-172
    [11]杨宝康,张继军,傅军,等.汽油中含硫化合物脱除新技术[J].石油炼制与化工, 2000, 31(7): 36-39
    [12]张艳维,亓玉台,沈健,等.汽油深度脱硫技术进展[J].精细石油化工进展, 2004, 5(7): 48-51
    [13]李大东. 21世纪的炼油技术与催化[J].石油学报(石油加工), 2005, 21(3): 17-24
    [14]安高军,周同娜,柴永明,等.轻质油品非加氢脱硫技术[J].化学进展, 2007, 19(9): 1331-1344
    [15]李春义,山红红,赵博艺,等.汽油催化裂化脱硫USY/ZnO/Al2O3催化剂[J].物理化学学报, 2001, 17(7): 641-644
    [16]山红红,李春义,赵博艺,等. FCC汽油中硫分布和催化脱硫研究[J].石油大学学报(自然科学版), 2001, 25(6): 78-80
    [17]柯明,周爱国,赵振盛,等. FCC汽油烷基化脱硫技术进展[J].化工进展, 2006, 25(4): 357-361
    [18]孙志娟,余谟鑫,张心亚,等.油品中噻吩类硫化物脱除技术研究进展[J].化工进展, 2005, 24(9): 1002-1010
    [19]Vazquez-Duhalt R., Torres E., Valderrama B., et al. Will biochemical catalysis impact the petroleum refining industry?[J]. Energy & Fuels, 2002, 16: 1239-1250
    [20]Monticello D. J. Biodesulfurization and the upgrading of petroleum distillates[J]. Current Opinion in Biotechnology, 2000, 11: 540-546
    [21]居沈贵,曾勇平,姚虎卿.非常规汽油脱硫技术[J].现代化工, 2004, 24(1): 56-59
    [22]Zhang S., Zhang Q., Zhang Z. C. Extractive desulfurization and denitrogenation of fuels using ionic liquids[J]. Industrial & Engineering Chemistry Research, 2004, 43: 614-622
    [23]Jess A., Esser J. Deep desulfurization of fuels by extraction with ionic liquids[J]. Ionic Liquids Iiib: Fundamentals, Progress, Challenges and Opportunities: Transformations and Processes, 2005, 902: 83-96
    [24]杨洪云,赵德智,毛微,等.柴油碱洗-络合萃取脱硫工艺[J].抚顺石油学院学报, 2003, 23(1): 45-48
    [25]Palomeque J., Clacens J.-M., Figueras F. Oxidation of dibenzothiophene by hydrogen peroxide catalyzed by solid bases[J]. Journal of Catalysis, 2002, 211: 103-108
    [26]王月霞.氧化/萃取工艺生产清洁柴油燃料[J].炼油设计, 2000, 30(12): 16-17
    [27]Otsuki S., Nonaka T., Takashima N., et al. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction[J]. Energy & Fuels, 2000, 14: 1232-1239
    [28]凌昊,沈本贤,周晓龙,等.含硫化合物的量子化学性质及选择性氧化动力学[J].华东理工大学学报(自然科学版), 2005, 31(1): 48-51
    [29]Tam P. S., Kittrell J. R., Eldridge J. W. Desulfurization of fuel oil by oxidation and extraction. 1. Enhancement of extraction oil yield[J]. Industrial & Engineering Chemistry Research, 1990, 29(3): 321-324
    [30]Tam P. S., Kittrell J. R., Eldridge J. W. Desulfurization of fuel oil by oxidation and extraction. 2. Kinetic modeling of oxidation reaction[J]. Industrial & Engineering Chemistry Research, 1990, 29(3): 324-329
    [31]Koch T. A., Krause K. R., Manzer L. E., et al. Environmental challenges faces thechemical industry[J]. New Journal of Chemistry, 1996, 20: 163
    [32]Otsuki S., Nonaka T., Qian W., et al. Oxidative desulfurization of middle distillate using ozone[J]. Journal of the Japanese Petroleum Institute, 1999, 42: 315
    [33]Vasllakos N. P., Bone R. L., Cotcoran W. H. Oxidative chlorination of Dibenzothiophene[J]. Industrial & Engineering Chemistry: Process Design and Development, 1981, 20(2): 376-379
    [34]Attar A., Corcoran W. H. Desulfurization of organic sulfur compounds by selective oxidation. 1. regenerable and nonregenerable oxygen carriers[J]. Industrial & Engineering Chemistry Product Research and Development 1978, 17(2): 102-109
    [35]Murata S., Murata K., Kidena K., et al. A novel oxidative desulfurization system for diesel fuels with molecular oxygen in the presence of cobalt catalysts and aldehydes[J]. Energy & Fuels, 2004, 18: 116-121
    [36]Shiraishi Y., Naito T., Hirai T., et al. A desulfurization process for light oils based on the formation and subsequent adsorption of N-tosylsulfimides[J]. Industrial & Engineering Chemistry Research, 2002, 41: 4376-4382
    [37]余国贤,陈辉,陆善祥,等.活性炭的表面处理对二苯并噻吩催化氧化脱除的影响[J].燃料化学学报, 2005, 33(5): 566-570
    [38]Yu G., Lu S., Chen H., et al. Oxidative desulfurization of diesel fuels with hydrogen peroxide in the presence of activated carbon and formic acid[J]. Energy & Fuels, 2005, 19(2): 447-452
    [39]Wu X., Schwartz V., Overbury S. H., et al. Desulfurization of Gaseous Fuels Using Activated Carbons as Catalysts for the Selective Oxidation of Hydrogen Sulfide[J]. Energy & Fuels, 2005, 19(5): 1774-1782
    [40]余国贤,陆善祥,陈辉,等.活性炭及甲酸催化过氧化氢氧化噻吩脱硫研究[J].燃料化学学报, 2005, 33(1): 74-78
    [41]Kong L., Li G., Wang X. Kinetics and mechanism of liquid-phase oxidation of thiophene over TS-1 using H2O2 under mild conditions[J]. Catalysis Letters, 2004, 92(3): 163-167
    [42]Kong L. Y., Li G., Wang X. S., et al. Oxidative desulfurization of organic sulfur in gasoline over Ag/TS-1[J]. Energy & Fuels, 2006, 20(3): 896-902
    [43]Li C., Jiang Z., Gao J., et al. Ultra-deep desulfurization of diesel: oxidation with a recoverable catalyst assembled in emulsion[J]. Chemistry - A European Journal, 2004, 10(9): 2277-2280
    [44]Deshpande A., Bassi A., Prakash A. Ultrasound-assisted, base-catalyzed oxidation of 4,6-dimethyldibenzothiophene in a biphasic diesel-acetonitrile system[J]. Energy & Fuels, 2005, 19(1): 28-34
    [45]王文波,石生敏,汪树军,等.汽油的电化学-化学氧化耦合法脱硫[J].石油学报(石油加工), 2005, 21(5): 41-47
    [46]Liu W.-Y., Lei Z.-L., Wang J.-K. Kinetics and mechanism of plasma oxidative desulfurization in liquid phase[J]. Energy & Fuels, 2001, 15(1): 38-43
    [47]陈新,周炜,沈本贤.催化裂化汽油萃取-光化学反应深度脱硫的研究[J].华东理工大学学报(自然科学版), 2005, 31(3): 285-289
    [48]Ma X., Sun L., Song C. A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications[J]. Catalysis Today, 2002, 77: 107-116
    [49]Irvine R. L. Process for desulfurizing gasoline and hydrocarbon feedstocks[P]. USA:
    [50]章燕豪.吸附作用[M].上海:科学技术文献出版社, 1989
    [51]康善娇,窦涛,李强,等. FCC汽油吸附脱硫技术研究进展[J].化工进展, 2005, 24(4): 357-361
    [52]Khare G. P., Engelbert D. Transport desulfurization process utilizing a sulfur sorbent that is both fluidizable and circulatable and a method of making such sulfur sorbent[P]. USA:
    [53]秦如意,张晓静,刘金龙. FCC汽油吸附脱硫工艺的研究[J].石油炼制与化工, 2003, 34(3): 24-28
    [54]张晓静,秦如意,刘金龙. FCC汽油吸附脱硫工艺脱附剂的研究[J].石油炼制与化工, 2004, 35(4): 5-8
    [55]Velu S., Ma X., Song C. Selective Adsorption for removing sulfur from jet fuel over zeolite-based adsorbents[J]. Industrial & Engineering Chemistry Research, 2003, 42: 5293-5304
    [56]Velu S., Song C., Engelhard M. H., et al. Adsorptive removal of organic sulfur compounds from jet fuel over k-exchanged NiY zeolites prepared by impregnation and ion exchange[J]. Industrial & Engineering Chemistry Research, 2005, 44: 5740-5749
    [57]Jeevanandam P., Klabunde K. J., Tetzler S. H. Adsorption of thiophenes out of hydrocarbons using metal impregnated nanocrystalline aluminum oxide[J]. Microporous and Mesoporous Materials, 2005, 79(1-3): 101-110
    [58]Chica A., Strohmaier K., Iglesia E. Adsorption, desorption, and conversion ofthiophene on H-ZSM5[J]. Langmuir, 2004, 20: 10982-10991
    [59]Salem A. B. S. H., Hamid H. S. Removal of sulfur compounds from naphtha solutions using solid adsorbents[J]. Chemical Engineering & Technology, 1997, 20(5): 342-347
    [60]Yang R. T., Takahashi A., Yang F. H. New sorbents for desulfurization of liquid fuels byπ-complexation[J]. Industrial & Engineering Chemistry Research, 2001, 40: 6236-6239
    [61]Takahashi A., Yang F. H., Yang R. T. New sorbents for desulfurization byπ-complexation: thiophene/benzene adsorption[J]. Industrial & Engineering Chemistry Research, 2002, 41: 2487-2496
    [62]Hernandez-Maldonado A. J., Yang R. T. Desulfurization of commercial liquid fuels by selective adsorption viaπ-complexation with Cu(I)-Y zeolite[J]. Industrial & Engineering Chemistry Research, 2003, 42: 3103-3110
    [63]Hernandez-Maldonado A. J., Stamatis S. D., Yang R. T., et al. New Sorbents for desulfurization of diesel fuels viaπcomplexation: layered beds and regeneration[J]. Industrial & Engineering Chemistry Research, 2004, 43: 769-776
    [64]Hernandez-Maldonado A. J., Yang R. T. Desulfurization of diesel fuels by adsorption viaπ-complexation with vapor-phase exchanged Cu(I)-Y zeolites[J]. Journal of American Chemical Society, 2004, 126: 992-993
    [65]Garcia-Gutierrez J. L., Fuentes G. A., Hernandez-Teran M. E., et al. Ultra-deep oxidative desulfurization of diesel fuel with H2O2 catalyzed under mild conditions by polymolybdates supported on Al2O3[J]. Applied Catalysis A: General, 2006, 305(1): 15-20
    [66]Garcia-Gutierrez J. L., Fuentes G. A., Hernandez-Teran M. E., et al. Ultra-deep oxidative desulfurization of diesel fuel by the Mo/Al2O3-H2O2 system: the effect of system parameters on catalytic activity[J]. Applied Catalysis A: General, 2008, 334(1-2): 366-373
    [67]Miller J. W., Ward J. W. Desulfurization of hydrocarbons[P]. USA: US 4419224, 1983
    [68]Bailey G. W., Swan G. A. Nickel adsorbent for sulfur removal from hydrocarbon feeds[P]. USA: US 4634515, 1987
    [69]Bansal R. C., Goyal M. Activated carbon adsorption[M]. Boca Raton: Taylor & Francis, 2005
    [70]王鹏,张海禄.表面化学改性吸附用活性炭的研究进展[J].炭素技术, 2003, (3): 23-28
    [71]韩严和.电增强活性炭纤维吸附水中部分有机物的研究[D].大连:大连理工大学, 2006
    [72]Rodriguez-Reinoso F., Molina-Sabio M., A.Munecas M. Effect of microporosity and oxygen surface groups of activated carbon in the adsorption of molecules of different polarity[J]. Journal of Physical Chemistry, 1992, 96(6): 2707-2712
    [73]Salem A. B. S. H. Naphtha desulfurization by adsorption[J]. Industrial & Engineering Chemistry Research, 1994, 33: 336-340
    [74]Sano Y., Choi K.-H., Korai Y., et al. Adsorptive removal of sulfur and nitrogen species from a straight run gas oil over activated carbons for its deep hydrodesulfurization[J]. Applied Catalysis B: Environmental, 2004, 49: 219-225
    [75]Sano Y., Choi K.-H., Korai Y., et al. Selection and further activation of activated carbons for removal of nitrogen species in gas oil as a pretreatment for its deep hydrodesulfurization[J]. Energy & Fuels, 2004, 18: 644-651
    [76]Jiang Z., Liu Y., Sun X., et al. Activated carbons chemically modified by concentrated H2SO4 for the adsorption of the pollutants from wastewater and the dibenzothiophene from fuel oils[J]. Langmuir, 2003, 19(3): 731-736
    [77]JIANG Z., LIU Y., SUN X., et al. Adsorption of dibenzothiophene on modified activated carbons for ultra-deep desulfurization of fuel oils[J].催化学报, 2003, 24(9): 649-650
    [78]Ania C. O., Bandosz T. J. Importance of structural and chemical heterogeneity of activated carbon surfaces for adsorption of dibenzothiophene[J]. Langmuir, 2005, 21(17): 7752-7759
    [79]Kim J. H., Ma X., Zhou A., et al. Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: A study on adsorptive selectivity and mechanism[J]. Catalysis Today, 2006, 111: 74-83
    [80]Xue M., Chitrakar R., Sakane K., et al. Selective adsorption of thiophene and 1-benzothiophene on metal-ion-exchanged zeolites in organic medium[J]. Journal of Colloid and Interface Science, 2005, 285(2): 487-492
    [81]Eicher T., Hauptmann S. The chemistry of heterocycles[M]. Second Edition. Wiiey-VCH, 2003
    [82]Yang R. T., Hernandez-Maldonado A. J., Yang F. H. Desulfurization of transportation fuels with zeolites under ambient conditions[J]. Science, 2003, 301: 79-81
    [83]Sano Y., Sugahara K., Choi K.-H., et al. Two-step adsorption process for deepdesulfurization of diesel oil[J]. Fuel, 2005, 84: 903-910
    [84]Jayne D., Zhang Y., Haji S., et al. Dynamics of removal of organosulfur compounds from diesel by adsorption on carbon aerogels for fuel cell applications[J]. International Journal of Hydrogen Energy, 2005, 30(11): 1287-1293
    [85]Haji S., Erkey C. Removal of dibenzothiophene from model diesel by adsorption on carbon aerogels for fuel cell applications[J]. Industrial & Engineering Chemistry Research, 2003, 42: 6933-6937
    [86]Goering J., Burghaus U. Adsorption kinetics of thiophene on single-walled carbon nanotubes (CNTs)[J]. Chemical Physics Letters, 2007, 447(1-3): 121-126
    [87]Quigley W. W. C., Yamamoto H. D., Aegerter P. A., et al. Infrared spectroscopy and temperature-programmed desorption study of adsorbed thiophene onγ-Al2O3[J]. Langmuir, 1996, 12: 1500-1510
    [88]Snoeyink V. L., Weber W. J. The surface chemistry of active carbon, a discussion of structure and surface functional groups[J]. Environmental Science & Technology, 1967, 1(3): 228-234
    [89]Pearson R. G. Hard and soft acids and bases[J]. Journal of American Chemical Society, 1963, 85(22): 3533-3539
    [90]Alfarra A., Frackowiak E., Beguin F. The HSAB concept as a means to interpret the adsorption of metal ions onto activated carbons[J]. Applied Surface Science, 2004, 228(1-4): 84-92
    [91]余谟鑫,李忠,夏启斌,等.活性炭表面负载金属离子对其吸附苯并噻吩的影响[J].化工学报, 2006, 57(8): 1943-1948
    [92]Yang R. T., Kikkinides E. S. New sorbents for olefin-paraffin separations by adsorption viaπ-complexation[J]. AIChE Journal, 1995, 41: 509
    [93]Hernandez-Maldonado A. J., Qi G., Yang R. T. Desulfurization of commercial fuels byπ-complexation: Monolayer CuCl/γ-Al2O3[J]. Applied Catalysis B: Environmental, 2005, 61(3-4): 212-218
    [94]Wang Y., Yang R. T. Desulfurization of liquid fuels by adsorption on carbon-based sorbents and ultrasound-assisted sorbent regeneration[J]. Langmuir, 2007, 23(7): 3825-3831
    [95]Wang Y., Yang R. T., Heinzel J. M. Desulfurization of jet fuel byπ-complexation adsorption with metal halides supported on MCM-41 and SBA-15 mesoporous materials[J]. Chemical Engineering Science, 2007, In Press, Accepted Manuscript:
    [96]Ma X., Sprague M., Song C. Deep desulfurization of gasoline by selective adsorption over nickel-based adsorbent for fuel cell applications[J]. Industrial & Engineering Chemistry Research, 2005, 44: 5768-5775
    [97]Ko C. H., Park J. G., Park J. C., et al. Surface status and size influences of nickel nanoparticles on sulfur compound adsorption[J]. Applied Surface Science, 2007, 253(13): 5864-5867
    [98]谢福中,胡华荣,乔明华,等.噻吩在猝冷骨架Ni上吸附脱硫的XPS研究[J].高等学校化学学报, 2006, 27(9): 1729-1732
    [99]曾小军,张晓昕,宗保宁.激冷镍基合金脱硫吸附剂的研究[J].石油炼制与化工, 2006, 37(1): 17-21
    [100]Zhang J. C., Song L. F., Hu J. Y., et al. Investigation on gasoline deep desulfurization for fuel cell applications[J]. Energy conversion and management, 2005, 46(1): 1-9
    [101]Larrubia M. A., Gutièrrez-Alejandre A., Ramirez J., et al. A FT-IR study of the adsorption of indole, carbazole, benzothiophene, dibenzothiophene and 4,6-dibenzothiophene over solid adsorbents and catalysts[J]. Applied Catalysis A: General, 2002, 224: 167-178
    [102]Delitala C., Cadoni E., Delpiano D., et al. Liquid-phase thiophene adsorption on MCM-22 zeolite and activated carbon[J]. Microporous and Mesoporous Materials, 2008, 110(2-3): 197-215
    [103]Wang S., Zhou L., Long L., et al. Thiophene capture with silica gel loading formaldehyde and hydrochloric acid[J]. Industrial & Engineering Chemistry Research, 2008:
    [104]GB/T 12496.3-1999,木质活性炭实验方法-灰分含量的测定[S].北京:中国标准出版社, 1999
    [105]Boehm H. P. Some aspects of the surface chemistry of carbon blacks and other carbons[J]. Carbon, 1994, 32(5): 759-769
    [106]Valdes H., Sanchez-Polo M., Rivera-Utrilla J., et al. Effect of ozone treatment on surface properties of activated carbon[J]. Langmuir, 2002, 18(6): 2111-2116
    [107]余谟鑫,李忠,夏启斌,等.活性炭表面热氧化对其吸附二苯并噻吩性能的影响[J].化工学报, 2007, 58(4): 938-943
    [108]Moreno-castilla C., Carrasco-marin F., Maldonado-hodar F. J., et al. Effects of non-oxidant and oxidant acid treatments on the surface properties of an activated carbon with very low ash content[J]. Carbon, 1998, 36(1-2): 145-151
    [109]Chiang H.-L., Chiang P. C., Huang C. P. Ozonation of activated carbon and its effects on the adsorption of VOCs exemplified by methylethylketone and benzene[J]. Chemosphere, 2002, 47(3): 267-275
    [110]Lee S. H. D., Kumar R., Krumpelt M. Sulfur removal from diesel fuel-contaminated methanol[J]. Separation and Purification Technology, 2002, 26(2-3): 247-258
    [111]杨林,李春虎,冯丽娟,等.改性活性炭脱除FCC柴油中硫化物的研究[J].炼油技术与工程, 2006, 36(11): 35-38
    [112]Chiang H.-L., Huang C. P., Chiang P. C. The surface characteristics of activated carbon as affected by ozone and alkaline treatment[J]. Chemosphere, 2002, 47(3): 257-265
    [113]谢甫琴科,利荣诺夫.臭氧化法水处理工艺学[M].刘存礼译.北京:清华大学出版社, 1987
    [114]Valdés H., Zaror C. A. Ozonation of benzothiazole saturated-activated carbons: Influence of carbon chemical surface properties[J]. Journal of Hazardous Materials, 2006, 137(2): 1042-1048
    [115]Gregg S. J., Sing K. S. W.吸附、比表面与孔隙率[M].高敬琮等译.化学工业出版社, 1989
    [116]单晓梅,朱书全,张文辉,等.氧化法改性煤基活性炭和椰壳活性炭的研究[J].中国矿业大学学报, 2003, 32(6): 729-733
    [117]Chen J. P., Wu S., Chong K.-H. Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption[J]. Carbon, 2003, 41(10): 1979-1986
    [118]姚丽群,高利平,托罗别克,等.活性炭的表面化学改性及其对有机硫化物的吸附性能的研究[J].燃料化学学报, 2006, 34(6): 749-752
    [119]Alvarez P. M., Garcia-Araya J. F., Beltran F. J., et al. Ozonation of activated carbons: Effect on the adsorption of selected phenolic compounds from aqueous solutions[J]. Journal of Colloid and Interface Science, 2005, 283(2): 503-512
    [120]Jia Y. F., Thomas K. M. Adsorption of cadmium ions on oxygen surface sites in activated carbon[J]. Langmuir, 2000, 16(3): 1114-1122
    [121]Biniak S., Szymanski G., Siedlewski J., et al. The characterization of activated carbons with oxygen and nitrogen surface groups[J]. Carbon, 1997, 35(12): 1799-1810
    [122]Lopez-Garzon F. J., Domingo-Garcia M., Perez-Mendoza M., et al. Textural and chemical surface modifications produced by some oxidation treatments of a glassy carbon[J]. Langmuir, 2003, 19: 2838-2844
    [123]Gomez-Serrano V., Alvarez P. M., Jaramillo J., et al. Formation of oxygen complexes by ozonation of carbonaceous materials prepared from cherry stones: I. Thermal effects[J]. Carbon, 2002, 40(4): 513-522
    [124]唐强,曹子栋,王盛,等.活性炭吸附法脱硫实验研究和工业性应用[J].现代化工, 2003, 23(3): 37-40
    [125]近藤精一,石川达雄,安部郁夫.吸附科学[M].李国希译.北京:化学工业出版社, 2006
    [126]邢其毅,徐瑞秋,裴伟伟,等.基础有机化学(上)[M].北京:高等教育出版社, 2005
    [127]Pearson R. G. Chemical hardness: applications from molecules to solids[M]. Weinheim: WILEY-VCH, 1997
    [128]Meneses L., Araya A., Pilaquinga F., et al. Local hardness: An application to electrophilic additions[J]. Chemical Physics Letters, 2007, 446(1-3): 170-175
    [129]Zhou b., Ma X., Song C. Liquid-phase adsorption of multi-ring thiophenic sulfur compounds on carbon materials with different surface properties[J]. Journal of Physical Chemistry B, 2006, 110: 4699-4707
    [130]叶振华.化工吸附分离过程[M].北京:中国石化出版社, 1992:
    [131]张春丽,任广军,宋恩军,等. TiO_2柱撑膨润土对染料茜素红的吸附行为[J].应用化学, 2006, 23(3): 305-308
    [132]刘福强,陈金龙,费正皓,等.复合功能超高交联吸附树脂对氨基萘酚磺酸的静态吸附热力学及动力学特征[J].应用化学, 2003, 20(12): 1123-1128
    [133]陈禹银,耿信鹏.液-固吸附体系中计量置换吸附模型的热力学研究[J].高等学校化学学报, 1993, 14(10): 1432-1436
    [134]代敏,班红艳,张晓彤,等.环戊烷和环己烷在silicalite-1分子筛上的热脱附行为[J].燃料化学学报, 2005, 33(1): 117-120
    [135]彭书传,王诗生,陈天虎,等.坡缕石对水中亚甲基蓝的吸附动力学[J].硅酸盐学报, 2006, 34(6): 733-738
    [136]Lagergren S. Zur theorie der sogenannten adsorption gel?ster stoffe[J]. Kungliga Svenska Vetenskapsakademiens. Handlingar, 1898, 24(4): 1-39
    [137]郭卓,袁悦.介孔碳CMK-3对苯酚的吸附动力学和热力学研究[J].高等学校化学学报, 2007, 28(2): 289-292
    [138]Ho Y. S., McKay G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents[J]. Trans IChemE, 1998, 76(Part B): 332-340
    [139]蒋维均,雷恒良,刘茂林,等.化工原理(下册)[M].第二版.北京:清华大学出版社, 2003:
    [140]刘转年.煤基超细复合吸附剂的制备及吸附特性研究[D].西安:西安建筑科技大学, 2004
    [141]明媚.载铜吸附剂的制备及其对煤油脱硫醇的研究[D].天津:天津师范大学, 2006
    [142]McKay G., Al Duri B. Multicomponent dye adsorption onto carbon using a solid diffusion mass-transfer model[J]. Industrial & Engineering Chemistry Research, 1991, 30(2): 385-395
    [143]李志东,朴香兰,朱慎林. PEG-400萃取脱除FCC汽油中硫化物的研究[J].石油炼制与化工, 2002, 33(7): 24-27
    [144]刘生.球状活性炭的研制[D].北京:北京化工大学, 2005
    [145]Kyotani T. Control of pore structure in carbon[J]. Carbon, 2000, 38(2): 269-286
    [146]董为毅,李保安.载镍炭化树脂催化剂的制备——树脂预处理及交换对炭化树脂表面性能的影响[J].离子交换与吸附, 1995, 11(2): 97-102
    [147]Nakagawa H., Watanabe K., Harada Y., et al. Control of micropore formation in the carbonized ion exchange resin by utilizing pillar effect[J]. Carbon, 1999, 37(9): 1455-1461
    [148]Sharma A., Nakagawa H., Miura K. A novel nickel/carbon catalyst for CH4 and H2 production from organic compounds dissolved in wastewater by catalytic hydrothermal gasification[J]. Fuel, 2006, 85(2): 179-184
    [149]Hines D., Bagreev A., Bandosz T. J. Surface properties of porous carbon obtained from polystyrene sulfonic acid-based organic salts[J]. Langmuir, 2004, 20(8): 3388-3397
    [150]李淑君,陶毓博,李坚,等.用TG-DSC-FTIR联用技术研究酚醛树脂的热解行为[J].东北林业大学学报, 2007, 35(6): 56-58
    [151]钱庭宝.离子交换剂应用技术[M].天津:天津科学技术出版社, 1984
    [152]Huntley D. R., Mullins D. R., Wingeier M. P. Desulfurization of thiopheniccompounds by Ni(111): adsorption and reactions of thiophene, 3-methylthiophene, and 2,5-dimethylthiophene[J]. Journal of Physical Chemistry, 1996, 100: 19620-19627
    [153]Bezverkhyy I., Ryzhikov A., Gadacz G., et al. Kinetics of thiophene reactive adsorption on Ni/SiO2 and Ni/ZnO[J]. Catalysis Today, 2008, 130(1): 199-205
    [154]Baeza P., Aguila G., Gracia F., et al. Desulfurization by adsorption with copper supported on zirconia[J]. Catalysis Communications, 2008, 9(5): 751-755
    [155]Ma X., Velu S., Kim J. H., et al. Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications[J]. Applied Catalysis B: Environmental, 2005, 56: 137-147

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700