用户名: 密码: 验证码:
稠油油藏表面活性剂驱油机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学驱技术是进一步提高稠油油藏采收率的有效手段,为了研究稠油油藏提高采收率的机理,构建了具有不同界面张力和乳化能力的驱油体系,首先确定了具有不同结构的含氧丙烯链节的阴离子表面活性剂以及烷基羧基甜菜碱与桩西稠油的界面张力特点,研究表明含有氧丙烯链节的阴离子表面活性剂界面张力随盐含量增加先降低后升高,增加PO数和烷烃碳数有利于降低界面张力。十四烷基羧基甜菜碱和十六烷基甜菜碱的界面张力随着活性剂浓度的升高而升高,增加矿化度有利于降低油水界面张力;十八烷基甜菜碱的界面张力随着活性剂浓度和矿化度的增加先降低后升高。表面活性剂与Na2CO3复配体系中,当Na2CO3浓度大于0.35%时协同效应显著,表面活性剂在较低的使用浓度下,就可以达到超低界面张力。其次采用最小乳化转速法研究了不同表面活性剂的乳化能力,研究表明9AS-n-0和13AS-n-0的乳化性能随矿化度的变化呈现“抛物线”的变化趋势,但是体系的乳化性能和动态平衡界面张力及动态初始界面张力都没有明显对应关系,其影响因素比较复杂;烷基甜菜碱对桩西原油的乳化能力优于9AS和13AS系列的表面活性剂,增加甜菜碱使用浓度和矿化度有利于增强体系的乳化能力。建立了油膜收缩速率的测定方法,评价了在表面活性剂溶液和碳酸钠溶液中的油膜收缩速率,研究表明活性剂通过降低水-固界面张力和油-水界面张力加速了油膜的收缩;碱与原油反应产生的表面活性物质可以吸附在油-固界面上降低油-固界面张力,增强固体表面的亲油性,降低油膜的收缩速率。在前面工作的基础上构建了界面张力、乳化能力不同的17种驱油体系,对这些体系进行了36次物理模拟评价,发现乳化能力是取得好驱油效果的必要条件而非充分条件、稠油化学驱的采收率与驱油体系的油水界面张力没有对应关系。实验表明低界面张力、高乳化速率和油膜收缩速率有利于提高分散残余油的采收率;低油膜收缩速率对提高驱替介质在高含油饱和度区域的波及体积至关重要。碱通过维持油/水/固三相接触点亲油性和降低油-水界面张力,减弱了驱替介质沿油与岩石之间的渗入,增强了驱替介质从原油中心的突进和分散,提高了驱替压力和波及体积。该发现对稠油油藏化学驱的设计具有指导意义。
The chemical flooding is an effect way to enhance oil recovery for heavy oil reservoir. The systems with different IFT and emulsifying power were setup to research the mechanism for enhancing heavy oil recovery. The IFT for anionic surfactant with propylene oxide and betaine were studied. The IFT for anionic surfactant with propylene oxide increase before decrease with the increase of the salinity, and decrease with the increase of the number of PO and carbon chain. The IFT for tetradecyl betaine and hexadecyl betaine increases with the increase of surfactant concentration. The increase for salinity is favor for decrease the IFT. The IFT of octadecyl betaine increase before decrease with the increase of the surfactant concentration and salinity. In surfactant and Na2CO3 system, it could reach the ultra-low IFT with low surfactant concentration if the Na2CO3 is more than 0.35%. The emulsifying power for surfactant is evaluated by the minimum emulsify rotate speed. The emulsifying power of 9AS-n-0 and 13AS-n-0 change with salinity as paracurve, but it has no relation with the IFT. The emulsifying power of betaine is better than 9AS and 13AS and it is enhanced by the increase of the surfactant concentration and salinity. The method to evaluate the oil film shrink velocity is built. The oil film shrink velocity in surfactant and Na2CO3 solution were researched. It shows that the surfactant could decrease the W/S and O/W IFT which is good for oil film shrink. The in-situ surfactant that comes from the reaction of Na2CO3 and oil acid could adsorb on the oil and solid surface to reduce the oil and solid surface interfacial tension which is bad for oil film shrink. The 17 kinds of systems with different ITF and emulsification ability were chosen. Thirty-six experiments were done. It shows that the displacement system with good emulsification ability is the necessary condition to get higher recovery. The recovery for heavy oil reservoir has no relation with IFT. It indicates that the system with low IFT and high emulsification ability and high oil film shrink velocity is good for enhancing separated oil recovery, and the system with low oil film shrink velocity could enhance recovery for the area with higher oil saturation. The sodium carbonate could keep the solid oil-wet and reduce the O-W IFT to prevent the water from penetrating between the oil and solid. It makes the displacement agent flow through the oil, and enhances the displacement pressure and sweep efficiency. The results are helpful to the chemical flooding for the heavy oil reservoir.
引文
[1] Qiang Liu, Mingzhe Dong, Shanzhou Ma et al. Surfactant enhanced alkaline flooding for westen Canadian heavy oil recovery [J]. Colloids and Surface A: physicochem. Eng.A spects. 2006,273:219~228
    [2]李世军,杨振宇,宋考平,等.三元复合驱中乳化作用对提高采收率的影响.石油学报,2003,24(5):71-73
    [3]王德民,程杰成,杨清彦.粘弹性聚合物溶液能够提高岩心的微观驱油效率[J].石油学报,2000,21(5):352-355
    [4]韩伯惠,廖广志.提高采收率方法的前景和问题[J].国外油田工程,1997,10(6):53-56
    [5]赵庆辉,刘其成,刘志惠,等.超稠油耐高温乳化降粘剂优选实验研究[J].特种油气藏,2001,8(3):89-92
    [6]彭朴.采油有表面活性剂[M].第一版.北京:化学工业出版社,2003:10-11
    [7]魏小明,刘喜林.稠油乳化降粘开采用表面活性剂的筛选[J].日用化学工业,2002,32(4):40-42
    [8]马立辉,梁梦兰.稠油低温乳化降粘剂BL-1的研制及应用[J].油田化学,2002,19(2):134-136
    [9] J-F.Argiller,C.Coustet,I.Hénaul.Heavy Oil Rheology as a Function of Asphaltene and Resin Content and Temperature[Z].SPE79496, 2002
    [10]顿铁军.中国稠油能源的开发与展望[J].西北地质,1995,16(1):32-35
    [11]于连东.世界稠油资源的分布及其开采技术的现状与展望[J].特种油气藏,2001,8(2):98-103
    [12] M.帕拉茨.热力采油.王弥康译[M].第一版.北京:石油工业出版社,1989:189-194
    [13]刘文章.稠油注蒸汽热采工程[M].第一版.北京:石油工业出版社,1997:23-32
    [14] Reed, R.n.Healy. Improved Oil Recovery by Surfactant and Polymer Flooding [J]. New York SanFrancisco,1997,23(4):96-102
    [15] Atkinson, h. Recovery of petroleum from oil bearing sans [P]. No.1651311,U.S. Patent,1927
    [16]王云峰,张春光,候万国.表面活性剂及其在油气田中的应用[M].第一版.北京:石油工业出版社,1995:53-55
    [17]赵福麟,化学原理(Ⅱ)[M].第一版.东营:石油大学出版社,1999:93-97
    [18]康万利.大庆油田三元复合驱化学剂作用机理研究[M].第一版.北京:石油工业出版社,2001:58-59
    [19]丁颖.表面活性剂在三次采油中的应用与展望[J].内蒙古石油化工,2004,30(2):121-123
    [20]叶仲彬.提高采收率原理[M].第一版.北京:石油工业出版社,2000:144-145
    [21]杨承志.化学驱提高石油采收率[M].第一版.北京:石油工业出版社,1999:87
    [22]夏惠芬.三元复合驱油体系粘弹性及界面活性对驱油效率的影响[J].油田化学,2003,20(1):61-64
    [23]夏惠芬,张云祥,张玉亮,等.三元复合体系在多孔介质中的流变性[J].大庆石油学院学报,1999,23(4):18-21
    [24]侯吉瑞,浏中春,夏惠芬,等.三元复合体系的粘弹效应对驱油效率的影响[J].油气地质与采收率,2001,8(3):61-64
    [25]杨清彦,宫文超,贾忠伟.大庆油田三元复合驱驱油机理的研究[J].大庆石油地质与开发,1999,18(3):24-26
    [26]刘建军,宋义敏,潘一山.ASP三元复合体系驱油微观机理研究[J].辽宁工程技术大学学报,2003,22(3):226-228
    [27]苏玉林.国外表面活性剂驱油配方及其应用专利文集[M].第一版.北京:石油工业出版社.1999:36-61
    [28]李干佐,田根林.适用于大庆油田的天然混合羧酸盐ASP驱油体系[J].油田化学,1999,16(4):341-344
    [29]胡明刚,邓启刚.表面活性剂在大庆油田复合驱中的应用研究[J].齐齐哈尔大学学报,2003,19(2):6-8
    [30]李干佐,房秀敏.表面活性剂在能源和选矿工业中的应用[M].第一版.北京:中国轻工业出版社,2002:87-100
    [31]赵世民.表面活性剂—原理、合成、测定及应用[M].第一版.北京:中国石化出版社,2005:55-56
    [32] K.Shinoda, H.Kunieda. Encyclopedia of Emulsion Technology [J]. Basic Theory,1983,1(5):87-90
    [33] M.Bourrel, R.S. Schechter. Microemulsion and Related Systems: Formulation,Solvency,and Physical Properties[J]. Surfactant Science Series,1988,30(1):432-446
    [34]崔正刚,殷福珊.微乳化技术及应用[M].1999年版,北京:中国轻工业出版社,1999:198-205
    [35]刘雯.锅炉改烧奥里乳化油的技术问题[J].油气储运,1998,17(12):43-46
    [36]赵立合.关于稠油改性技术的试验研究[J].冶金能源,1999,18(4):35-39
    [37]冯雨新.乳化降粘技术解决超稠油管道输送问题[J].管道技术与设备,1999,1(5):9-11
    [38]曹重远,佘跃惠.褐煤转化制取稠油降粘剂的研究[J].石油大学学报(自然科学版),1992,16(3):82-88
    [39]范维玉,胡德燕.GL系列特稠油乳化降粘剂及其O/W型乳状液流变性研究[J].石油大学学报(自然科学版),1998,22(2):48-50
    [40]付亚荣,马永忠.HRV系列降粘剂在冀中南部稠油开采中的应用[J].油田化学,1999,16(3):206-208
    [41]赵立合,郑锡同.关于稠油改性技术的试验研究[J].冶金能源,1999,18(4):35-39
    [42]黄敏.稠油降粘剂DJH-1[J].油田化学,2000,17(2):137-139
    [43] Gifford G. McClafin. The replacement of hydrocarbon Diluent with surfactant and water for the production of heavy,viscous crude oil[J]. Journal of Petroleum Technology,1982:2258-2264
    [44] Sharma K. Pipeline Transportation of Heavy/Viscous Oil as Water Continuous Emulsion in North Cambay Basin (India). SPE India Oil and Gas Conference and Exhibition,New Dehli,India.1998:17-19
    [45] A.Stockwell. Transoil technology for heavy oil transportation:results of field trials at Wulf Lake [Z]. SPE 183262,1988
    [46]曲景奎,周桂英,朱友益,等.三次采油用烷基苯磺酸盐弱碱体系的研究[J].精细化工,2006,23(1):82-85
    [47]邹文化,崔正刚,张天林.重烷基苯磺酸盐中试产品的应用性能[J].日用化学工业,2002,32(6):16-19
    [48] Jie Yang, Weihong Qiao, Zongshi Li. Effects of branching in hexadecylbenzene sulfonate isomers on interfacial tension behavior in oil/alkali systems [J]. Fuel,2005,84:1607-1611
    [49] Zhongkui Zhao, Chenguang Bi, Weihong Qiao, et al. Dynamic interfacial tension behavior of the novel surfactant solutions and Daqing crude oil [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2007,294:191-202
    [50]沈平平.大幅度提高采收率的基础研究[J].中国基础科学,2003,(2):9-14
    [51]郭万奎,杨振宇,伍晓林,等.用于三次采油的新型弱碱表面活性剂[J].石油学报,2007, 27(5):75-78
    [52] P.D.Berger, C.H.Lee. Ultra low oncentration surfactants for sandstone and limestone floods [Z]. SPE75186,2002
    [53]韩冬,沈平平.表面活性剂驱油原理及应用[M].北京:石油工业出版社,2001:213-289
    [54] Ramesh Varadaraj, Jan Bock, Paul Valint. Foundamental interfacial properties of alkyl-branched sulfate and ethoxy sulfate surfactants derived from guerbet alcohols. 1.surface and instantaneous interfacial tensions [J]. J.Phys.Chem, 1991, 95: 1671-1676
    [55] Richard F.Tabor, Sarah Gold. Electron density matching as a guide to surfactant design [J]. Langmuir,2006,22:963-968
    [56]王德民.大庆油田“三元”、“二元”、“一元”驱油研究[J].大庆石油地质与开发,2003,22(3):1-9
    [57]黄宏度,W.H.DonnellanⅢ,J.H.Jones.用中和烃氧化产物制备高界面活性的驱油剂[J].江汉石油学院学报,1990,12(4):50-50
    [58]李干佐,沈强,郑立强,等.新型驱油用表面活性剂天然混合羧酸盐[J].油田化学,1999,16(1):57-59,63
    [59]李干佐,顾强,毛宏志.天然混合羧酸盐驱油剂在中原油田的应用[J].油田化学,2000,17(4):346-347,358
    [60]黄宏度,吴一慧,王尤富等.石油磺酸盐和羧酸盐体系的界面活性[J].油田化学,2000,17(1):69-72
    [61] Walter W.Gale, Maura C.Puerto, Thomas L.Ashcraft et al. Propoxylatedethoxylated surfactants and method of recovering oil therewith [P]. US4293428, 1981
    [62] A.M.Michel, R.S.Djojosoeparto, Henk Haas et al. Enhanced waterflooding design with dilute surfactant concentrations for north sea conditions [Z]. SPE35372, 1996
    [63] J.M.Maerker, W.W.Gale. Surfactant flood process design for Loudon [Z]. SPE20218,1992
    [64] Shekhar Jayanti, Larry N.Britto, Varadarajan Dwarakanath. Laboratory evaluation of custom-designed surfactants to remediate NAPL source zones [J]. Environ.Sci. Technol, 2002, 36: 5491-5497
    [65] Y.Wu, P.Shuler, M.Blanco, et al. A study of branched alcohol propoxylated surfactants for improved oil recovery [Z]. SPE95404, 2005
    [66] D.B.Levitt, A.C.Jackson, C.Heinson. Identification and evaluation of high-performance EOR surfactants [Z]. SPE100089, 2006
    [67] Kishore K.Mohanty. Dilute surfactant methods for carbonate formations[R]. DE-FC26-02NT15322, 2005
    [68]王业飞,焦翠,赵福麟.羧甲基化的非离子型表面活性剂与石油磺酸盐的复配试验[J].石油大学学报,1996,20(4):52-55
    [69]李宜坤,赵福麟,王业飞.以丙酮作溶剂合成烷基酚聚氧乙烯醚羧酸盐[J].石油学报(石油加工),2003,19(2):33-38
    [70]靳志强,王涵慧,俞稼镛.Guerbet十四醇聚氧乙烯醚硫酸钠的合成与表面活性[J].精细化工,2002,19(8):435-439
    [71]秦冰.稠油乳化降粘剂结构与性能关系的研究[D].北京:中国石油化工科学研究院,2001
    [72]马文辉,梁梦兰,袁红,等.稠油低温乳化降粘剂BL-1的研制及反应[J].油田化学,2002,19(2):134-135
    [73]李明忠,赵国景,张乔良,等.耐盐稠油降粘剂的研制[J].精细化工,2004,21(5):380-384
    [74] Qiang Liu, Mingzhe Dong, Xiangan Yue, et al. Synergy of alkali and surfactant in emulsification of heavy oil in brine [J]. Colloidsand Surface A: physicochem. Eng.Aspects, 2006, 273: 219-228
    [75] Q.Liu,M.Dong, S.Ma. Alkaline/ surfactant flood potential in Western Candian heavy oil reservoirs [Z]. SPE99791,2006
    [76] Balzer Dieter, Lueders Harald. Process for the extration of crude oil for an underground deposite using surfactant [P]. US4985154, 1991
    [77] S.Lglauer, Y.Wu. Alkyl polyglycoside surfactants for improved oil recovery [Z]. SPE89472,2004
    [78] Hong Chen, Lijuan Han, Pingya Luo. The ultralow interfacial tensions between crude oils and Gemini surfactant solutions [J]. Journal of Colloid and Interface Science, 2005, 285: 872-874
    [79]谭中良,韩冬.阴离子孪连表面活性剂的合成及其界面活性研究[J].化学通报,2006,7:493-497
    [80]杨颖,李明远,林梅钦.非离子型Gemini表面活性剂的表面活性与固液界面吸附特性研究[J].中国石油大学学报(自然科学版),2006,30(3):123-125
    [81]朱森,程发,郑宝江.Gemini阴离子表面活性剂水溶液的界面活性[J].应用化学,2005,22 (7):92-795
    [82]郭丽梅,武首香,熊开琴.双子双酯硫酸钠的合成及性能[J].日用化学工业,2006,36(1):15-17
    [83]刘冰妮,葛启,刘燕军.二辛基低聚二醇合成工艺初探[J].天津工业大学学报,2004 ,23(3):46-48
    [84]沈平平,朱友益.三次采油复合驱用表面活性剂合成、性能及应用[M].第一版,北京:石油工业出版社,2002:120
    [85]曲景奎,朱友益,隋智慧.直链重烷基苯磺酸盐的驱油能力研究[J].化工进展,2003,22(2):126-129
    [86] T.F.More, Junior Member, R.L.Slobod, et al. Displacement of oil by water-effect of wettability, rate, and viscosity on recovery [Z]. SPE502, 1955
    [87] Necmettin Mungan. Role of wettability and interfacial tension in water flooding [Z]. SPE705, 1963
    [88] O.R.Wagner, R.O.Leach. Effect of interfacial tension on displacement efficiency [Z]. SPE1564, 1966
    [89] J.J.Taber. Dynamic and static forces required to remove a discontinuous oil phase from porous media containing both oil and water [Z]. SPE2098, 1968
    [90] W.R.Foster. A low-tension waterflooding process. SPE3803,1973
    [91]朱怀江,杨普华.化学驱中动态界面张力现象对气体效率的影响[J].石油勘探开发,1994,21(2):74-80
    [92]唐钢,李华斌,苏敏.复合驱界面张力与驱油效率的关系研究[J].大庆石油地质与开发,2005,24(3):81-83
    [93]侯吉瑞,刘中春,岳湘安.复合体系超低界面张力和碱在驱油过程中的实际作用[J].大庆石油地质与开,2006,25(6):82-86
    [94]李华斌,陈中华.界面张力特征对三元复合驱油效率影响的实验研究[J].石油学报,2006,27(5):96-98
    [95]陈中华,李华斌,曹宝格,等.复合驱中界面张力数量级与提高采收率的关系研究[J].海洋石油,2005,25(3):53-57
    [96] Rao D N, Girard M G. A new technique for reservoir wettability characterization [J]. J. Cdn. Pet. Tech. 1996, 35: 31
    [97] Wu Y, Shuler P J, Blanco M. A study of wetting behavior and surfactant EOR in carbonates with model compounds [Z]. SPE99612, 2006
    [98] Kumar K, Dao E K, Mohanty K K. Atomic force microscopy study of wettability alteration [Z]. SPE93009, 2005
    [99] Standnes D C, Austad Tor. Wettability alteration in chalk 1. Preparation of core material and oil properties [J]. Journal of Petroleum Science and Engineering, 2000, 28: 111-121
    [100] Rezaei Gomari K A, Hamouda A A. Effect of fatty acids, water composition and pH on the wettability alteration of calcite surface [J]. Journal of Petroleum Science and Engineering, 2006, 50: 140-150
    [101] Standnes D C, Austad Tor. Wettability alteration in carbonates interaction between cationic surfactant and carboxylates as a key factor in wettability alteration from oil-wet to water-wet conditions [J]. Colloids and surfaces A: Eng. Aspects. 2003, 216: 243-259
    [102] Liu L, Buckley J S. Alteration of wetting of mica surfaces [J]. Journal of Petroleum Science & Engineering, 1999, 24: 75-83
    [103] Graue A, Aspenes E, Bogno T, et al. Alteration of wettability and wettability heterogeneity [J]. Journal of Petroleum Science and Engineering, 2002, 33: 3-17
    [104] Rao D N, Ayirala S C, Abe A A. Impact of low-cost dilute surfactants on wettability and relative permeability [Z]. SPE99609, 2006
    [105] Rao D N. Wettability effects in thermal recovery operations [J]. SPE57897, SPE Reservoir Eval & Eng. 1999, 2(5): 420-430
    [106] Morris E E, Wieland D R. A microscopic study of the effect of variable wettability conditions on immiscible fluid displacement [M]. Society of petroleum engineers ofAIME, SPE704
    [107] Bi Zhichu, Liao Wensheng, Qi Liyun. Wettability alteration by CTAB adsorption at surfaces of SiO2 film or silica gel powder and mimic oil recovery [J]. Applied Surface Science, 2004, 221: 25-31
    [108] Standnes D C, Austad Tor. Wettability alteration in carbonates low-cost ammonium surfactants based on bio-derivatives from the coconut palm as active chemicals to change the wettability form oil-wet to water-wet conditions [J]. Colloids and Surfaces A: Eng. Aspects. 2003, 218: 161-173
    [109] Standnes D C, Austad Tor. Wettability alteration in chalk 2. Mechanism for wettability alteration from oil-wet to water-wet using surfactants [J]. Journal of petroleum science & engineering, 2000, 28: 123-143
    [110] Seethepalli A, Adibhatla B, Mohanty K K. Wettability alteration during surfactant flooding of carbonate reservoir [Z]. SPE 89423, 2004
    [111] Li Jingquan, Wang Wei, Gu Yongan. Dyanmic interfacial tension phenomenon and wettability alteration alteration of crude oil-rock-alkaline-surfactant solution systems [M]. At the SPE Technical conference and exhibition in Houston, Texas U.S.A. 2004
    [112] Ayirala S C, Vijapurapu C S, Rao D N. Beneficial effects of wettability altering surfactants in oil-wet fractured reservoirs [J]. Journal of Petroleum Science and Engineering, 2006, 52: 261-274
    [113] Enrique Serrano-Saldana, Armando Dominguez-Ortiz, Hermilo Perez-Aguilar. Wettability of solid/brine/n-dodecane systems: experimental study of the effects of ionic strength and surfactant concentration [J]. Colloids and Surfaces A: Physicochem.Eng. 2004, 241: 343-349
    [114] Verma Sandeep, Kumar V V. Relationship between Oil-Water Interfacial Tension and Oily Soil Removal in Mixed Surfactant Systems [J]. Journal of colloid and interface science, 1998, 207: 1-10
    [115] Kolev V L, Kochijashky I I, Danov K D, et al. Spontaneous detachment of oil drops from solid substrates: governing factors [J]. Journal of colloid and interface science, 2003, 257: 357-363
    [116] McGuire P L, Chatham J R, Paskvan F K, et al. Low salinity oil recovery: an exciting new EOR opportunity for Alaska’s North Slope [Z]. SPE93903, 2005
    [117] Zubari H K, Babu Sivakumar V C. Single well tests to determine the efficiency of alkaline-surfactant injection in a highly oil-wet limestone reservoir [M]. SPE 13th Middle East Oil Show & Conference. SPE81464, 2003: 1-6
    [118] I.Lakatos. Effect of IOR/EOR chemicals on interfacial rheological properties of crude oil/ water systems. SPE65391, 2001
    [119]高芒来,佟庆笑,孟秀霞.MD21膜驱剂溶液的界面特性研究[J].油田化学,2003,20(1):74-77
    [120]徐赋海,赵立强,肖建宏,等.分子沉积膜驱油技术研究现状[J].油气地质与采收率,2006,13(1):95-98
    [121]刘卫东,童正新,李明远,等.化学驱油体系的油/水界面粘度[J].油田化学,2000,17(4):337-339
    [122] D.B.Levitt,A.C.Jackson,L.N.Britton et al. Identification and evaluation of high- performance EOR surfactant [Z]. SPE100089, 2006
    [123] L.W.莱克.提高石油采收率的科学基础[M].李宗田,侯高文,赵炜译.北京:石油工业出版社,1992:264-285
    [124] Douglas Arnell, Malcolm, Jie Qi. Poison Spider field chemical fllod project[R]. DE-FG26-03NT15439, 2004
    [125] William A.GoddradⅢ, Yongchun Tang. Lower cost methods for improved oil recovery via surfactant flooding[R]. DE-FC26-01BC15362, 2004
    [126] Mingzhe Dong, Shanzhou Ma, Qiang Liu. Enhanced heavy oil recovery through interfacial instability: A study of chemical flooding for Brintnell heavy oil [M]. Fuel, 2008, 10: 1016
    [127] J.Bryan, A. Mai, A. Kantzas. Investigation into the processes responsible for heavy oil recovery by alkali-surfactant flooding [Z]. SPE113993, 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700