用户名: 密码: 验证码:
深水钻井井口力学分析及导管承载能力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深水钻井水下井口上部连接防喷器组及隔水管,下部连接套管串,在钻井作业过程中承受复杂的作用力,一旦发生井口失稳,将会带来严重后果。但是目前并没有针对该问题的系统的理论分析方法,因此有必要对水下井口的力学稳定性和导管及表层套管承载能力开展研究,为我国深水钻井设计及施工提供一定的理论依据。
     针对深水钻井特点,在综合分析井口横向弯矩及竖向力的共同作用、管柱抗弯刚度的变化、管柱与海底浅部地层间的非线性响应等特征的基础上,根据桩基和材料力学理论,建立了适于深水钻井的导管和表层套管承载能力分析模型及相应求解方法。结果表明,导管的侧阻力占到竖向承载力的绝大部分比例,随着导管入泥长度的增加,其竖向承载力迅速增大;横向作用力对管柱的作用集中在其上部较短的一段区域内,随着隔水管顶部张紧力、钻井船漂移量、海流流速的增加,管柱最大横向位移、偏移角度、弯矩、剪力及地基反力都逐渐增大,同时对管柱的作用深度逐渐增加。
     综合考虑海洋环境载荷、钻井船漂移、隔水管扰动等因素对套管柱与地层之间的相互作用的影响,提出了深水钻井水下井口力学稳定性分析方法,并建立了相应的力学分析模型及数值化求解方法。分析结果表明,水下井口的横向偏移及弯矩随张力比和海流流速的增加而大幅增大;随着钻井船漂移量的增加,井口的横向位移和弯矩近似线性增加;导管的下入深度必须超过海底浅部松软土层,超过该深度后下入深度再大对井口的横向稳定性也几乎没有影响;提高泥线以下一定深度的导管抗弯强度、控制合理的井口高度及冲刷深度、获取浅部地层的取样数据等措施可以增强水下井口的稳定性。
     针对隔水管摆动对井口稳定性及管柱承载能力的动态影响问题,依据土动力学基本理论,考虑土体非线性、管柱截面变化以及井口承担竖向载荷的特点,建立了管柱与海底浅部地层相互作用的动力分析模型,推导了线性模型中管柱的横向位移、偏移角度、弯矩、剪力的解析表达式,同时建立了非线性模型的数值化求解方法。分析结果表明,在较低频率区域管柱的变形及内力与静力情况下相差不大,只有接近管柱的自振频率时,变形及内力才急剧增加;导管外径和壁厚对管柱自振频率影响不大;不考虑井口竖向力对管柱的动力横向承载能力几乎没有影响;采用静力方法对井口稳定性及导管表层套管的承载能力进行分析可以满足工程要求。
     针对深水钻井喷射下入导管的工艺特点,依据所建立的井口力学稳定性和管柱承载能力分析理论,重点考虑时间效应对导管承载力的影响,建立了深水钻井导管下入深度确定方法,并提出了确定导管下深的必要条件。分析表明,随着恢复时间的增加,所需下入的导管深度可以相应减小,但是过大的时间间隔将增加钻井日费;承载力增长系数的选取对设计结果有较大影响,应根据区域试验数据确定;深水环境下隔水管传递到井口上的作用力对导管下入深度确定几乎没有影响。
     针对深水钻井SBOP系统的特点,利用所建立的常规深水钻井系统的井口稳定性分析理论对SBOP系统的水下井口稳定性及导管承载能力进行了分析。结果表明,SBOP系统的导管下入深度可以比常规系统浅很多,隔水管尺寸变小使其水下井口承受的载荷较常规系统大大降低,但是过小的导管尺寸仍然存在使井口失稳的危险;随着水深的增加,SBOP系统水下井口的横向偏移和弯矩逐渐增大,在较深水域必须增加隔水管浮力块。
     在理论研究的基础上,编制了深水钻井井口力学稳定性分析及导管下深设计软件,该软件可以迅速实现常规和SBOP两种系统的水下井口的力学稳定性能分析、导管和表层套管的承载能力分析、以及导管的合理下入深度设计。
As drilling operations move to deep water, subsea wellhead bears complex stress because it joins the marine riser and casing string. The stability of subsea wellhead becomes increasingly concerned. However, there is no theoretical analysis method regarding this problem at present. Therefore, it is essential to run research on the wellhead mechanical stability and the conductor bearing capacity.
     Based on the theories of pile foundation and mechanics of materials, a bearing capacity analytical model of the conductor and surface casing for deepwater drilling was established. The model considered deepwater drilling conditions, combined axial and lateral loads, variable stiffness of string, and nonlinear response between the string and soil. A numerical method was adopted to solve this model. Results indicate that the skin resistance of conductor occupies the major part of the vertical bearing capacity, and the vertical bearing capacity of conductor increases rapidly along with the conductor into the soil. The effect of lateral load is focused on the upper string section, and greater setting depth of the casing string has almost no influence on its lateral bearing capacity. With drilling vessel offset or TTR’s increase, the maximal lateral displacement, bending moment, shearing force and soil reaction along the string increased obviously, and the acting depth of the string increased gradually.
     Considering the influences such as the marine environmental loads, drilling vessel drifting, riser dynamic disturbance, nonlinear behavior between casing string and formation, a comprehensive stability analysis method and its corresponding numerical solution method were proposed. Results illustrate that the lateral displacement and bending moment of the wellhead increased nearly linear with the mean drifting offset. The greater TTR may cause wellhead instability because the wellhead has a limited bearing moment capacity, and thus it is necessary to disconnect the LMRP and BOP connection promptly. The setting depth of conductor must overrun the shallow soil of the sea bed, but greater setting depth has almost no influence on the stability of wellhead. Such measures as to enhance the conductor bending strength, control scour depth on seabed, acquire the geological sample data of shallow formation can strengthen the stability performance of wellhead.
     In view of the wellhead stability's dynamic effect problem that was caused by the riser swinging, according to the basic theory of terradynamics, considering the non-linear characteristics of soil, string-section changes and vertical load on the wellhead, the dynamic analytical model and the numerical solution method were established. The analysis results indicate that the deformation and internal force of casing string in the lower frequency region have little difference with the static situation, and the deformation and internal forces began to increase sharply only close to the natural frequency of the string. The outer diameter and wall thickness of conductor have little influence on the natural frequency of the string. The static method of the wellhead mechanical stability and conductor bearing capacity analysis is fulfilling the engineering requirements.
     Based on the analysis of conductor mechanical characteristics, jetting technique, geotechnics and pile theory, a universal determination method of conductor setting depth considering time effect was proposed. The method can reduce conductor design blindness and drilling cost. Results show that with set-up time increasing, the bearing capacity of conductor increases gradually, and the required setting depth could decrease. However, longer set-up time could cause drilling cost increasing, and therefore the set-up time should be determined according to actual situation. The growth factor of bearing capacity has considerable influence on the result, and it should be selected on the basis of block experimental data.
     The conventional stability analysis theory of subsea wellhead has been used to analyze the wellhead mechanical stability and the conductor bearing capacity of the SBOP system for deepwater drilling. Results indicate that the setting depth of conductor and the load on the subsea wellhead of SBOP system are smaller than conventional riser system. The riser with larger size will cause subsea wellhead greater bending moment and lateral displacement. It is necessary to increase the riser buoyancy when water depth increases.
     Based on the above theoretical studies, a software to analyze the mechanical stability of subsea wellhead was developed. This software may realize the mechanical properties analyses of subsea wellhead, the bearing capacity analysis of conductor and surface casing, the reasonable setting depth design of conductor for both conventional and SBOP drilling system.
引文
[1] Da Costa D. F. O., Rodrigues R. S., Negrao A. F.. Evolution of deepwater drilling in Brazil[R]. SPE 21158, 1990
    [2] King G. W.. Drilling engineering for subsea development wells[R]. SPE 18687, 1990
    [3] Rocha L. A. S., Junqueira P., Roque J. L.. Overcoming deep and ultra deepwater drilling challenges[R]. OTC 15233, 2003
    [4] Juiniti R., Salies J., Polillo A.. Campos basin: lessons learned and critical issues to be overcome in drilling and completion operations[R]. OTC 15221, 2003
    [5] Shaughnessy J., Daugherty W., Graff R., et al. More ultradeepwater drilling problems[R]. SPE 105792, 2007
    [6] Rohleder S. A., Sanders W. W., Williamson R. N., et al. Challenges of drilling an ultra-deep well in deepwater-spa prospect[R]. SPE/IADC 79810, 2003
    [7] Pat Watson, Eric Kolstad, Richard Borstmayer, et al. An innovative approach to development drilling in deepwater Gulf of Mexico[R]. SPE/IADC 79809,2003
    [8] Charlez P.A., Simondin A.. A collection of innovative answers to solve the main problematics encountered when drilling deep water prospects[R]. OTC 15234, 2003
    [9] Sedco D. S. H.. Ten years experience in deepwater drilling - 1,000 to 5,000 feet[R]. SPE 10419, 1982
    [10] American Petroleum Institute. API RP 16Q-2001, Recommended practice for design selection operation and maintenance of marine drilling riser system[S]. Washington, D C: American Petroleum Institute, 2001.
    [11] Hall R. S.. Drilling and producing offshore[M]. PennWell Publishing Company, Tulsa, Oklahoma, 1983
    [12]付英军,蒋世全,姜伟.深水钻井水下井口系统配置与选型研究[C].第六届全国石油钻井院所长会议论文集.北京:石油工业出版社,2007:400-407
    [13]方华灿.海洋石油钻采装备与结构[M].北京:石油工业出版社,1990
    [14] J.F.威尔逊.海洋结构动力学[M].杨国金,郭毅,唐钦满,等译.北京:石油工业出版社,1991
    [15]申智春.水下井口系统稳定性分析[D].南充:西南石油学院,2000
    [16] Bernfard Stahl, Michael P. Biur. Design methodology for offshore platform conductors[R]. OTC 3902, 1980
    [17] Barltrop N. D. P., Adams A. J.. Dynamics of fixed marine structures[M]. 3rded.,Butterworth-Heinemann, 1991
    [18] Wetmore S. B., Halbleib B. L.. Consideration for design of drilling conductors for the new generation of deepwater, harsh weather jackups[R]. SPE 23856, 1992
    [19] King G. W., Kevin Burton, Trevor Hodgson. A coupled analysis approach to the assessment of marine drilling systems[R]. SPE 20932, 1993
    [20] Thorogood J. L., Train A. S., Adams A. J.. Deep water riser system design and management[R]. lADC/SPE 39295,1998
    [21]弓大为.海洋隔水管故障分析[J].石油矿场机械,2003,32(5):4-7
    [22] Burke B. G.. An analysis of marine risers for deep water[R]. OTC 1771,1974
    [23] Simmonds D. G.. Dynamic analysis of the marine riser[R]. SPE 9735, 1980
    [24]蔡强康,吕英民,杨卫国.浮船钻井隔水管的有限元时域动态分析[J].石油学报,1986,7(4):111-121
    [25]贾星兰,方华灿.海洋钻井隔水管的动力响应[J].石油机械,1995,23(8):18-23
    [26]李华桂.海洋钻井隔水管的动力分析[J].石油学报,1996,17(1):122-126
    [27]周俊昌.海洋深水钻井隔水管系统分析[D].南充:西南石油学院,2001
    [28]石晓兵,陈平.三维荷载对海洋深水钻井隔水管强度的影响分析[J].天然气工业, 2004,24(12):86-88
    [29]李中,杨进,曹式敬.深海水域钻井隔水管力学特性分析[J].石油钻采工艺,2007, 29(1):19-21
    [30]畅元江,陈国明,许亮斌,等.深水顶部张紧钻井隔水管非线性静力分析[J].中国海上油气,2007,19(3):203-207
    [31]史佩栋.实用桩基工程手册[M].北京:中国建筑工业出版社,1999
    [32]林天键.桩基础设计指南[M].北京:中国建筑工业出版社,1999
    [33]高大钊.土力学与基础工程[M].北京:中国建筑工业出版社,1998
    [34] Parry R. H. G.. A study of pile capacity for the heather platform[R]. SPE 8083, 1978
    [35] Lee H. J.. Offshore soil sampling and geotechnical parameter determination[R]. OTC 3524, 1980
    [36] Quirós G. W., Little R. L.. Deepwater soil properties and their impact on the geotechnical program[R]. OTC 15262, 2003
    [37] Colin Leach, Tony Bamford. Use of drilled-in casing in slim deepwater exploration wells[R]. SPE/IADC 92560, 2005
    [38] Young A. G., Sullivan R. A., Rybicki C. A.. Pile design and installation features of thethistle platform[R]. SPE 8050,1978
    [39] Durning P. J., Rennie I. A.. Determining pile capacity and pile driveability in hard, overconsolidated north sea clay[R]. SPE 8081, 1978
    [40] Christopherson A., Nelson W., Nottingham D., et al. Model pile tests in saline soils[R]. SPE 22086, 1991
    [41] Benson B. D., Hayley D. W.. Driven steel pile foundation design and load testing in super-saline permafrost conditions[R]. SPE 22089, 1991
    [42] Tjelta T. I., Guttormsn T. R., Hermstad J.. Large-scale penetration test at a deepeater site[R]. OTC 5103,1986
    [43] American Petroleum Institute. API RP 2A-WSD-2000, Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design[S]. Washington, D C: American Petroleum Institute, 2000
    [44]杨进,彭苏萍,周建良,等.海上钻井隔水导管最小入泥深度研究[J].石油钻采工艺,2002,24(2):1-3
    [45]杨进.海上钻井隔水导管极限承载力计算[J].石油钻采工艺,2003,25(5):28-30
    [46]韩志强.海洋平台桩基计算与施工方法探讨[J].中国海洋平台,2002,17(6):28-31
    [47]周宏杰,闫澎旺,刘润,等.海洋平台桩基础竖向承载力的可靠度分析[J].中国海上油气(工程),2003,15(2):15-19
    [48]胡瑞华.近海钢质桩基平台[M].北京:海洋出版社,1989
    [49]何生厚,洪学福.浅海固定式平台设计与研究[M].北京:中国石化出版社,2003:47-49
    [50] Matlock H.. Correlations for design of laterally loaded piles in soft clay[R]. OTC 1204, 1970
    [51] Reese L. C.. Analysis of laterally loaded piles in sand[R]. OTC 2080, 1974
    [52]卢世深,林亚超.桩基础的计算和分析[M].北京:人民交通出版社,1987:104-110
    [53]韩理安.水平承载桩的计算[M].长沙:中南大学出版社,2004
    [54] Wolters J. G., Marcon. N. V.. Lateral load capacity of piles in offshore structures[R]. SPE 3761, 1973
    [55] Kriger G. A., Earl, Wright. Modeling of piled foundations[R]. OTC 3748,1980
    [56] Novak M.. Dynamic stiffness and damping of piles[J]. Canadian Geotechnical Journal,1974,11(4):574-98
    [57]李耀庄,王贻荪,邹银生.粘弹性地基中桩动力反应分析[J].湖南大学学报(自然科学版),2000,27(1):92-96
    [58]胡安峰,谢康和,肖志荣.水平荷载下单桩动力反应分析[J].浙江大学学报(工学版),2003,37(4):420-425
    [59]胡安峰,谢康和,王奎华.粘弹性地基中有限长桩横向受迫振动问题解析解[J].岩土力学,2003,24(1):25-29
    [60]贾启芬,曹庆杰,金栋平,等.桩土相互作用非线性动态分析与计算[J].非线性动力学学报,1995,2(4):277-285
    [61]金伟良,宋志刚.水平循环荷载作用下单桩动力特性的数值模拟[J].海洋工程,2003,21(1):13-19
    [62]刘忠.单桩横向非线性动力响应简化分析方法研究[D].湖南:湖南大学,2004
    [63]刘忠,沈蒲生,陈诚.单桩横向非线性动力响应的简化分析模型[J].工程力学,2004,21(5):46-51
    [64] Beck R.D., Jackson C.W., Hamilton T. K.. Reliable deepwater structural casing installation using controlled jetting[R]. SPE 22542, 1991
    [65] King G. W., Soloman I. J.. The instrumentation of the conductor of a subsea well in the north sea to measure the installed conditions and behavior under load[R]. SPE26838, 1995
    [66] Faul G. L., Audibert J. M. E., Hamilton T. K.. Using suction technology for deep installation of structural pipe in deepwater[R]. lADC/SPE 39336, 1998
    [67] Philippe Jeanjean. Innovative design method for deepwater surface casings[R]. SPE 77357, 2002
    [68] Nogueira E. F., Borges A. T., Junior C. J. M., et al. Torpedo base– a new conductor installation process[R]. OTC 17197, 2005
    [69] Akers T. J.. Jetting of structural casing in deepwater environments: job design and operational practices[R]. SPE 102378, 2006
    [70] Azancot P., Magne E., Zhang J.. Surface BOP-management system & design guidelines[R]. IADC/SPE74531, 2002
    [71] Earl Shanks, Jim Schroeder, Bill Ambrose, et al. Surface BOP for deepwater moderate environment drilling operations from a floating drilling unit[R]. OTC14265, 2002
    [72] Brander G., Magne E., Newman T., et al. Drilling in Brazil in 2887m water depth using a surface BOP system and a DP vessel[R]. IADC/SPE87113, 2004
    [73] Simondin A., MacPherson D., Touboul N., et al. A deepwater well construction alternative: surface BOP drilling concept using environmental safe guard[R].IADC/SPE87108, 2004
    [74] Avelar C. S., Santos O. L. A., Ribeiro P. R.. Well control aspects regarding slender well drilling with surface and subsea BOP[R]. SPE94852, 2005
    [75] Mark Childers. Surface BOP, slim rise or conventional 21-inch riser– what is the best concept to use[R]. SPE/IADC92762, 2005
    [76] John Kozicz. Surface BOP—recent experience and future opportunities[R]. SPE/IADC 103754, 2006
    [77] Tarr B. A., Taklo T., Hudson A., et al. Surface BOP system for subsea development offshore Brazil in 1,900m of water[R]. IADC/SPE112788, 2008
    [78]王楠.渤海湾西部海洋工程环境与桩基适宜性研究[D].青岛:中国海洋大学,2005
    [79]冯志强,冯文科,薛万俊,等.南海北部地质灾害及海底工程地质条件评价[M].南京:河海大学出版社,1996
    [80] Young A. G., Kraft L. M., Focht J. A.. Geotechnical considerations in foundation design of offshore gravity structures[R]. SPE 5683, 1976
    [81]中国船级社.海上固定式平台入级与建造规范[S].北京:人民交通出版社,1992
    [82]王伟,卢廷浩,宰金珉.单桩极限承载力时间效应估算方法比较[J].岩土力学,2005,26:244-247
    [83]董光辉,张明义,郑丽.静压桩极限承载力的时效分析[J].岩土工程技术,2005,19(4):170-172
    [84] Skov R., Denver H.. Time-dependence of bearing capacity of piles[C], Proceedings 3rd International Conference on Application of Stress-Waves Theory to Piles, Ottawa, 25-27 May, 1988[C].Vancouver: Bi Tech Publisher,1988:879-888
    [85]陶忠,韩林海,郑永乾,等.方中空夹层钢管混凝土纯弯力学性能研究[J].工业建筑,2004,34(1):6-10
    [86]韩林海,杨有福.现代钢管混凝土结构技术[M].北京:中国建筑工业出版社,2004:70-71
    [87]孙树立,陈璞,袁明武,等.桩基承载力计算程序GPILE[J].计算力学学报,2002,19(1):123-126
    [88]中国船级社.海上移动平台入级与建造规范[S].北京:人民交通出版社,2005
    [89]李维国,黄炳家,同登科,等.数值计算方法[M].东营:石油大学出版社,2004
    [90] LJU?TINA, A M.Static and dynamic analysis of marine riser[C]. Proceedings of the 16th Symposium”Theory and Practice of Shipbuilding”. Zagreb, 2004
    [91]畅元江,陈国明,孙友义,等.深水钻井隔水管的准静态非线性分析[J].中国石油大学学报(自然科学版),2008,32(3):114-118
    [92]王杰贤.动力地基与基础[M].北京:科学出版社,2001:41-61
    [93]张克绪,谢君斐.土动力学[M].北京:地震出版社,1989:9-36
    [94] Gazetas G., Dobry R.. Horizontal response of piles in layered soils[J]. Journal of Geotechnical Engineering, ASCE, 1984, 110(1):20-40
    [95] Makris N., Gazetas G.. Dynamic pile-soil-pile interaction. Part II: Lateral and seismic response [J]. Earthquake Engineering & Struetural Dynamics, 1992, Vol.21, 145-162
    [96] Dobry R., Vineete E., O’Rourke M. J., et al. Horizontal stiffness and damping of single piles[J]. Journal of the Geotechnical Engineering Division, ASCE, 1982, Vol.108,439-459
    [97] Gazetas G., Dobry R.. Single radiation damping model for piles and footings [J]. J. Engr. Mech. ASCE·1984, Vol.110,937-956
    [98]张亚辉,林家浩.结构动力学基础[M].大连:大连理工大学出版社,2007:32-40
    [99]张相庭,王志培,黄本才.结构振动力学[M].上海:同济大学出版社,1994
    [100] Blaney, G. W. & O'Neill, M. W. Measured lateral response of mass on single pile in clay[J]. J. geotech. engng, ASCE, 1986, 112, 443-57
    [101] Badoni D, Nicos Makris N. Nonlinear response of single piles under lateral inertial and seismic loads[J]. Soil Dynamics and Earthquake Engineering, 1996(15):29-43
    [102]徐荣强,陈建兵,刘正礼,等.喷射导管技术在深水钻井作业中的应用[J].石油钻探技术, 2007,35(3):19-22
    [103]苏堪华,管志川,苏义脑.深水钻井导管喷射下入深度确定方法[J].中国石油大学学报(自然科学版),2008, 32(4):47-50
    [104]管志川,苏堪华,苏义脑.深水钻井导管及表层套管横向承载能力分析[J].石油学报,2009,30(2):285-290
    [105]苏堪华,管志川,苏义脑.深水钻井水下井口力学稳定性分析[J].石油钻采工艺, 2008,30(6):1-4
    [106] Harold Davis. Visual Basic.NET编程指南[M].战晓苏译.北京:电子工业出版社,2003
    [107] Michael Ekedahl. Visual Basic.NET程序设计高级教程[M].马海军,杨继萍译.北京:清华大学出版社,2005
    [108]陈文军,陈晓铭. Visual Basic.NET数据库编程[M].北京:清华大学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700