用户名: 密码: 验证码:
管内石蜡沉积物的力学响应特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原油管道内石蜡沉积物的力学响应特性研究,是从流变学角度探讨管道内石蜡沉积物的结构破坏特性,从理论上研究地形起伏地区管道内石蜡沉积物的破坏滑脱过程,从而描述地形起伏地区管道的停输蜡堵凝管过程。由于胶凝原油与管道内石蜡沉积物有相似的结构特性和力学特性,同时胶凝原油的启动结构破坏过程与石蜡沉积物的受力变形有耦合作用,于是首先根据不同剪应力下胶凝原油的蠕变特性构建了胶凝原油的粘弹性流变模型和非线性粘弹塑性流变模型,且都能精确拟合实验曲线。利用时间-温度-应力等效原理分析了胶凝原油的非线性蠕变行为,得到参考应力水平和参考温度下的蠕变主曲线,并回归得到了主曲线的粘弹性流变模型。为了研究管道内石蜡沉积物的结构特性和流变特性,及与胶凝原油的不同,利用X射线衍射仪、偏光显微镜、差热分析仪和流变仪分别对魏荆线外输原油石蜡沉积物和魏荆线低温胶凝原油的内部蜡晶微观结构和全温度区间内系统热性能和流变性能进行了对比分析。结果表明石蜡沉积物和胶凝原油两种物质的蜡晶类型一样,但石蜡沉积物的蜡晶成片状较大,蜡晶之间的距离较远,结构相对比较松散。利用自主研制开发的直接剪切仪,在不加热破坏管道内石蜡沉积物原有结构的条件下,进行了破坏剪切实验。根据实验曲线推导得到了石蜡沉积物结构破坏过程的粘弹性流变模型和粘弹触变方程,同时还得到了不同温度下管道内石蜡沉积物的松弛模量表达式。根据石蜡沉积物的结构力学破坏特性,利用ANSYS/LS-DYNA对管道内石蜡沉积物建立了有限元模型,对不同工况下停输瞬间“爬坡”管道内沉积层的轴向剪应力分布进行了计算。结果表明石蜡沉积物的密度、管道的“爬坡”角度和石蜡沉积物厚度都决定着沉积层内剪应力的分布。同时利用ANSYS/LS-DYNA程序中的ALE多物质耦合算法,对“爬坡”管道内石蜡沉积物在不同结构强度、不同石蜡沉积物厚度的工况下和管道“爬坡”角度、“爬坡”距离、管径不同的情况下发生的破坏滑脱过程进行了数值仿真模拟。分析结果得出石蜡沉积物的结构强度越小、管道的“爬坡”角度越大、管径越大、沉积层越厚石蜡沉积物越容易产生破坏滑脱,及滑脱后与管中液态原油发生置换达到平衡的时间越短。
The investigation on the mechanical behavior of the paraffin deposits is to study the mechanism of the structural break for the paraffin deposits and analyze the slippage of the paraffin deposits in inclined pipelines, so that the block of the oil pipeline during shut down period can be analyzed as well. Considering the similarity of the mechanical behaviors and mutual actions between gelled crude oil and paraffin deposits, a visco-elastic model and a nonlinear visco-elastic-plastic model were presented on the basis of creep tests under different shear stresses. By analyzing the time-temperature-stress equivalence of creep behavior for gelled crude oil, the main creep curve under reference stress and reference temperature was obtained. A visco-elastic model based upon the main creep curve was also presented. A variaty of methods were applied to analyze the mechanical and rheological behaviors of the paraffin deposits and gelled crude oil in Weijing oil pipeline, for instance, using X-ray diffractometer and polarizing microscope to study the microstructure, using differential scanning calorimeter to study the thermal characteristics, and using rheometer to study the rheological properties. It was shown that the wax crystallization styles of paraffin deposits and gelled crude oil were almost the same, while for the paraffin deposits, the wax crystal was a little bigger and the spaces among wax crystals were larger, resulting in loose structure. Rate-controlled shear tests without thermal treatment were applied to the paraffin deposits by the self-made direct shear apparatus. According to the test data, a visco-elastic model and a visco-elastic-thixotropy equation were presented, and the relaxation modules of the paraffin deposits under different temperatures were obtained. By virtue of ANSYS/LS-DYNA software, a finite element method was applied to analyze the longitudinal shear stress distribution of the paraffin deposits in the slope pipeline. It was shown that, the longitudinal stress distribution was dependent upon the pipeline slope angle, density and thickness of the paraffin deposits. By using ALE coupling-computation method, the slippage of the paraffin deposits in slope pipeline was simulated under conditions of different slope angles, slope distances, pipeline diameters, structural strengths and thicknesses of paraffin deposits. It showed that, the block of the pipeline due to the slippage of paraffin deposits were prone to occur in the cases of large slope angle, large pipeline diameter, large deposit thickness and weak structural strength of the paraffin deposits.
引文
[1] Asma Etoumi. Microbial treatment of waxy crude oils for mitigation of wax precipitation[J]. Journal of Petroleum Science and Engineering, 2007, 55(1-2):111-121.
    [2] Maria del Carmen Garcia. Paraffin deposition in oil production[R]. SPE 64992, 2001:1-7.
    [3]黄启玉,张劲军等.大庆原油蜡沉积规律研究[J].石油学报,2006,27(4):125-129.
    [4]王玮,宫敬.石油多相管流蜡沉积研究进展[J].化工机械,2006,33(4):198-208.
    [5] Reza Dalirsefat, Farzaneh Feyzi. A thermodynamic model for wax deposition phenomena [J]. Fuel, 2007, (10):10-16.
    [6] Moussa Kane, Madeleine Djabourov et al. Morphology of Paraffin Crystals in Waxy Crude oils Cooled in Quiescent Conditions and Under flow[J]. Fuel, 2003, (82): 127-135.
    [7] Venkatesan R., Nagarajan N.R., Paso K., et al. The strength of paraffin gels formed under static and flow conditions[J]. Chemical Engineering Science, 2005, 60(13): 3587-3598.
    [8] Hongying Li and Jinjun Zhang. A generalized model for predicting non-Newtonian viscosity of waxy crudes as a function of temperature and precipitated wax[J]. Fuel, 2003, 82(11): 1387-1397.
    [9] Tung N. P., Vinh N. Q., Phong N. T. P., et al. Perspective for using Nd–Fe–B magnets as a tool for the improvement of the production and transportation of Vietnamese crude oil with high paraffin content[J]. Physica B: Condensed Matter, 2003, 327(2-4): 443-447.
    [10]缪娟,吴明,董有智等.低输量原油管道的安全性分析[J].石油化工安全环保技术,2007,23(5):35-37.
    [11] Barnes H A, Nguyen Q D. Rotating Vane Rheometry-a Review[J]. J. of Non-newtion fluid mechanics, 2001(1):1-14.
    [12] Kunal Karan et al: Measurement of waxy crude properties using novel laboratory techniques[R]. SPE 62945, 2000, 1-12.
    [13]张国忠,马志祥.热油管道安全经济输油温度研究[J].石油学报,2004,25(1):106-109.
    [14]刘刚,张国忠.胶凝原油启动屈服值多元回归分析[J].石油化工高等学校学报,2003,16(3):58-61.
    [15]张国忠.大庆胶凝原油启动屈服应力研究[J].石油大学学报,2005,29(6):91-93.
    [16] Moussa Kane, Madeleine Djabourov, Jean-Luc Volle. Rheology and structure of waxy crude oils in quiescent and under shearing conditions[J]. Fuel, 2004, (83): 1591-1605.
    [17] Roberto C. Dante, Enrique Geffroy-Aguilar and A. E. Chávez. Viscoelastic models forMexican heavy crude oil and comparison with a mixture of heptadecane and eicosane[J]. Fuel, 2006, 85(4): 559-568.
    [18] Vinay G., Wachs A. and Frigaar I. d. Start-up transients and efficient computation of isothermal waxy crude oil flows[J]. Journal of Non-Newtonian Fluid Mechanics, In Press, Accepted Manuscript, Available online 23 February 2007.
    [19]杨筱蘅,张国忠.输油管道设计与管理.中国石油大学出版社,2006,98-99.
    [20] Sing P, Fogler H S and Nagarajan N. Prediction of the Wax Content of the Incipient Wax-Oil Gel in a Pipeline: An Application of the Controlled-Stress Rhometer[J]. Journal of Rheology, 1999, 43(6): 438-447.
    [21] Henaut I., et al . Waxy Crude Oil Restart: Mechanical Properties of Gelled Oils[R]. SPE 56771, 1999:1-7.
    [22] Hsu, J, J, C. & Lian, S. T. Validation of Wax Deposition Model by a Field Test[R]. SPE 48867, 1998:1-9.
    [23] Bern P.A., Withers V.R. and Cairns J.R. Wax Deposition in Crude Pipelines[C]. European Offshore Petroleum Conference & Exhibition, London, 1980: 21-24.
    [24] Burger, E.D. and Perkins, T.K. Studies of Wax Deposition in the Trans-Alaska Pipeline[J]. Journal of Petroleum Technology, 1981: 1075-1086.
    [25] Weingarten, J.S. and Euchner, J.A. Methods for Predicting Wax Precipitation and Deposition[R]. SPE Production Engineering, 1988: 121-126.
    [26]黄启玉,李瑜仙,张劲军.普适性结蜡模型研究[J].石油学报,2008,29(3):459-462.
    [27] Hsu J J C, Santamaria M M, Brubaker J P. Wax deposition of waxy live crudes under turbulent flow conditions[R]. SPE 28480, 1994, 16-25.
    [28] Hsu J J C, Brubaker J P. Wax deposition scale-up modeling for waxy crude production lines[M]. OTC7778, 1995:731-740.
    [29]孙百超,王岳,尤国武.含蜡原油热输管道管壁结蜡厚度的计算[J].石油化工高等学校学报,2003,16(4):48-51.
    [30]黄启玉,苗青,陆新东等.管道沿线结蜡分布不均匀对蜡层厚度计算的影响[J].油气储运,2008,27(3):24~26.
    [31]杜新媛,胡冬妮,兰利生.原油中蜡的沉积和影响沉积的因素及防蜡原理[J].新疆石油学院学报,1995,7(1):69-78.
    [32]王志华.高凝原油管道输送蜡沉积规律实验研究[J].特种油气藏,2006,13(5):91-93.
    [33]李露,张荣兰.影响原油生产中石蜡沉积的主要因素[J].油气田地面工程,2001,20(6):96.
    [34]苗青,康焯.大庆原油停输后结蜡层强度的变化规律[J].油气储运,2005,24(10):29-31.
    [35]李传宪,李琦瑰,郑树贵.一种表征原油流变结构随温度变化的新方法[J].石油大学学报(自然科学版),2000,24(5):76-79.
    [36]候磊,张劲军.大庆原油的粘弹性实验研究[J].石油学报,2005,26(6):109-112.
    [37] Rueb C.J. and Zukoski C.F.. Viscoelastic properties of colloidal gels[J]. J. Rheol., 1997, 41(2):197-218.
    [38] Stokes J.R., Telford J.H. Measuring the yield behaviour of structured fluids[J]. J. Non-Newtonian Fluid Mech. 124 (2004): 137–146.
    [39] CHENG Chang, BOGER D V. The yielding of waxy crude oils[J]. Ind Eng Chem Res, 1998, 37(4):1551-1559.
    [40] CHENG Chang, et al. Isothermal start-up of pipeline transporting waxy crude oil[J]. Journal Non-Newtonian Fluid Mechanics, 1999, 87:127-154.
    [41]李传宪,李琦瑰.胶凝原油屈服值与结构特性参数之间的关系[J].油气储运,2000,19(11):44-46.
    [42]李传宪,李琦瑰.新疆胶凝原油屈服特性研究[J].油气储运,1999,18(12):5-70.
    [43] Enelund M, Mahler L, Runesson K, et al. Formulation and integration of the standard linear viscoelastic solid with fraction-al order rate laws[J]. Int J Solid Strut, 1999, 36(7): 1417-1442.
    [44] Drozdor A D. Fractional differential models in finite viscoelas-ticity[J]. Acta Mech, 1997, 124(1): 155-180.
    [45] Eldred L B, Baker W P. Kelvin-voigt vs fractional derivative model as constitutive relations for viscoelastic materials[J]. AIAA, 1995, 33(3): 547-550.
    [46] Bagley R L, Calico R A. Fractional order state equations for the control of viscoelastically damped structures[J]. Guidance,1991, 33(2): 304-311.
    [47]孙海忠,张卫.分数算子描述的粘弹性材料的本构关系研究[J].材料科学与工程学报,2006,24(6):926-930.
    [48]刘朝辉,张为民.含分数阶导数的粘弹性固体模型及其应用[J].株洲工学院学报,2002,16(4):23-25.
    [49]张秋华,曾凡林,孙毅.人造丝增强橡胶纵向冲击拉伸本购关系研究[J].哈尔滨工业大学学报,2003,35(10):1232-1235.
    [50]刘朝晖,李轶鹤.非线性粘弹性本构理论的讨论[J].南华大学学报(理工版),2003,17(2):1-7.
    [51]唐志平,田兰桥,朱兆祥等.高应变率下环氧树脂的力学性能研究[C].第二届全国爆炸力学会议文集,1981,41.
    [52]钟涛,张为华,王中伟.点火瞬态过程对复合固体推进剂力学响应特性的影响[J].国防科技大学学报,2004,26(3):7-10.
    [53]胡强,童忠钫.非线性粘弹性材料的微分型本构方程[J].浙江大学学报,1989,4:63-66.
    [54]罗文波,杨挺青,安群力.非线性粘弹体的时间-温度-应力等效原理及其应用[J].固体力学学报,2001,22(3):219-224.
    [55]田华,敬加强,敬灵机等.不同测试条件对含蜡原油流变性特性的影响研究[J].西南石油大学学报,2007,29(4):125-128.
    [56]蒋永兴.含蜡原油屈服过程及其受孔隙影响的试验研究[J].力学与实践,1994,16(1):19-21.
    [57]罗塘湖.含蜡原油的流变学问题[J].力学与实践,1983,5(1):10-12.
    [58]桂平.凝点温度附近含蜡原油粘弹性参数的研究[D].北京:石油大学,2002.
    [59] M.G.Cawkwell等著,蒋永兴译.胶凝原油管线的一种改进启动模型[J].国外油气储运,1989,(7):2.
    [60] Ronningsen H. P. Rheological Behaviour of Gelled. Waxy North Sea Crude Oils[J]. J.Pet. Sci Eng 1992, 7, 177-213.
    [61] Cheng Chang and D.V.Boger et al. Influence of thermal history on the waxy structure of statically cooled waxy crude oil[R]. SPE 57959, 2000, 5(2):148~157.
    [62]李传宪,罗哲鸣.原油流变性及测量[M].石油大学出版社(山东),2001:174.
    [63] Wardhaugh, L. T., Boger, D. V. The Measurement and Description of the Yielding Behavior of Waxy Crude Oil[J]. J. Rheol, 1991, 35 (6): 1121-1156.
    [64] Kraynik, A. M. RE Fluid Standards: Comments on ER Fluid Rheology[R]. Proc, 2nd Int, Conf, ER Fluids 1990.
    [65] Bonnecaze, R. T., Brady, J. F. Yield Stresses in Electrorheological Fluids[J]. J. Rheol. 1992, 36 (1), 73-115.
    [66] D.C-H Cheng. A time-dependent property and how to measure it[J]. Rheologica data 25,1986, 542-554.
    [67]张劲军,王宝昌等.含蜡原油的动屈服应力[J].油气储运,1996, 15(3) :5-8.
    [68]侯磊,张劲军.含蜡原油屈服特性的试验研究[J].石油天然气学报,2007,29(6):99-102.
    [69]张为民.一种采用分数阶导数的新流变模型理论[J].湘潭大学自然科学学报, 2001, 23(1): 30-36.
    [70]张为民,张淳源.分数指数模型的热力学分析及其应用[J].工程力学, 2002, 19(2): 95-99.
    [71] Rabotnov Yu N. Elements of Hereditary Solid Mechanics[M]. Moscow: Mir Publishers, 1980.
    [72] Bagley R L and Torvik P J. On the Fractional Calculus Model of Viscoelastic Behavior[J]. J of Rheology, 1986, 30(1): 133-155.
    [73]张为民.松弛模量与蠕变柔量的实用表达式[J].湘潭大学自然科学学报, 1999, 21(3): 26-28.
    [74]袁静,龚晓南,益德清.岩土流变模型的比较研究[J].岩石力学与工程学报, 2001, 20(6): 772-779.
    [75]曹叔刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报, 2002, 21(5): 632-634.
    [76]赵培忠,文庆珍,朱金华.时温等效方程的研究[J].橡胶工业,2005,52(3): 142-145.
    [77]李明,温茂萍,何强等. TATB基高聚物粘结炸药的蠕变特性研究[J].含能材料,2005,13(3):150-154.
    [78] Said Jazouli, Wenbo Luo, Fabrice Bremand, et al. Application of time- stress equivalence to nonlinear creep of polycarbonate[J]. Polymer Testing, 24(2005): 463~467
    [79]张红,沈本贤.原油加剂降凝的研究[J].化学通报,2007,(1):73-76.
    [80]陈冷,毛卫民,杨平等.基于X射线二维衍射图像的晶粒尺寸在线检测方法[J].中国体视学月图像分析,2004,9(3):164-168.
    [81] Lopes da Silva J A, Coutinho J A P. Dynamic rheological analysis of the gelation behavior of waxy crude oils[J]. Rheol Acta, 2004, 43: 433-441.
    [82] Visintin R F G, Lapasin R, Vignati E, et al. Rheological behavior and structural interpretation of waxy crude oil gels[J]. Langmuir, 2005, 21: 6240-6249.
    [83]李鸿英,黄启玉,张帆.用差示扫描量热法确定原油的含蜡量[J].石油大学学报(自然科学版),2003,27(1):60-66.
    [84]包成林,洪建勇,路小峰等.原油加剂改性过程中蜡晶形态变化的研究[J].油气储运,200,19(12):39-44.
    [85]李巧梅.试验室测试土的抗剪强度指标的方法及其应用[J].广东水利水电,2000(1):25~27.
    [86]赵晓彦,胡厚田,冯建林等.导致直接剪切实验强度偏高的原因及改进方法[J].西南交通大学学报,2004,39(4):433-436.
    [87]刘刚,张国忠,邓燕.胶凝原油的粘弹-触变方程[J].石油大学学报,2003,27(6):72-75.
    [88] ANSYS/LS-DYNA中国技术支持中心. ANSYS/LS-DYNA算法基础和使用方法[M].北京理工大学,1991.1
    [89]谢红飙,肖宏,张国民等.用显式动力学有限元法分析压下率对板带轧制压力分布的影响[J].钢铁研究学报,2002,14(6):33-35.
    [90]张秀杰,曹金水等.魏荆管道停输再启动困难的原因分析[J].油气储运,1998,17(5):7-10.
    [91] Souli M, Ouahsine A, Lewin L. ALE formulation for fluid–structure interaction problems[J]. Comput Meth Appl Mech Eng 2000, 190:659–75.
    [92] Souli M, Olovsson L, Do I. ALE and fluid/structure interaction capabilities in LS-DYNA[C]. 7th International LS-DYNA Users Conference, Dearborn, Michigan, May 19–21, 2002: 27–36.
    [93]白金泽. LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005.
    [94]冯志刚,周建平.粘弹性有限元法研究[J].上海力学,1995,16(1):20-26.
    [95]范华军,张劲军.埋地含蜡原油管道流动安全评价研究[J].油气储运,2007,26(5):1-4.
    [96]吴明,杨惠达,邓秋远.埋地热油管道停输径向温降规律研究[J].石油化工高高等学校学报,2001,14(3):45-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700