用户名: 密码: 验证码:
泡沫驱提高原油采收率及对环境的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油作为战略资源,其开采和利用十分重要,随着生产、生活水平的不断提高,对石油需求急剧上升,由于石油是非再生资源,进一步提高已探明、已开发油藏的采收率已经成为十分迫切的工作,提高采收率技术越来越受到人们的关注。随着聚合物驱的推广应用,适合聚合物驱的优质资源基本动用完毕,聚合物驱后地下仍有大量的剩余油,但聚合物驱后油藏的非均质性更强,剩余油分布更分散,需要采用封堵及驱油能力更强的驱油体系;四类油藏由于非均质严重,不适合聚合物驱,因此,对于四类大孔道油藏和聚合物驱后油藏开展新的化学驱油技术研究十分必要。泡沫作为一种良好的驱油剂已逐渐为人们所认识,它能够极大的提高注入流体的表观粘度,增加波及面积,提高采收率,是一种很有发展前途的提高采收率的新方法。
     本课题在泡沫驱理论研究的基础上建立起泡沫驱的评价方法和评价体系,筛选研制性能优良的泡沫剂及泡沫驱油体系,对泡沫体系的驱油机理及提高采收率性能,泡沫在在多孔介质中的运移规律,泡沫与油藏的配伍关系,泡沫驱提高采收率的影响因素进行研究,并对泡沫剂对注采环境及油藏的影响,注入气体对环境及设备的影响,注入水对复合泡沫驱油体系的影响,泡沫体系对产出液的影响,泡沫体系与环境相互影响进行研究,并研究和提出相关的解决措施。
     本课题利用罗氏泡沫仪及泡沫扫描仪,研究不同类型、不同条件下表面活性剂的起泡能力及半衰期,包括阴离子活性剂,阳离子活性剂,非离子活性剂,两性离子活性剂及阴非离子活性剂;利用旋转界面张力仪研究了泡沫剂的表面及界面性能;利用长细管物理模拟流程及高压可视观察窗,研究了泡沫在不同条件下的稳定性及变化规律,在地层中的运移和压力传递规律,研究了气液比、注入方式,化学剂浓度等因素对泡沫封堵性能的影响;利用微观可视模型,研究泡沫剂的微观驱油机理;利用管式填砂模型及驱油流程,研究泡沫对层内、层间非均质的调整能力,泡沫驱在水驱及聚合物驱后提高采收率的效果;泡沫驱的影响因素及使用范围;利用挂片腐蚀法研究泡沫剂对设备的腐蚀影响,注入气体对设备的腐蚀影响;利用质谱分析研究了泡沫剂在油藏的吸附损耗规律;利用粘度测定法研究了注入污水水质及不同组分对聚合物粘度的影响;通过加入化学剂的方法研究了提高污水配注聚合物粘度的方法,筛选出泡沫驱水质稳定剂及产出液处理剂,形成了泡沫驱产出液处理技术。
     通过对泡沫的起泡性能、在多孔介质中的产生及封堵调剖和驱油实验研究,研究了泡沫的性能及在多孔介质的运移规律;筛选研制出耐温抗盐能力强、泡沫性能稳定、油水界面低的泡沫剂;建立了与油藏条件配伍的泡沫驱油体系,室内物理模拟实验,水驱后泡沫驱提高采收率大于25%,在聚合物驱后提高采收率10%以上;研究了泡沫体系与周围环境的相互作用关系及解决措施;矿场实验取得明显的降水增油效果。室内及矿场实验证明泡沫体系在非均质油藏中能够有效的改善油藏的非均质性,大幅度的提高油藏采出程度,复合泡沫驱是一种很有前途的三次采油新技术,通过对关键技术的深化研究和攻关,可以使之得以推广和应用,泡沫驱是一项成本低,应用广泛,很有发展前途的方法。
As a strategic resource, the exploitation and using of oil is very important. with rising of living standard.the need for oil is increased. Because oil isn’t a rebirth resource, to enhance oil recovery of exploited reservoir oil recovery has become quite urgent, the technique of enhanced oil recovery (EOR) has been widely deserved extra attention by specialist. The reservoir resource can be applied to polymer flooding almost used up under the condition of the widely use of polymer flooding, but large numbers of residual oil leaves underground, the reservoir is more heterogeneous and residual oil scatters separated after polymer flooding, In order to enhance oil recovery further more strong driving system used to block up and flooding should be used. Because of the fourth kind of reservoir is strong heterogeneous, polymer flooding isn’t suiTable . Hence, it is very necessary to study a new flooding method for the fourth kind of reservoir and after polymer flooding reservoir. As a good kind of flooding method, foam flooding was gradually known by people, because of its character of greatly improving the apparent viscosity of injected liquid, expanding swept area and enhanced oil recovery (EOR), it has been developed to be a future new EOR method.
     In this dissertation, the foam flooding evaluate method and system was established base on theory studies, excellent capability of foam agent and foam system was developed, the mechanism and capability for EOR of foam flooding, migration mechanism at porous media, compatibility with reservoir, affecting factor of EOR of foam flooding were also studied. together with the studies of the affecting to regime and reservoir of foam agent, the affecting to environment and facilities of injecting gas, the affecting to foam flooding system of injecting water, the affecting to production fluid of foam system ect., furthermore, the method to solve the relative problems were settled down.
     In this dissertation, the foamability and half foam life period of different surfactants was studied by means of rose-miles foam apparatus and scanner, include of anionic surfactants, positive ion surfactants, zwitterion surfactants, nonionic surfactants and negative-non surfactants. the surface and interfacial tension of foam agents was studied by using of interface tension apparatus, the foam stability and change rules under different conditions, the movement of foam, the rule of pressure transmission, the affecting of sealing characteristics of foam under the different ratio of gas injecting style, surfactant concentration ect. were studied by means of long slim tube simulation flow and high pressure watch window, by using microcosmic watch model to study the microcosmic mechanism of oil displacement; by using the tube models filled with silica sand and oil displacement test to study the capability of adjusting heterogeneous of foam between inner layers and interlaminations, the EOR of foam flooding after water flooding and polymer flooding, affecting factor and adapTable range of foam flooding. the method of metal piece rust were used to study the corruption of the apparatus by the foam agent and injecting gas; mass spectrum analyzing were utilized for determination consumption of foam agant on reservoir sands, the polymer’s viscosity analyses were used to study its influence of wastewater and its component. The studies show that the polymer viscosity can be improved by adding chemical agent; the water quality sTable agent and product liquid treating agent was selected, and formed the producing liquid treating technique.
     Through the study of foamability, produce, block up and oil displacement tset in porous media of different foam system, high foam stability and low interface tension foam agent in high temperature and high salt reservoir has been developed; the foam flooding system matches with reservoir conditions has been developed too. the laboratory oil displacement test proved that the foam flooding can enhance EOR more than 25% after water flooding, and enhance EOR more than 10% after polymer flooding. After studying the interreaction between the foam system and environment, the problems were solved, and the pilot test of foam flooding proved a sharp increase of oil yield and reduce the cut of water. Laboratory experiments and pilot test proved that foam system can improve the heterogeneous of reservoir, great scope enhance oil recovery, the foam flooding is a kind of good new technique of tertiary oil recovery with a better future, Though deeper research for its key technique, it can be popular applied and disseminated., We believe foam flooding will be a good method for EOR with low cost, widly used and better future.
引文
[1]赵福麟.EOR原理.东营:石油大学出版社,2001:87-90.
    [2]李治龙.我国油田用泡沫流体综述[J].钻井液与完井液,1994,11(1):4-7.
    [3]廖广志,李立众,孔繁华,等.常规泡沫驱油技术.北京:石油工业出版社,1999:132-137.
    [4] Jalel Ochi,Jean-Francois Vernoux.A Two-Dimensional Network Model to Simulate Permeability Decrease Under Hydrodynamic Effect of Particle Release and Capture[J].Transport in Porous Media, 1999, 37(2): 303-325.
    [5] Jolanta Lewandowska,Jean-paul Laurent.Homogenization Modeling and Parametric Study of Moisture Transfer in an Unsaturated Heterogeneous Porous Medium[J].Transport in Porous Media, 2001, 45(3): 321-345.
    [6] A. R. Kovscek, H. J. Bertin.Foam Mobility in Heterogeneous Porous Media (I: Scaling Concepts) [J].Transport in Porous Media, 2003, 52(1): 17-35.
    [7] A. R. Kovscek, H. J. Bertin.Foam Mobility in Heterogeneous Porous Media (II: Experimental Observations)[J].Transport in Porous Media, 2003, 52(1): 37-49.
    [8] Lynn S. Bennethum, Tessa Weinstein.Three Pressures in Porous Media[J].Transport in Porous Media, 2004; 54(1): 1-34.
    [9] G. A. Virnovsky, H. A. Frills, A. Lohne, et al.A Steady-State Upscaling Approach for Immiscible Two-Phase Flow[J].Transport in Porous Media, 2004, 54(2): 167-192.
    [10] Zhangxin Chen, Guanren Huan, Baoyan Li, et al.An Improved IMPES Method for Two-Phase Flow in Porous Media[J].Transport in Porous Media, 2004; 54(3): 361-376.
    [11] Ruben Juanes, Tadeuszw Patzek.Analytical Solution to the Riemann Problem of Three-Phase Flow in Porous Media[J].Transport in Porous Media, 2004, 55(1): 47-70.
    [12] Laurent Pilon,Andrei G. Fedorov,Raymond Viskanta, et al.Steady-State Thickness of Liquid Gas Foams[J].Journal of Colloid and Interface Science, 2001, 242(6): 425-436.
    [13] Takamitsu Tamura,Yukihiro Kaneko,Masanori Nikaido, et al.Stability Factors of Foam Film in Contrast to Fluctuation Induced by Humidity Reduction[J].Journal of Colloid and Interface Science, 1997, 190(6): 61-70.
    [14] H. Fruhner,K.-D. Wantke,K. Lunkenheimer, et al.Relationship between surface dilational properties and foam stability[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999; 162(8): 193-202.
    [15] A. I. Rusanov,V. V. Krotov,A. G. Nekrasov, et al.New Methods for Studying Foams: Foaminess and Foam Stability[J].Journal of Colloid and Interface Science, 1998, 206(9): 392-396.
    [16] A. Frranc,Ois G. Gandolfo,Henri L. Rosano, et al.Inter-bubble Gas Diffusion and the Stability of Foams[J].Journal of Colloid And Interface Science, 1997, 194(5): 31-36.
    [17]刘泽凯,闵家华.泡沫驱油在胜利油田的应用[J].油气采收率技术,1996,3(3):23-29.
    [18]陈玉英.百色油田泡沫驱油效果初步分析[J].油田化学,1998,15(2):141-145.
    [19]张彦庆,刘宇,钱昱.泡沫复合驱注入方式、段塞优化及矿场实验研究[J].大庆石油地质与开发,2001,20(1):46-48.
    [20]于会宇,万新德,刘琴,等.从泡沫复合驱先导性矿场实验中取得的认识[J].大庆石油地质与开发,2001,20(2):108-110.
    [21]刘中春,吴文祥.泡沫复合驱微观驱油特性分析.石油大学学报,2003,27(1):49-53.
    [22]张伟.泡沫流体的应用[J].钻井液与完井液,1988,6(2):62-65.
    [23]廖广志,李立众,孔繁华,等.常规泡沫驱油技术[M].石油工业出版社,1999:56-58.
    [24]赵福麟.采油化学[M].石油大学出版社,1989:56-59.
    [25]樊西惊.原油对泡沫稳定性的影响[J] .油田化学,1997,14(4):384-388.
    [26] Rao A.A..Foam Mobility in Heterogeneous Porous Media[J].Chemical Engineering Communications, 1982, 15(3)? 63-81.
    [27]周静,谭永生.稳定泡沫流体的机理研究[J].钻采工艺,1999,22(6):56-59.
    [28]马宝歧,詹少淮.泡沫特性的研究[J].油田化学,1990,7(4):334-338.
    [29]王其伟,周国华,郭平,等.泡沫稳定性改进剂研究[J].大庆石油地质与开发,2003,22(3):46-49.
    [30]孙建华,将晓明,高瑞民,等.泡沫酸在多孔介质中流动形态研究[J].油田化学,2005,25(1):38-41.
    [31]佘庆东,袁冠军,张宏.泡沫油流[J].国外油田工程,2002,18(2):16-18.
    [32]刘向斌,韩重莲,王波,等.泡沫在碳酸盐岩心中的流动性和吸附性[J].国外油田工程,2005,23(1):18-20.
    [33]王清华,白振强.影响泡沫油流的因素[J].天然气勘探与开发,2004,27(1):36-38.
    [34]周明,蒲万芬,王霞,等.抗温抗盐泡沫复合驱驱油特性研究[J].钻采工艺,2007,30(2):112-114.
    [35]朱维耀,程杰成,吴军政,等.多元泡沫化学剂复合驱油渗流数学模型[J].北京科技大学学报,2006,28(7):619-624.
    [36]朱维耀,程杰成,吴军政.多元泡沫化学剂复合驱油数值模拟研究[J] .石油学报,2006,27(3):65-69.
    [37]吕广忠,张建乔,孙业恒.氮气泡沫热力驱数值模拟研究[J].水动力学研究进展,2005,20(4):531-537..
    [38]高树生,熊伟,李建存,等.多孔介质中蒸汽泡沫渗流影响因素分析[J].特种油气藏,2004,11(3):82-83..
    [39]刘中春,侯吉瑞,岳湘安,等.泡沫复合驱微观驱油特性分析[J].石油大学学报(自然科学版),2003,27(1):49-53.
    [40]贾忠伟,杨清彦,兰玉波,等.水驱油微观物理模拟实验研究[J].大庆石油地质与开发,2002,21(1):46-49.
    [41]程浩,郎兆新.泡沫驱中的毛管窜流及其数值模拟[J].重庆大学学报,2000,23(5):161-165.
    [42]王其伟,周国华,李向良,等.泡沫稳定性改进剂的研究[J].大庆石油地质与开发,2003,22(3):80-81.
    [43]赵晓东.泡沫稳定性综述.钻井液与完井液,1992,9(1):7-14.
    [44]佟曼玉.油田化学.东营:石油大学出版社,1996:216-221.
    [45] Sudarshi T. A. Regismond,Francoise M. Winnik,E. Desmond Goddard, et al.Stabilization of aqueous foams by polymer/surfactant systems: effect of surfactant chain length[J].Colloids and surfaces A,1998, 141: 165-171.
    [46] Pacellil. J. Zitha.Foam Drainage in Porous Media[J].Transport in Porous Media, 2003, 52? 1-16.
    [47]张贤松,王其伟,隗合莲.聚合物强化泡沫复合驱油体系实验研究[J].石油天然气学报,2006,28(2):137-138.
    [48]王其伟,周国华,郭平,等.DP-4泡沫剂应用于油田采油的实验研究[J].精细石油化工进展,2002,3(11):37-40.
    [49]付继彤,张莉,尹德江,等.强化泡沫的封堵调剖性能及矿场实验[J].油气地质与采收率,2005,12(5):46-49.
    [50]李干佐,徐军.表面活性剂在油田中的应用及其作用原理[J].精细石油化工进展,2004,5(2):1-6.
    [51]于会宇,万新德,刘琴,等.泡沫复合驱先导性矿场实验中取得的认识[J].大庆石油地质与开发,2001,20(2):108-110.
    [52]张彦庆,刘宇,钱昱.泡沫复合驱注入方式、段塞优化及矿场实验研究[J].大庆石油地质与开发,2001,20(1):46-48.
    [53]赵长久,麻翠杰,杨振宇,等.超低界面张力泡沫体系驱先导性矿场实验研究[J].石油勘探与开发,2005,32(1):127-130.
    [54]苏延昌,刘德宽,高峰,等.喇嘛甸油田污水配制高分子高浓度聚合物驱油实验研究[J].大庆石油地质与开发,2006,25(3):82-84.
    [55]高明霞,张劲,王敏捷.油田采出水达标外排处理技术[J].国外油田工程,2005,21(1):39-42.
    [56]任广萌,孙德智,王美玲,等.我国三次采油污水处理技术研究进展[J].工业水处理,2006,26(1):1-4.
    [57]孙晓君,王志平,刘莉莉,等.处理油田含聚废水的微生物研究[J].科技导报,2005,23(7):38-40.
    [58]李胜华,高亚丽,高强,等.孤岛油田复合驱采出液处理技术[J].油气田地面工程,2005,24(2):26-27.
    [59]卢祥国,姜维东,李亚,等.氧对三元复合体系性质影响机理研究[J] .高分子通报,2007,4:29-33.
    [60]孙天淦.聚四氟乙烯膜过滤装置处理油田污水现场实验[J].中国石油大学胜利学院学报,20(4):7-8.
    [61]申玉星,傅绍斌,徐德慧,等.三元复合驱采出污水处理影响因素研究[J].石油天然气学报,2006,28(6):169-171.
    [62]王方林,朱南文,夏福军,等.三元复合驱采出水处理实验研究[J].工业水处理,2006,26(10):17-19.
    [63]吴迪,孟祥春,赵凤玲,等.油水分离剂在化学驱采出液和含油污水处理中的应用[J].精细化工,2004,21(1):23-25.
    [64]齐志敏,唐光辉,张学锋,等.氧化-混凝法用于油田回注污水处理研究[J].油田化学,2003,20(3):238-241.
    [65]罗伟福,史爱娜.用于高含水注聚采出液的KYYC系列破乳剂[J].油田化学,2003,20(3):235-237.
    [66]杨付林,陈庆海,李俊刚,等.ASP三元复合驱污水中三元组分对液膜强度的影响[J].石油与天然气化工,2002,31(2):93-98.
    [67]宋文玲,韩成林,胡明,等.宋芳屯油田注水系统管线结垢原因[J].大庆石油学院学报,2003,27(2)?25-27.
    [68]温建萍,李博明,温涛,等.油田回注污水对常用管线钢的腐蚀性[J].腐蚀科学与防护技术,2006,18(1):28-31.
    [69] Malysak.Wet foams: formation,properties and mechanism of stability [J].Advances Colloid Interface Science, 1992, 40(2): 37-83.
    [70] Patist A.,Huibers P. D., Deneka T. B.,et al.Effect of tetraalkylammonium chlorides on foaming properties of sodium dodecyl sulfate solutions [J].Langmuir, 1998, 14(16): 4471-4474.
    [71] Jha B. K.,Patist A.,Shah D. O., et al.Effect of antifoaming agents on the micellar stability and foamability of sodium dodecyl sulfate solutions[J].Langmuir, 1999, 15(9): 3042-3044.
    [72] Hashen M. M.,Schter R. S..Foaming agent [P].US:4524002,1985.
    [73] Pandey S.,Bagwe R. P.,Shah D. O., et al.Effect of counterions on surface and foaming properties of dodecyl sulfate [J].Journal of Colloid and Interface Science, 2003, 267(1): 160-166.
    [74] Balsa A.,Kulozik U..The influence of the pore size,the foaming temperature and the viscosity of the continuous phase on the properties of foams produced by membrane foaming [J].Journal of Membrane Science, 2003, 220(1): 5-11.
    [75] Jachimaka B.,Lunkenheimer K.,Malysa K., et al.Effect of position of the functional group on the equilibrium and dynamic surface propertices of butyl alcohols [J].Journal of Colloid and Interface Science, 1995, 176(1): 31-38.
    [76]叶仲斌,魏发林,罗平亚,等.泡沫增效三元复合驱油体系渗流行为研究[J].西南石油学院学报,2002,24(4):49-52.
    [77] Sarker D. K.,Wilde P. J.,Clark D. C., et al.Enhancement of the stability of protein-based food foamsusing trivalent cations [J].Colloids Surfaces A: Physicochemical Engineering Aspects, 1996, 114(4): 227-236.
    [78] Phianmongkhol A.,Varley J..A multipoint conductivity measurement system for characterization of protein foams[J].Colloids Surfaces B: Biointerfaces, 1999, 12(4): 247-259.
    [79] Lemlich R..A theory for the limiting conductivity of polyhedral foam at low density [J].Journal of Colloid and Interface Science, 1977, 64(1): 107-110.
    [80] Raymundo A.,Empis J.,Sousa I., et al.Method to evaluate foaming performance[J].Journal of Food Engineering, 1998, 36(4): 445-452.
    [81] Dickinson E., Izgi E..Foam stabilization by protein-polysaccharide complexes [J].Colloids Surfaces A: Physicochemical Engineering Aspects, 1996, 113(2)? 191-201.
    [82]冯先华,董爱娥.表面活性剂与聚合物的相互作用.日用化学工业,2002,32(3):3-6.
    [83]徐桂英.聚丙烯酰胺与混合表面活性剂的相互作用.物理化学学报,1994,10:909-914.
    [84]王其伟,周国华,郭平,等.泡沫封堵能力实验研究[J].西南石油学报,2003,25(6)?40-42.
    [85] Singh Gurmeet, Hirasaki George J., Miller Clarence A., et al.Dynamics of foam films in constricted pores[J].Journal of Colloid and Interface Science, 1997, 43(12): 3241-3252.
    [86]刘晓燕,支恒.泡沫流变模型实验研究[J].煤田地质与勘探,1996,24(4):56-59.
    [87]赵卫红.欠平衡泡沫钻井技术[J].天然气工业,1999,19(5):51-54.
    [88]杨世忠,陈惟明.泡沫钻进中压损数据的分析处理[J].中国地质大学学报,1997,22(1):110-113.
    [89]李振泉.胜利油田污水配制梳形抗盐聚合物KYPAM驱油实验初步结果.油田化学,2004,21(2):165-167.
    [90] Leveratto, M. A., Lauri, J..EOR polymer screening for an oil field with high salinity brines [J].SPE Advanced Technology Series, 1996, 4(1): 7 3-81.
    [91] Hsi C. D.,Strassner J. E..Prudhoe Bay Field, Alaska, Waterflood Injection Water Quality and Remedial Treatment Study[A] .SPE Annual Technical Conference and Exhibition[C].New Orleans: SPE, 1990: 717-727.
    [92]张可,张卫东,卢祥国,等.氧对聚合物污水溶液黏度影响的实验研究.油田化学,2006,23(3):239-242.
    [93]付美龙,周克厚,赵林.聚合物驱溶液中溶解氧对聚合物稳定性的影响.西南石油学院学报,1999,21(1):23-25.
    [94]王其伟,陈晓彦,马宝东,等.国内外聚合物驱水质研究概述.油气地质与采收率,2002,9(5):54-56.
    [95] Shupe, Russell D..Chemical stability of polyacrylamide polymers[J].Journal of Petroleum Technology, 1981, 33(8): 1513-1529.
    [96] Wang Daxi.Chemcal adsorption and stabilization energy of imidazolines and Fe atom[J].Petroleum Science,2001, 4(3): 26-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700