用户名: 密码: 验证码:
面向延寿工程的老龄平台寿命预测与管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国已有相当数量的平台进入老龄服役期,为保证其后继服役期内的安全性,需要对老龄平台结构进行可靠性分析,并预测其剩余寿命。本学位论文主要围绕国家自然科学基金项目(50679083)“面向老龄平台延寿工程的寿命预测与管理理论及方法研究”和国家863计划海洋技术领域2006年度专项课题(2006AA09Z355)“近海老龄平台延寿技术研究”的部分内容展开,对损伤构件退化规律试验研究、含裂纹平台结构精细评估、老龄平台剩余寿命预测方法、平台多失效模式可靠性计算与老龄平台可靠性更新等理论及方法进行系统的研究,进而为现役老龄平台的继续使用、检测维修和退役等决策提供理论依据。主要研究进展总结如下:
     1、损伤构件退化规律的红外热像试验研究
     将红外热像技术作为一种无损检测手段,对室内裂纹构件的损伤过程进行可视化监测。以Q235钢材料制成的3种不同类型的含裂纹试件为研究对象,采用红外热像仪实时监测拉伸试验中试件表面的温度场。对试验中得到的温度数据进行分析,根据热力学理论讨论温度变化与构件力学行为之间的联系,从而揭示构件的损伤规律。进一步采用有限元软件ANSYS模拟拉伸试验过程,获得复合型裂纹的扩展路径以及扩展过程中的裂尖温度场变化。同时,进行高强度钢试件的疲劳试验,并采用热像仪进行监测。根据记录的温度数据区分疲劳过程的不同阶段,定性描述疲劳损伤机理。在此基础上,提供一种基于能量耗散的疲劳寿命预测思路,通过温度变化预测构件疲劳寿命。
     2、老龄平台结构强度评定与疲劳寿命
     以ANSYS软件作为有限元分析工具,建立含裂纹管节点模型和平台整体模型,通过有限元静力分析,研究裂纹损伤对平台整体响应的影响。构造T型管节点焊缝处的3维表面裂纹模型,在此基础上,采用有限元方法的子模型技术,获得管节点局部的详细应力分布;根据断裂力学理论,对裂纹尖端局部应力场进行分析,计算沿表面裂纹前缘各点的应力强度因子(SIFs),分析裂纹尺寸和腐蚀导致管壁减薄等因素对SIFs的影响,为含裂纹平台结构安全评估提供一种精细分析方法。
     3、老龄平台多失效模式可靠性分析与寿命预测
     考虑老龄平台结构构件可能存在的多种失效模式,包括静强度失效、疲劳失效和腐蚀失效,分别建立每种失效模式的可靠性模型,并给出相应的可靠度计算方法。通过相关系数研究任意两种失效模式之间的相互影响,采用JC方法计算了静强度-疲劳耦合、静强度-腐蚀耦合和疲劳-腐蚀耦合这3种情况下的平台构件可靠度。进而提出两种计算3种退化失效模式全耦合作用下可靠度的方法:分别是根据O. Detlevsen窄界限理论计算可靠度指标上下限,以及将疲劳裂纹扩展和腐蚀退化引起的抗力衰减引入静强度退化失效模型中,通过总的抗力衰减作用,得到三种失效模式共同作用下的耦合失效概率。在此基础上,对老龄平台整体系统的可靠性进行评价,并发展更为简单实用的计算方法和步骤,用以分析老龄平台系统的时变动态可靠性。最后,综合考虑存在于环境载荷、构件形状、材料特性、可靠度计算模型中的不确定性因素,以动态可靠性理论为基础,研究老龄平台的剩余寿命预测技术。
     4、老龄平台可靠性更新研究
     已有海洋平台结构是一个客观存在的实体,与待建平台结构有很大的不同。服役结构的可靠性分析,需要建立在现有信息的基础上,进而对未来服役期内结构可靠性进行推断和评估。引入现役老龄平台可靠性分析的方法。为克服传统方法对环境载荷的描述仅考虑了载荷的随机性,而没有考虑荷载的时变特性这一缺点,提出一种新的评估载荷预测方法;根据极值荷载的预测样本,估计剩余服役期荷载分布参数,由此确定平台服役后期的评估载荷。在此基础上,充分考虑老龄海洋平台在已经服役阶段可能获得的两种历史信息,分别是平台受到的各种载荷历史信息和平台的检修结果记录,研究这些历史信息对平台结构未来服役可靠性的更新效果。首先考虑当前时刻含裂纹构件的裂纹测量尺寸,进而计算出抗力的剩余强度,然后结合Bayesian方法,分析后继服役期内的抗力变化和可靠性更新;其次,若平台已服役阶段有检测、维修记录,则根据检测结果研究未来时刻平台服役可靠性的变化;再次,将已服役期内承受的年极值波浪载荷视作验证载荷,同时考虑老龄平台构件的抗力衰减,根据动态时变可靠度理论,分析后继服役期内老龄平台构件的动态可靠性更新。
     5、老龄平台延寿周期寿命管理
     考虑经济因素的影响,在保证平台结构工作寿命期内的可靠指标大于最低目标可靠指标的前提下,分别基于最优成本和最优费用-效益比两个优化目标,建立相应的老龄平台延寿阶段的检修规划模型。其中前者使得平台服役老龄期(或延寿期)内总的期望费用最小;而后者反映检测及维修行为对提高平台生产效益的效果,使得费用-效益比最小。以受疲劳裂纹扩展损伤的平台构件为例,分别根据上述两种优化模型对检测及维修策略进行评估,并对计算结果进行敏感性分析。在此基础上,提出老龄平台的最优经济寿命计算方法,从经济学的边际原理进行考虑,通过计算平台结构的边际收入等于边际支出时所对应的服役时间,来确定平台的经济寿命。
Considering many potential hazards in offshore platforms which have serviced for a long term, reliability analysis and remaining life prediction for aged platforms should be performed in order to guarantee their safety in succeed service. The dissertation focuses on life prediction approach for ageing offshore platforms, which is a part of the National Natural Science Foundation Program (50679083) of“Research on Life Prediction Methods and Management Theory of Aged Offshore Platforms for Life Extension”and the“863”High Technology Research and Development Program of China (No.2006AA09Z355) of“Research on Life Extension Technology for Aged Offshore Platforms”. The theory and methods of life prediction and reliability for ageing offshore platforms are studied systematically, and then the theoretical basis for decision-making of whether continue to service, inspection, maintenance, or retirement is provided. The main works are summarized as follows:
     1. Research on infrared (IR) thermographic Experiment for Deterioration Mechanism of Damaged Specimens
     The IR thermography technique, as a nondestructive evaluation technique, is applied to visual monitor the damaged process of cracked specimens. The temperature profiles of three types of specimens made by Q235 steel are observed during tensile fracture tests. On the basis of thermomechanics, the relationship between the temperature and mechanical behavior is discussed, and the damage mechanism of the cracked specimen is revealed. The fracture process is modeled by performing finite element analysis using ANSYS software, and the propagation path of compound crack as well as the crack tip temperature field is simulated.
     Furthermore, the fatigue tests of high strength steel specimens are carried out under IR thermographic detection. The different phase during fatigue process is distinguished by temperature profile, and the fatigue damage mechanism is described qualitatively. At last, a fatigue life prediction method is proposed, based on the energy dissipation theory, which provides an idea of predicting fatigue life through temperature evolution.
     2. Strength Assessment and Fatigue Life Prediction for Ageing Offshore Platforms
     The tubular joint with crack and the platform structure is modeled using ANSYS software, and the influence of crack damage on the global structure response is investigated through FE analysis. The 3-D surface crack model on tubular T- joint is created, and the detailed local stress distribution of tubular joints is determined by applying finite element submodelling method and fracture mechanics theory. The stress intensity factors along surface crack fronts are obtained and the effects of crack size and pipe corrosion on the SIFs are analyzed. A dedicated analysis approach for safety assessment of cracked offshore platforms is provided.
     Furthermore, the method of predicting fatigue crack propagating life under random wave loads is studied. Based on P-M spectrum and response transfer function of structural member, the statistical parameter for stochastic stress is calculated, and then the crack propagating life is obtained by applying Paris equation.
     3. Reliability Analysis and Remaining Life Prediction of Ageing Platforms with Multi-Failure Modes
     Considering possible multi failure modes of ageing platform members, including static strength failure, fatigue failure and corrosion failure. Each reliability model is established and the corresponding computing method is presented. The interaction between any two failure modes (i.e. static strength-fatigue coupled failure, static strength-corrosion coupled failure and fatigue-corrosion coupled failure) is analyzed through correlation factor. Then, two different methods are proposed to calculate the reliability of the component under 3 failure modes coupling: one of which is the O. Detlevsen’s Narrow Bounds theory; and the other is introducing the overall resistance deterioration including fatigue crack and corrosion to static strength failure model. Furthermore, a more simple, practical computing method is developed for assessing the system reliability of ageing offshore platform in succeed service life. Finally, considering the uncertainty factors among loads, structural member configuration, material properties, and reliability computing models, the remaining life prediction technique based on reliability theory is investigated.
     4. Reliability Updating for Ageing Offshore Platforms
     Existing offshore platform is an objective entity, which is much different from to-be-built platform structure. It requires using now available information to infer the behavior of structure in future service period, when analyzing the reliability of in-service structure. The reliability analysis method for existing ageing platform is introduced. In order to overcome the shortcoming of traditional environmental load description, a new assessment load prediction method is proposed, which may consider not only the stochasticity but also the time-varying of loads. Furthermore, on the basis of two types of historical information including experienced loads and inspection records, the reliability updating in future is analyzed. First, current measured crack size is used to obtain the resistance of the component, and then the reliability is updated with the Bayesian method; then, the dynamic reliability of offshore platforms in the subsequent service period is updated, based on dynamic time-dependent reliability theory, regarding the annual maximum wave loads in prior service time as proof loads, and considering the degradation of resistance for aging offshore platform members; finally, the reliability updating in future is analyzed according to inspection results.
     5. Extended Life Cycle Management for Ageing Offshore Platforms
     Considering the economical factor, the inspection and maintenance planning model in life extension period for aged offshore platforms is established based on the optimum cost and optimum cost-benefit ratio, respectively. Both the methods are required to ensure that the reliability in service life is larger than the minimum target reliability index. Among them, the former model makes the total expected cost of the ageing service period and life extension period minimum, while the latter makes the cost- benefit ratio minimum. A damaged component of offshore platform subjected to fatigue crack is set as an example to illustrate the proposed two models. Furthermore, some sensitivity studies are conducted to investigate the effects of basic parameters on the models. Finally, the optimum economic life prediction method is present for aging offshore platforms.
引文
[1]陈国明,刘健.近海石油老龄平台延寿技术研究[A].近海油气勘探开发高技术发展研讨会文集[C].北京, 2005: 221-225
    [2]欧进萍,段忠东,肖仪清.海洋平台结构安全评定——理论、方法与应用[M].北京:科学出版社, 2003
    [3] Gerhard Ersdal. Assessment of existing offshore structures for life extension [D]. University of Stavanger, NORWAY, 2005
    [4] D N Galbraith, J V Sharp, E Terry. Managing Life Extension in Aging Offshore Installations [A]. SPE 96702, Offshore Europe 2005. Aberdeen, Scotland, U.K., 6-9 September 2005
    [5]陈国明.冰区海洋石油平台疲劳断裂评估与可靠性分析[D].东营:中国石油大学, 1999.
    [6] DeFranco S J, Fitzhugh J T, Locke H A, et al. Eugene Island 322‘A’Drilling platform decommissioning after hurricane Lili [A]. Proceedings of the 2004 Offshore Technology Conference[C], Huston, 2004
    [7] Melchers, R E. (2003b). Probabilistic models for corrosion in structural reliability assessment–Part1: empirical models[J]. Journal of Offshore Mechanics and Arctic Engineering, 2003, 125(4): 264-271.
    [8] Melchers, R E. (2003c). Probabilistic models for corrosion in structural reliability assessment - Part 2: Models based on mechanics [J]. Journal of Offshore Mechanics and Arctic Engineering, 2003, 125(4): 272-280
    [9] Melchers, R.E. (2004a). Pitting corrosion of mild steel in marine immersion environment–Part 1: maximum pit depth [J]. Corrosion (NACE), 2004, 60(9): 824-836
    [10] J K Paik, F Brennan, C A Carlsen. Condition Assessment Of Aged Ships [A]. 16th International Ship and Offshore Structures Congress[C], VOLUME 2, AUGUST, 2006, SOUTHAMPTON, UK: 20-25
    [11]段梦兰等.海洋平台结构的最新研究进展——第9届ISOPE大会报告综述[J].海洋工程, 2000; 18(1): 86-90
    [12] Rhee, H C, Kanninen, M F. Opportunities for application of fracture mechanics for offshore structures [J]. Appl Mech Rev, 1988, 41(2): 23-35.
    [13] Karamchandani A, Dalane J I, Bjerager P. Systems reliability of offshore structures including fatigue and extreme wave loading [J]. Mar Struct, 1991, 4: 353-379
    [14]赵维涛,安伟光,杨多和.在静载和疲劳载荷作用下结构系统失效机理与可靠性分析[J].哈尔滨工程大学学报, 2006, 27(2): 200-203
    [15]安伟光,赵维涛,安海.随机结构系统综合考虑静强度、刚度和疲劳的多失效模式的可靠性分析[J].中国科学G辑:物理学力学天文学, 2007, 37(4): 516-526
    [16]许亮斌.近海石油平台动态疲劳可靠性分析与控制研究[D].东营:中国石油大学, 2004.
    [17]李宏伟.海洋平台结构远程实时安全监测系统[D].哈尔滨:哈尔滨建筑大学, 2000
    [18]李艳红,张存林,金万平等.碳纤维复合材料的红外热波检测[J].激光与红外, 2005, 35(4):262-264
    [19]王迅,金万平,张存林等.红外热波无损检测技术及其进展[J].无损检测, 2004, 26(10):497-501
    [20]孙格靓,王厚亮,李建保.碳纤维增强混凝土构件的内部缺陷红外热像技术检测[J].炭素技术, 2002 (4): 47-49
    [21]汤慧君.脉冲加热红外热成像无损检测技术的机理研究[M].北京:北方交通大学, 1999
    [22]梅林.智能化红外视觉检测与评价技术的研究[D].西安:西安交通大学, 2000
    [23]黄莉.基于红外热像的碳纤维混凝土损伤分析与研究[D].武汉:武汉理工大学, 2005
    [24]董玉芬,林毅明,王来贵等.红外热像仪用于金属材料断裂过程的实验研究[J].辽宁工程技术大学学报, 2006, 25(6): 848-850
    [25] Loung M. P. Infrared thermographic scanning of fatigue in metals [J]. Nuclear Engineering and Design, 158(1995): 363-376.
    [26] Yang B, P K L. Temperature evolution during fatigue damage [J]. Intermetallics, 2005(13): 419-428.
    [27] Yang B, P K Liaw, H W. Thermographic investigation of the fatigue behavior of reactor pressure vessel steels [J]. Materials Science and Engineering, 2001(A314): 131-139.
    [28] Guduru P R. An investigation of dynamic failure events in steels using full field high-speed infrared thermography and high-speed photography[D]. Pasadena, California: California Institute of Technology, 2001.
    [29] Y Huang, J Xu, C H Shm. Application of infrared technique to research on tensile test [J]. Materials Evaluation, 1980, 38(12): 77-79
    [30] Y Huang, SX Li, S E Lin, eta1. Using the method of infrared sensing for monitoring fatigue process of metals [J]. Materials Evaluation, 1984, 42(8): l020-l 024
    [31] Huang Y, CH Shih. Application of infrared techniques to research on mechanical properties [J]. Metallurgical Science and Technology, 1986(Italy), 4(1): 3-7
    [32] Huang Y. The thermographic investigation on themermoelastic efect in metals [J]. Chin. J. Met. Sci. Techno. 1987, 3(3): 151-155
    [33] Huang Y, G H Hicho, R J Fields. Infrared measurements of heating and cooling emissions in aluminum and steel during tensile and cyclic loading [J]. Chin. J. Met. Sci. Technol.,1990, 6(2): 106-110.
    [34]黄毅.高强度钢压力容器疲劳锻炼的热图研究[J].金属学报, 1994,30(5): 225-231
    [35]黄毅.热弹性红外图像安全检测系统[J].中国科学院院刊, 2003(3): 202-205
    [36]张皓,张伟光,王兴伟.热弹性红外图像检测软件的设计与实现[J].控制工程, 2004, 11(5): 468-470
    [37] F Cura, G Curti, R S. A new iteration method for the thermographic determination of fatigue limit in steels [J]. International Journal of Fatigue, 2005 (27): 453-459
    [38] La Rosa G, Risitano A. Thermographic methodology for rapid determination of the fatigue limit of materials and components [J]. Int J Fatigue, 2000(22): 65-73
    [39] Fargione G, Geraci A, La Rosa G, Risitano A. Rapid determination of the fatigue curve by the thermographic method [J]. Int J Fatigue 2002, (24): 11-19
    [40] Krapez JC, Pacou D, Gardette G. Lock-in thermography and fatigue limit of metals [J]. Quantitativeinfrared thermography, QIRT, Reims(France), 2000, Jul: 18-21
    [41] Bucak O, Mang F, Herion S. Development and propagation of cracks in welded hollow section joints under uniaxial multiaxial loading [J]. Inernational conference on offshore mechanics and arctic engineering, 1993, 3: 159-166
    [42] Lie S T, Chiew S P, Lee C K, et al.. Modelling arbitrary through-thickness crack in a tubular T-joint[A]. Proceeding of the tenth international offshore and polar engineering conference [C]. Seatle, USA, 2000, 4: 53-58
    [43] Wang B , Kurobane Y , Makino Y. Damage criterion and ultimate strength for tubular joints [A]. Proceedings of the seventh international offshore and polar engineering conference [C], 1997, 22: 1006-1012
    [44]秦太验,柳春图,段梦兰等.具有裂纹损伤桩腿的海洋石油平台有限元分析[J].海洋工程, 2000,13(3): 15-19
    [45]李杰,段梦兰,周松民等.半潜式钻井平台表面裂纹损伤评价[J].石油学报, 2006, 27(1): 128-131
    [46] Cheaitani M J, Bolt H M. Evaluation of stress intensity factor solutions for offshore tubular joints[A]. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering[C], Florence, Italy, 1996: 521-532
    [47]陈国明,方华灿.海洋平台管节点应力强度因子的工程计算模型[J].石油大学学报(自然科学版), 1995; 19(1): 121-129
    [48] Chiew S P, et al. Stress intensity factors for a surface crack in a tubular T-joint [J]. The International Journal of Pressure Vessels and Piping, 2001; 78(10): 677-685
    [49] Ferreira J M, Pereira A H, Branco C M. Fracture mechanics based fatigue life prediction for welded joints of square [J]. Thin-Walled Structures, 1995; 21(2): 107-12
    [50]李培宁,世界各国缺陷评定规范的发展[A].第五届全国压力容器学术会议大会报告文集[C],南京, 2001: 36-46
    [51]陈国明.海洋平台疲劳寿命预测的简化方法[J].石油矿场机械, 1999; 28(6): 27-30
    [52]陈国明,黄东升.海洋平台结构寿命预测的工程方法[A],中国钢结构协会海洋钢结构分会2002年学术会议论文集[C],峨眉山, 2002: 136-14
    [53]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社, 2003
    [54]赵尚传,赵国藩.基于可靠性的在役混凝土结构剩余使用寿命预测[J].建筑科学, 2001, 17(5): 19-22
    [55]索清辉.基于概率理论的既有桥梁承载力评估方法研究[D].成都:西南交通大学, 2005.
    [56]陈万春,马建秦.既有桥梁可靠度与安全使用寿命的综合评估[J].公路交通科技, 2006, 23(7): 78-81
    [57]赵尚传,赵国藩,贡金鑫.在役混凝土结构最优剩余使用寿命预测[J].大连理工大学学报, 2002, 42 (1): 83-88
    [58]欧进萍,刘学东.现役平台结构安全度评估的环境荷载标准[J].工业建筑, 1995, 25(8)
    [59]陈国明.基于等风险原则确定在役平台安全分析的评估载荷[J].中国海洋平台, 2002, 17(2):35-37
    [60]索清辉,钱永久,伍建强等.既有结构已服役荷载对可靠度评估结果的验证影响[J].计算力学学报, 2007, 24(3): 323-327
    [61]张俊芝,李桂青,陈平.验证荷载条件下的在役结构动态可靠度[J].武汉工业大学学报, 2000, 22(6): 75-77
    [62]刘学东.海洋平台结构服役安全度评估与维修决策[D].哈尔滨:哈尔滨建筑大学, 1996
    [63]李桂青,李秋胜.工程结构时变可靠性理论及其应用[M].北京:科学出版社, 2001
    [64]施兴华,徐定海,张婧等.基于随机过程理论的舰船结构时变可靠性分析[J].哈尔滨工程大学学报, 2008, 29(2): 135-139
    [65]陈国明.海洋结构裂纹检测与维修优化[J].石油大学学报(自然科学版), 2000; 24(5): 73-75
    [66] Moan T. Reliability-based management of inspection, maintenance and repair of offshore structures [J]. Journal Structure and Infrastructure Engineering, 2005: 33-62
    [67] Baker Jardine. Fatigue life enhancement of tubular joints by grout injection [A]. OTH, 92, 368
    [68] Y H Zhang, S J Maddox, R Razmjoo. Re-evaluation of fatigue curves for flush-ground girth welds [J]. Health and Safety Executive, 2003
    [69] Adrian F Dier. Assessment of Repair Techniques for Ageing or Damaged Structures [R]. MMS Project Number 502, November 2004
    [70] R Dekker. Applications of maintenance optimization models: a review and analysis [J]. Reliab. Eng. and Syst. Safety, 1996, 3(51): 229-240
    [71] W Kuo, V R Prasad. An annotated overvies of system-reliability optimization [A]. IEEE Trans. on Reliab.[C], 2000,2(49): 176-187
    [72] H Streicher, A Joanni, R Rackwitz. Cost-benefit optimization and risk acceptability for existing, aging but maintained structures [J]. Structural Safety, 2007: 1-19
    [73] Madsen HO, S?rensen JD, Olesen R. Optimal inspection planning for fatigue damage of offshore structures [A]. Proceedings of the 5th ICOSSAR[C], 1989(3): 2099-106
    [74] S?rensen JD, Faber MH, Rackwitz R, Thoft-Christensen P. Modelling in optimal inspection and repair[A]. Proceedings of the 10th offshore mechanics and arctic engineering conference [C], Stavanger, Norway; 1991: 281-8
    [75] Straub D. Generic approaches to risk based inspection planning for steel structures[D]. Institute of Structural Engineering, ETH Zurich; 2004
    [76] Daniel Straub, Michael Havbro Faber. Risk based inspection planning for structural systems[J]. Structural Safety, 27 (2005): 335-355
    [77] Faber Michael Havbro, Straub Daniel, Chakrabarti Partha, et al. Fatigue analysis and Risk Based Inspection planning for life extension of fixed offshore platforms[A]. OMAE, 2005(1): 511-519.
    [78]薛书文,雷雨,陈习权.脉冲红外热成像无损检测的物理检测机理[J].电子科技大学学报, 2005, 34(3): 320-322
    [79] Rittel D. Experimental investigation of transient thermoelastic effects in dynamic fracture[J]. Int J Solids Structures, 1998, 35(22): 2959-2973
    [80] Rittel D. Experimental investigation of transient thermoplastic effects in dynamic fracture [J]. Int J Solids Structures, 2000, 37(2): 290l-29l3
    [81] K.S. Bhalla, A.T. Zehnder, X. Han. Thermomechanics of slow stable crack growth: closing the loop between experiments and computational modeling [J]. Engineering Fracture Mechanics, 70 (2003): 2439-2458
    [82]罗文波,杨挺青.扩展裂纹尖端的塑性热耗散与温度场[J].应用力学学报, 2004, 21(1): 129-133
    [83] Hoclowany J, Raviehandran G, Rosakis AJ, et a1. Partition of plastic work into heat and stored energy in metals [J]. Experimental Mechanics, 2000, 40(2): 113-123
    [84] Ritchie R O, Knott J F, Rice J R. On the relationship between critical stress and fracture toughness in mild stress[J] . J Mech Phys Solids , 1973 , 21 :395-410
    [85] Nuismer R J . An energy release rate criterion for mixed mode fracture [J] . Int Jour Fract Mech ,1975, 11(2): 245-250
    [86] Seweryn A. A non-local stress and strain energy release rate for a crack under combined modeⅠ-and-Ⅱ[J] . Eng Fract Mech, 1998, 59(6): 737-760
    [87] Sih GC. Energy-density concept in fracture mechanics[J]. Eng Fracture Mech, 1973, 5: 1037-1040
    [88]谈金祝,黄文龙,戴树和.双轴向荷载Ⅰ-Ⅱ复合型裂纹积分断裂准则探讨[J].南京化工大学学报, 1996, 18(4): 74-79
    [89] Li J, Zhang XB, Recho N. J-Mp based criteria for bifurcation assessment of a crack in elastic–plastic materials under mixed mode I-II loading [J]. Engng Fract Mech. 2004, 71:329-343
    [90] Krishnakumar R, Narasimhan R, Prabhakar O. Temperature rise in a visco-plastic material during dynamic crack growth [J]. IntJ Fract. 1991, 48: 23-40
    [91] YANG B, LIAW P K, MORRISON M, et al. Temperature evolution during fatigue damage [J]. Intermetallics, 2005(13): 419-428
    [92]竺艳蓉.海洋工程波浪力学[M].天津:天津大学出版社,1991
    [93]张淑茳,史冬岩.海洋工程结构的疲劳与断裂[M].哈尔滨:哈尔滨工程大学出版社, 2005
    [94] Wirsching P H, Light M C. Fatigue under wide-band random stresses [J]. Journal of Structual Division, ASCE, Vol.16, No.ST7, 1980
    [95] RECOMMENDED PRACTICE, DNV-RP-F204. Riser Fatigue[S]. DET NORSKE VERITAS, 2005.
    [96] Cao J J, Yang G J, Packer J A, et al. Crack modeling in FE analysis of circular tubular joints [J]. Engineering Fracture Mechanics, 61(1998):537-553
    [97] Cao J, Yang G, Packer JA. FE mesh generation for circular joints with or without cracks [A]. The Proceeding of the 7th International Offshore and Polar EngineeringConference[C], USA, 1997, (IV): 98-105
    [98] HENSHELL R D, SHAW K G, Crack tip finite element are unnecessary [J]. International Journal for Numerical Methods in Engineering, 1975(9): 495-507
    [99] BARSOUM Roshdy S. On the use of isoparametric finite element in liner fracture mechanics [J]. International Journal for Numerical Methods in Engineering, 1976(10): 25-37
    [100] Shao Yongbo. Analysis of stress intensity factor (SIF) for cracked tubular K-joints subjected tobalanced axial load [J]. Engineering Failure Analysis, 13 (2006): 44-64
    [101]邵永波,杜之富,胡维东. KK节点中表面裂纹应力强度因子的数值分析[J].工程力学, 2007, 24(8): 9-14
    [102] ANSYS公司. ANSYS高级技术分析指南手册[Z].2001
    [103]博嘉科技.有限元分析软件——ANSYS融会与贯通[M].北京:中国水利水电出版社, 2002.
    [104]李庆芬.断裂力学及其工程应用[M].哈尔滨:哈尔滨工程大学出版社, 2004
    [105] Marco A Torres, Sonia E Ruiz. Structural reliability evaluation considering capacity degradation over time [J]. Engineering Structures, 2007, 29: 2183-2192
    [106]赵国藩,贡金鑫,赵尚传.工程结构生命全过程可靠度[M].北京:中国铁道出版社, 2004
    [107] Guedes Soares C, Garbatov Y. Reliability of maintained ship hulls subjected to corrosion and fatigue under combined loading [J]. Constructional Steel Research, 1999(52): 93-115
    [108] Akpan UO, Koko TS, Ayyub B, Dumbar TE. Risk assessment of aging ship hull structures in the presence of corrosion and fatigue. Marine Structures, 2002(15): 211-231
    [109] Torgeir Moan, Efren Ayala Uraga, Xiaozhi Wang. Reliability-Based Service Life Assessment of FPSO Structures[A]. ABS TECHNICAL PAPERS 2004, 193-215
    [110]张建宇,费斌军.疲劳多裂纹问题研究进展[J].力学与实践, 2003; 25(01): 6-10
    [111]倪惠玲.多处损伤特性的研究[J].航空学报. 1996,17(3):302-309
    [112]徐晓飞,方如华.多裂纹损伤容限分析方法及其应用研究[D].上海:同济大学,1999
    [113]张建宇,费斌军,赵丽滨.疲劳多裂纹扩展随机模型[J].北京航空航天大学学报, 2000 ,26(4) :396-399
    [114]张建宇,费斌军,赵丽滨.含多裂纹结构的可靠性分析方法[J].北京航空航天大学学报, 1999 ,25(2) :188-191
    [115] J Rajasankar, N R Iyer, T V S R Appa Rao. Structural integrity assessment of offshore tubular joints based on reliability analysis [J]. International Journal of Fatigue, 2003(25): 609-619
    [116] Robert E Melchers. The effect of corrosion on the structural reliability of steel offshore structures [J]. Corrosion Science, 2005 (47): 2391-2410
    [117] Ditlevsen O. Narrow reliability bounds for structural systems [J]. Journal of Structural Mechanics, 1979(17): 453-472
    [118]刘健.冰区海洋平台疲劳评估及其虚拟安全系统研究[D].东营:中国石油大学, 2005.
    [119]牛荻涛.服役结构的抗力衰减模型与可靠性研究(二十一世纪土木工程学科的发展趋势)[M].北京:科学出版社, 1997: 74-82.
    [120]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社, 2003
    [121]张俊芝.服役工程结构可靠性理论及其应用[M].北京:中国水利水电出版社, 2007
    [122] Deng Ju Long , Control Problem of Grey System [J]. System & Control Letter.1982,1(5):288-294
    [123]余加艾,刘钦.利用灰色系统方法预测冰情[J].海洋环境科学, 1995, 14(4): 70-75
    [124]刘思峰,党耀国,张岐山.灰色系统理论及其应用[M]第3版,北京:科学出版社, 2005
    [125]严晓东,马翔,郑荣跃,等.三参数威布尔分布参数估计方法比较[J].宁波大学学报(理工版), 2005, 18(3): 301-305
    [126]张俊芝,苏小卒.基于实测样本值和Bayesian方法的服役结构抗力随机时变模型[J].工业建筑, 2005, 35(3): 30-32
    [127] Enright Michael, Frangopol Dan M. Condition Prediction of Deteriorating Concrete Bridges Using Updating [J]. Journal of Structural Engineering, 1999 (125): 10, 1118-1125
    [128] Torgeir Moan, Efren Ayala-Uraga. Reliability-based assessment of deteriorating ship structures operating in multiple sea loading climates [J]. Reliability Engineering and System Safety, 2008(93): 433-446
    [129] Ayala-Uraga E, Moan T. System reliability issues of offshore structures considering fatigue failure and updating based on inspection [A]. In: Proceedings of the first international ASRANet Colloquium [C], Glasgow, UK, 2002
    [130] Mori, Y and B R Ellingwood. Maintaining: Reliability of concrete structures I: Role of inspection/ repair [J]. Journal of Structural Engineering, 1994; 120(3): 824-845
    [131] John Dalsgaard Sorensen, Aalborg, Denmark. Safety and Inspection Planning of Older Installations. November 2006
    [132] Jiao Guoyang. Reliability analysis of crack growth with inspection planning [A]. Proceeding of the 14th OMAE[C], Calgary, 1992: 227-235
    [133] Daniel Straub. Generic approaches to risk based inspection planning for steel structures [D]. Zurich : Swiss Federal Institute of Technology Zurich, 2004
    [134]李典庆.基于风险的船体结构检测及维修规划[D].上海:上海交通大学, 2003
    [135] Tronskar J P, Kaley L C. Benefits of risk based inspection to the oil and gas industry [A]. RBI Conference[C], Perth, Australia 27-28, 2000
    [136] Descamps B, Woolley K, Baker M J. Methods and tools for cost effective subsea inspection planning [A]. Proceeding of the Offshore European Conference [C], Aberdeen, SPE 030403, 1995: 383-391.
    [137] Barton A D, Descamps B. Risk-based inspection planning applied to 14 steel jacket structures [J]. International Journal of Offshore and Polar Engineering, 2001, 11(1): 64-71.
    [138] R Dekker. Applications of maintenance optimization models: a review and analysis [J]. Reliability Engineering and System Safety, 1996, 51(3): 229-240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700