用户名: 密码: 验证码:
海水介质分散型乳液调驱技术综合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于油水流度差异和油层的非均质性,使部分油井的水驱开发效果较差。近年来,为了改善水驱效果,对油水井采取了一些调驱作业。但对于海上油田,因为其独特的特点,例如缺乏淡水,作业平台面积狭小,环保要求高等,对海上施工作业有更高的要求,不能简单的照搬陆上油田的施工工艺。研究了海水介质分散型乳液与预聚酚醛树脂交联体系的配方,酚醛树脂交联体系稳定性好,封堵率大于95%。采用一维多点测压长岩心管进行了“边注边交联”的渗流实验,实验表明交联体系在岩心入口附近受到的剪切作用远远大于本身的交联作用,体现为剪切破坏。利用微观仿真模型进行了海水介质分散型乳液交联体系在多孔介质中的驱替实验,结果表明:交联体系在地层中形成弱冻胶之后,在大压差下具有一定的运移能力,呈现“驱”的作用;通过运移形成弱冻胶粘性颗粒,颗粒运移、再捕集,形成新的堵塞扩大注入水的波及效率,继续起到“调”的作用。海水介质分散型乳液交联体系在高盐油藏条件下的反应动力学研究,进一步完善了交联体系在地层中的粘度描述,全面考虑降解、吸附、渗透率下降系数等交联体系的物化机理,建立了考虑重力影响的海水介质分散型乳液交联体系在多孔介质中的三维三相九组分渗流数学模型;采用改进的IMPES方法对建立的渗流数学模型进行了求解,有效地克服了数值弥散和振荡,提高了计算的稳定性和可靠性。根据建立的渗流数学模型,以埕岛油田馆上段油藏为基础模型,定量分析了油藏参数、组分参数、注入参数对调驱效果的影响。采用人工神经网络方法建立的海水介质分散型乳液交联体系调驱选井决策模型综合考虑了注水井吸水能力、油层非均质性等因素对调驱决策的影响,CB1B-6井的实例分析表明本文提出的选井决策模型切实可行,可以最大限度地利用已有数据和资料,减少决策的主观影响,提高了计算的可靠性和科学化程度。应用数值模拟技术对CB1B-6的不同施工方案进行了效果预测,并根据经济评价指标优选出了CB1B-6调驱的最佳调驱剂量。提出了一套利用射流混合器和管道混合器进行海上油田海水介质分散型乳液交联体系调驱的平台连续施工工艺流程及混合器选择与参数设计方法,并开展了地面模拟实验。胜利埕岛油田CB1B-6井应用海水介质分散型乳液进行的现场试验获得了良好的效果。本论文的研究成果为发展海上水驱油田提高采油速度和采收率提供了一条新的技术思路。
Most oil field injected sea water into formation to supplement producing energy for production of offshore oilfield. Depending on the injected water,oil flow to well bore through porous media. Because the viscosity of water is more lower than that of oil, thus, the injected water fingering serious during displacement. Meanwhile the finger advance could result in "water breakthrough" and "water flush " because of heterogeneity of reservoir. As a rusult, waterflood efficiency of several oil well is bad. To disprosal and decrease the damage of the "water breakthrough" and "water flush", people launched operation of in-depth profile control. But because of peculiar characteristic of offshore oilfield, such as the short of water, small area of platform for operation, and high demand of environmental protection, the requirement is more higher while opreating in offshore oilfield. thus, waterflood efficiency of several oil well is bad. To improve waterflood efficiency, people launched operation of in-depth profile control. Because of peculiar characteristic of offshore oilfield, such as the short of water, small area of platform, and high demand of environmental protection, the requirement is more higher while opreating in offshore oilfield. Thus, we can't copy the technology of land oilfield easily. We selected the dispensation of aqueous media type emulsion and prepolymerized resin. Stability of crosslinking system with resin is good. Coefficient of blankig off is more than 95%. We did displacing experimen with microscope simulation model established, in order to obverse the flow of crosslinking system with aqueous-media dispersing type emulsion through porous media. After the crosslinking system became weak gel, crosslinking system had the contribution of displace. Meanwhile, weak gel turned into viscoelastic behavior particle during moving. There particle moved and been captured to blank off flow channel, so that sweep efficiency of injected water became biger. Weak gel had the contribution of adjusting profile. Reaction kinetics of crosslinking system with aqueous-media dispersing type emulsion was studied. And the viscosity description was improved. The mathematical model for fluid flow through porous media of triaxial three-phase nine components was established on the considered of physicochemical mechanism such as degrade, absorbing, permeability plugging.The model was computed with the advanced method of IMPES which could overcame the dispersion and vibration of number. It advanced the stability and dependability of numrical calculation.On the basis of Chengdao Oilfield reservoir, the affects of reservoir parameters, components parameters, injected parameters to enhance oil recovery were analysied quantitatively by use of the model. The decision model about selecting well was established with artificial neural network. The model considered the affects of aborbing capacity of input well, formation heterageneity, production performance of communicate wells. And illustration descriped that CB1B-6 well is fit for in-depth profile control and flooding. This could utilize the existing data, decrease the affect of human factor, and improved the stability and scientific grade. The effectivenesses of different construct scheme to CB1B-6 were predicted with numerical model. At last, the best crosslinking system volume was optimized according to economin evaluation. Jet flow mixer was designed by the jet flow theory. The appropriate line mixer was selected. Construction technology of combination in-depth profile control and flooding was studied which is for the sake of construst on the platform in offshore oilfield. In-house experiments were developed. Aqueous-media dispersing type emulsion could be satisfied for offshore oilfield. The new technology extends a new thinking to improve oil recovery at the later stage of water flooding for offshore oilfield.
引文
[1]李建文,邱化玉.新型聚丙烯酰胺乳液增强剂的合成及应用[J].中国造纸,2004,23(1):16-19.
    [2]纪国慧,向琼,王丕新,等.水介质分散型阳离子聚丙烯酰胺在制药废水处理中的应用[J].工业水处理.2006,26(5):29-31.
    [3]叶强,张志成,葛学武.分散聚合的研究进展(Ⅱ):分散聚合的机理和应用研究[J].高分子材料科学与工程,2004,20(3):9-12.
    [4]Shen S,Sudol E D,EI-Aasser M S.Control of particle size in dispersion polymerization of methylmethacrylate[J].Polym Sci,Part A:J Poly Chem,1993,31:1393-1402.
    [5]Tseng C M,Lu Y Y,EI-Aasser Vanderhoff J W Uniform.Polymer particles by dispersion polymerization in alcohol[J].Polym Sci,J Polym Chem Ed,1986,24:2995-3007.
    [6]Ray B,Mandal B M,Dispersion polymerization of acrylamide[J].Langmuir,1997,13:2191-2196.
    [7]Cho M S,Yoon K J,Song B K.Dispersion polymerization of acrylamide in aqueous solution of ammonium sulfate:synthesis and charaterzation[J].J Appl Polym Sci,2002,83:1397-1405.
    [8]Song B K,Cho M S,Yoon K J,Lee D C.Dispersion polymerization of acrylamide with quaternary ammonium cationic comonomer in aqueous solution[J].J Appl Polym Sci.2003.87:1101-1108.
    [9]司晓慧,岳钦艳,高宝玉,等.阳离子型高分子絮凝剂P(DMDAAC-AM)的分散聚合制备初探.山东大学学报[J].2008,43(1):28-32.
    [10]陈冬年,刘晓光,王丕新,等.硫酸铵水溶液中丙烯酰胺与正离子单体的分散共聚研究.高分子学报[J].2006,9:1074-1078.
    [11]刘一江.化学调剖堵水技术.北京:石油工业出版社:1999.11
    [12]魏秀丽译,深度封堵凝胶[J].采油工艺情报,1994.1:88
    [13]J.E.Smith,The Transition Pressure:A Quick Method for Quantifying Polyacrylamide Gel Strength.SPE 18739:473
    [14]Smith J.E..Performance of 18 polymers in aluminium citrate colloidal dispersion gels[A].SPE 28989,1995
    [15]Chauveteau GKohler N.Influence of Microgels in Xanthan polymerocharide Solution on Their Flow Through Various Porous Media.SPE 9295,1987
    [16]赵福麟.采油化学.东营:石油大学出版社.1990第3版:85-92
    [17]陈铁龙.弱冻胶调驱提高采收率技术.北京:石油工业出版社.2006.9,14-20
    [18]Mhirasaki G.H.,Pope G.A.Analysis of factors influencing the mobility and adsorption in the flow of polymer solution through porous media.SPE4026,1972
    [19]陈铁龙,周晓俊,赵秀娟,等.弱凝胶在多孔介质中的微观驱替机理.石油学报[J].2005.26(5):74-76
    [20]Yuan Shiyi,Han Dong,Wang Qiang.Numerical Simulation Study on Weak Gel Injection.SPE64291.2000
    [21]袁士义.聚合物地下交联调剖数学模型[J].石油学报,1991.1
    [22]田根林,鞠岩,孙广煜.交联聚合物剪切特性及渗流规律研究[J].油气采收率技术,1997,4(4):19-24
    [23]朱维耀.多重交联聚合物防窜驱油组分模型模拟器[J].西安石油学院学报,1998.13(3):20-24
    [24]徐兵,程林松.弱凝胶调驱数值模拟[J].计算物理,2005,22(2):164-170
    [25]雷占祥,陈月明,冯其红.聚丙烯酰胺反相乳液深部调驱数学模型[J].石油学报,2006,27(5):104-107
    [26]冯其红,袁士义,韩冬.可动凝胶深部调驱动态预测方法研究[J].石油学报,2006,27(4):77-80
    [27]陈国,赵刚,马远乐.聚合物交联调剖驱油数学模型[J].清华大学学报(自然科学版),2004(44)12:1606-1609
    [26]高振环.多孔介质中凝胶强度测试方法的探讨[J].油田化学,1990.7(3):240-243
    [27]宋书苓.一种用于碳酸盐岩高温地层的冻胶堵水剂[J],油田化学,1989.6(4) 300-303
    [28]韩群业译,利用新化学剂及机械技术进行调剖堵水[J].采油工艺情报,1994.4:52
    [29]董建军,木质素聚丙烯酰胺调剖剂的研制与评价,黑龙江大学硕士学位论文,哈尔滨:2001
    [30]傅奎仕.FT-213两性离子聚合物凝胶调剖剂的研究与应用[J].油田化学,1995.12(2):129-134
    [31]李未蓝译,高渗透的生产井用稀聚丙烯酰胺凝胶堵水[J].采油工艺情报,1994.3:49
    [32]董朝霞.盐分数对交联聚合物形态的影响[J].油田化学,2002.19(1):80-84
    [33]陈尚冰.延缓交联暂堵剂的研制[J].石油与天然气化工,1996.25(1):34-37
    [34]王平美.抗高盐的非离子聚合物弱凝胶调驱体系[J].石油钻采工艺,2002.24(5):53-56
    [35]汪庐山.HPAM/Cr~(3+)交联机理及其耐温抗盐性[J].油气地质与采收率,2002.9(3):10-12
    [36]王刚.超高分子量聚合物性能评价研究[J].大庆石油地质与开发,2001.20(2):101-103
    [37]熊春明,唐孝芬.国内外堵水调剖技术最新进展及发展趋势[J].2007,34(1):83-88
    [38]刘想平,刘翔鹗.聚合物地下交联调整注水剖面的数学模型及其应用[J].中国海上油气(地质),1998.19(4):279-284
    [39]DelshadM.U.T..CHEMVersion 6.1 Technical Documentation[R].Center for Petroleum and Geosystems Engineering.The University of Texas at Austin,Austin,Texas,1997
    [40]张琪.采油工程原理与设计.东营:石油大学出版社.2000.9:245-250
    [41]万仁溥.采油工程手册(下册)[M].北京:石油工业出版社.2000:1248-2511
    [42]陈铁龙,周晓俊,唐伏平,等.弱凝胶调驱提高采收率技术[M].北京:石油工业出版社,2006年.36-37.
    [43]江如意,蔡磊,刘玉章.海上油田深部调剖先导试验方案研究.江汉石油学院学报.2004,26(3):147-149.
    [44]王健,袁迎中,罗平亚,等.地层成冻疏水缔合聚合物/苯酚/甲醛海水基凝胶调堵剂的研究.油田化学.2005,22(2):140-142.
    [45]孙景民.黄原胶在大港枣园油田的应用[J].石油勘探与开发,2000.27(5):90-92
    [46]Xianguang,Liu,Sheng Xiang,Yumei Yue,etal.Preparation of Poly(acrylamice-co-acrylic acid)aqueous latex dispersions using anionic polyelectrolyte as stabilizer.Colloids and surfaces A:Physicochem.Eng.aspects 311(2007),131-139.
    [47]Guba S,Ray B Mandal B M.Anomalous solubility of polyacrylamide prepared by dispersion polymerization in aqueous tert-butyl alcohol[J].J Polym Sci:Pt.A:PloymChem,2001,39(19):3434-3442.
    [48]12005.2-1989.聚丙烯酰胺固含量测定方法.国家技术监督局1989年12月25日批准.
    [49]Ray B,Mandal B M.Dispersion polymerization of acrylamide.Part Ⅱ:2,2'-azobisisobutyronitrile initiator[J].J Ploym Sci:Pt.A:Ploym Chem,1999,37(4):493-499.
    [50]唐康泰,潘松汉.聚丙烯酰胺结构和溶解性能[J].广西化工,1996,24(3):55-61
    [51]应宗荣.水溶性聚酯的溶解性能[J].合成技术及应用,1998.13(4):7-9
    [52]韩哲文.高分子科学教程[M].上海:华东理工大学出版社,2001.
    [53]戴彩丽,王业飞,赵福麟.缓交联铬冻胶体系影响因素分析.石油大学学报(自然科学版)[J],2002,26(6):56-61
    [54]Sydansk.R.D,Acrylamide-Polymer/Chromium(Ⅲ) Carboxylate Gels for Near Wellbore Matrix Treatments.SPE 20214,1990:398-399
    [55]戴彩丽,赵福麟,李耀林等.海上油田水平井底水锥进控制技术[J].石油学报,2005,26(4):69-72.
    [56]唐孝芬,吴奇,刘戈辉,等.区块整体弱凝胶调驱矿场实验及效果[J].石油学报,2003,24(4):58-61.
    [57]唐孝芬,李红艳,刘玉章,等.交联聚合物冻胶调剖剂性能评价指标及方法[J].石油钻采工艺.2004,26(2):49-53.
    [58]戴彩丽,葛际江.影响醛冻胶成冻因素的研究.油田化学[J].2001.18(1): 24-26
    [59]才程.铬冻胶堵剂突破压力的测定[J].石油大学学报,2002.26(5):58-64
    [60]景贵成,高树生,熊伟,等.STP强凝胶调剖剂的深度调剖性能[J].石油勘探与开发.2007,31(3):133-135.
    [61]郑健,张光焰,王海英.适用于海上油田新型调剖剂的研究与应用.石油钻采工艺.2007,29(4):68-71.
    [62]王平美,罗建辉,白凤鸾,等.调驱用RSP3抗盐聚合物弱凝胶研制[J].油田化学,2001,18(3):251-254.
    [63]刘金河,叶天序,郝青.低分数HPAM/AlCit体系的评价及成胶性能影响因素研究[J].石油与天然气化工,2003,32(6):375-378
    [64]Lockhart T P,Albonico P.New chemistry for the placement of chromium(Ⅲ)/polymer gels in high-temperature reservoirs.SPE Production and Facilities,1994;9(4):273-279
    [65]Southwell G P,Posey S M.Application and results of acrylamide polymer/chromium(Ⅲ)carboxylate gels.SPE/DOE 27 779,1994.
    [66]R.J.Marshall,A.B.Meterner.Flow of Viscoelastic Fluids through Porous Media.I&EC Fundamentals.1967:393-400
    [67]Teeuw D,Heaselink J T.Power-Law Flow and Hydrodynamic Behavior of Biopolymer Solution in Porous Media.SPE 8982,1980
    [68]夏惠芬.粘弹性聚合物溶液的渗流理论及应用.北京:石油工业出版社.2002
    [69]Sorbie K.S..Network modeling of Xanthan Rheology in porous media in the presence of Depleted Layer Effects.SPE19651.1989
    [70]张宏方,王德民,王立军.聚合物溶液在多孔介质中的渗流规律及其提高驱油效率的机理[J].大庆石油地质与开发,2002,21(4):57-60
    [71]袁士义,韩冬,苗坤,等.可动凝胶调驱技术在断块油田中的应用[J].石油学报,2004,25(4):50-57
    [72]李明远,郑晓宇,林梅钦,等.交联聚合物溶液深部调驱先导试验[J].石油学报,2002,23(6):72-76
    [73]Carlos Deolarte,PEMEX,Julio Vasquez,et al.Successful Combination of an Organically Crosslinked Polymer System and a Rigid-Setting Material for Conformance Control in Mexico[R].SPE112411,2008:1-15.
    [74]张立娟,岳湘安.粘弹性和幂率型驱油剂的等效渗透率[J].2007,28(1):88-91
    [75]J.D.Purkaple.In-Depth Colloidal Dispersion Gels Improve Oil Recovery Efficiency.SPE27780.Tulsa,April 17-20.1994
    [76]贺礼清.工程流体力学[M].山东东营.石油大学出版社,2001:12-14
    [77]康福元.弱凝胶调驱效果预测与优化决策技术研究[D].成都:西南石油学院,2002
    [78]冯其红.可动凝胶深部调驱油藏工程方法研究[D].北京:中国石油勘探开发科学研究院.2004
    [79]张勇.调剖优化决策与方案预测技术研究[D].成都:西南石油学院,2005
    [80]唐孝芬.海上油田深部调剖改善水驱及机理研究[D].北京:中国地质大学(北京),2006
    [81]王海波.胜利摊海油田卫星平台乳液聚合物调剖技术研究[D].广州:中国科学院地球化学研究所.2007
    [82]A.Stavland,K.I.Andersen,B.Sandoy,et al.How To Apply a Blocking Gel System for Bullhead Selective Water Shutoff:From Laboratory to Field[R].SPE99729,2006:1-12
    [83]Luisa Chiappa,Maria Andrei,Thomas P.Lockhart,et al.Polymer Design for Relative Permeability Modification Treatments at High emperature[R].SPE80202,2003:1-10
    [84]赵福麟,戴彩丽,王业飞等.海上油田提高采收率的控水技术.中国石油大学学报(自然科学版).2006,30(2):53-59.
    [85]王海波,肖贤明.海上调剖用乳液聚合物的合成与评价.钻采工艺.2006,30(4):125-128.
    [86]J.W.Ess and P.R.Homsby.Twin-screw extrusion compound—ing of mineral filled thermoplastics:Dispersive mixing efects[J].Plastics and Rubber Processing and Applications,1987,3(8).
    [87]杨忠保,范存良,高峰,等.苏尔士静态混合器压降和停留时间的测定[J].化学反应工程与工艺,1997,3(13),299-303.
    [88]李洪亮,马晓建,方书起,等.Kenics型静态混合器流动阻力的实验研究[J].郑州工学院学报,1995,4(16),62-66.
    [89]J M Zalc E S Szalai F J Muzzio.Mixing dynamics in the SMXstatic fixer as a function of injection location and flow ratio[J].PolymerEngi,~ing and Science,2003,4(43),875-886.
    [90]王德成,马保东译.静态混合器[M].北京:纺织工业出版社。1985.25.
    [91]郑四仙.静态混合器简介及选用[J].化工生产与技术,2000,7(2):33-35.
    [92]吴微.神经网络计算[M].北京.高等教育出版社,2003:9-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700