用户名: 密码: 验证码:
高能气体压裂过程动力学模型与工艺技术优化决策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高能气体压裂系统关键因素理论研究的欠缺,严重限制了该技术在油田的进一步推广。论文首先对高能气体压裂过程中的火药爆燃加载、压挡液柱运动、裂缝动态延伸三个主要模块进行了动力学模型和相应求解方法的研究。其中火药爆燃加载模型是在火药燃速模型的基础上,综合气体状态方程、质量守恒方程、能量守恒方程而建立的;压挡液柱运动模型是假设了火药燃气与压挡液之间存在完全接触界面,由连续性方程、动量守恒方程、能量守恒方程组成,可考虑液柱的动能分布和管柱摩擦作用的影响;裂缝动态延伸模型是在现有理论的基础上,利用质量守恒和能量守恒理论耦合了孔眼泄流、缝内流体压力分布、缝壁渗漏、裂缝延伸判据和裂缝形态计算五个子模型而组建的。同时论文在完善了考虑井筒内压影响的套管射孔井周围应力分布模型的基础上,分别利用理论推导和岩石冲击破坏实验,得出了可保障套管安全和顺利压开油层的极限压力计算模型,为高能气体压裂各子系统间的耦合提供了衔接条件。其中套管安全校核模型考虑了套管受压过程中壁面径向位移和射孔孔眼的影响,而强动载下岩石破裂压力模型是利用“岩石动态损伤模拟实验装置”直接对小型模拟井眼进行高能气体压裂加载条件下的冲击破岩实验,回归得出其与加载速率、静载下破裂压力间的高精度计算相关式。在建立和完善了高能气体压裂过程中三个子系统模型及其衔接条件的基础上,建立了由各子系统中压力、温度为主线变量的质量守恒方程和能量守恒方程,再结合各子模型的求解方法,研究了高能气体压裂全过程的耦合求解技术,并进行了应用软件的研制。据此既可定量计算合理的装药量范围,也可对高能气体压裂的爆燃压力、裂缝形态进行定量动态预测;并以此为基础,研究了高能气体压裂中各子系统自身的动态变化规律以及装药结构、装药质量、压挡液高度、射孔密度、射孔孔径五个关键参数对压裂效果的影响敏感性。最后通过对高能气体压裂现场井的工艺参数优化设计和措施效果分析,结果表明论文所建立的高能气体压裂系统动力学模型和相关应用软件具有较强适用性和准确性,可为该技术的进一步推广提供一定的理论支持。
The theoretical research deficiency of the key elements to High Energy Gas Fracture (HEGF) system has greatly restricted its further popularity and application in oilfield. First, the dynamic models and relative solution methods of the three major subsystems, including deflagrating powder loading, liquid column movement above the powder gas and fracture dynamic extension are studied. Based on the powder combustion rate model, the powder deflagrating load model is built using the ideal gas state equation, mass conservation equation and energy conservation equation. On the assumption that there exists a complete contact interface between the powder gas and the liquid column above, the liquid column movement model constituted by continuity equation, momentum conservation equation and energy conservation equation is established, which can take into consideration of the effect of liquid column’s kinetic energy distribution and string friction. By coupling the five sub models such as perforation releasing, liquid pressure distribution in fracture, liquid seepage around fracture plane, fracture extension criteria and fracture shape calculation, the fracture extension model is built utilizing mass conservation theory and energy conservation theory. At the same time, based on the improvement of the stress distribution model of casing perforated well considering within the wellbore pressure effect, the limit pressure calculation models which can guarantee casing safe and oil layer’s easily cracking is established by theoretical study and the rock shocking damage experiments separately, which can afford a joint qualification for the HEGF’s subsystems coupling. And the casing safe checking model can take into consideration of casing wall radial displacement and perforation effect in the process of casing pressuring.And the rock cracking pressure model under Strong dynamic loading condition is a high accuracy relational expression among dynamic fracturing pressure, static fracturing pressure and loading rate, which is regressed according to the rock impact damage experiments to small scale simulation wellbore, using the“rock dynamic damage simulation experimental device”. On the basis of the established and improved models of all subsystems and their joint qualifications to HEGF process, the mass conservation equations and energy conservation equations which are correlated by pressure and temperature of all subsystems are built, and then combing the resolving methods of all sub models, the whole process couple calculating technology is formed and the related software is programmed. According to the calculating technology and the application software, the reasonable powder charge bound can be quantitatively calculated and the deflagrating pressure and the fracturing patterns under different parameters values can be accurately predicted. Based on this, the dynamic changes of the three subsystems to the HEGF process are studied, and the sensitivities to fracturing effect of five key parameters including powder structure, powder amount, height of liquid column above the powder gas, perforation density and perforation diameter are analyzed. Finally, the parameters optimization design and the application results of an oilfield HEGF well show that the HEGF system dynamic model and related application software given by this dissertation have strong applicability and accuracy, which can support the HEGF’s further popularization and application.
引文
[1]杜伊芳.国外水力压裂工艺技术现状和发展[J].西安石油学院学报.1994,9(2):26-29,20
    [2]王晓泉,陈作,姚飞.水力压裂技术发展现状及发展展望[J].钻采工艺,1998(2):82-92
    [3]田和金,薛中天,李璗等.高能气体压裂联作技术进展[J].石油钻采工艺.2002,24(4):67-69
    [4]杨其彬,马利成,黄侠.复合压裂技术.断块油气田[J].2004,11(1):74-76
    [5]马新仿.复合压裂技术研究[J].河南石油.2001,15(3):39-41
    [6]李文魁.高能气体压裂技术在油气资源开发中的应用研究[J].西安工程学院学报.2000,22(2):60-62
    [7]赵双庆,傅仁军.高能气体压裂技术在油田的应用[J].爆破.2002,19(1):90-91
    [8]杨宝君,回春兰.复合压裂技术研究及应用.石油钻采工艺[J].1998,20(1):69-73
    [9]雷群.浅谈高能气体压裂与水力压裂联作技术.石油钻采工艺[J].1999,22(4):17-19
    [10]文学功.复合压裂技术在八面河油田的应用前景[J].石油天然气学报(江汉石油学院学报).2005,27(3):506-507
    [11]张杰,李璗,田和金.高能气体压裂流体漏失量的计算[J].河南石油.2004,18(1):43-47
    [12]刘继华.火药物理化学性能[M].北京:北京理工大学出版社,1997:192-200
    [13]彭培根等.固体推进剂性能及原理[M].长沙:中国人民解放军国防科学技术大学出版社.1987:65-71
    [14]王德才.火药学[M].南京:南京理工大学出版社.1988:165-180
    [15]杨卫宇,周春虎,赵刚.高能气体压裂瞬态压力耦合分析[J].石油学报.1993,14(3):127-134
    [16]王安仕,秦发动.高能气体压裂技术[M].西安:西北大学出版社.1998:10-14,70-71,77
    [17] D.B.Lombard.Recovering Oil from Shale with Nuclear Explosives[J].SPE1068.1965
    [18] Shyapobersky.J et al.A Review of Recent Development in Fracture Mechanics with Petroleum Engineering Applications[J].SPE28074,1994
    [19] Bray,Bruce G,Knutson,Carroll F.Economics of Contained Nuclear Explosions Appliedto Petroleum Reservoir Stimulation[J].SPE1133.1965
    [20] Holditch, S . A. Successful Stimulation of Deep Wells Using High Proppant Concentrations[J].SPE 4118,1973
    [21] Watson S C and Benson G R. Liquid Propellant Stimulation of Shallow Appalachian Basin Wells[J].SPE13376,1984
    [22]丁雁生.低渗透油气田“层内爆炸”增产技术研究[J].石油勘探与开发,2001,28(2):90-96
    [23]李传乐.国外油气井“层内爆炸”增产技术概述及分析[J].石油钻采工艺,2001,23(5):77-78
    [24]胡朝菊,马洪涛,耿兆华等.利用地层测试压力曲线指导油层压裂改造[J].特种油气藏。2004,11(1):72-74
    [25]东兆星.高应变率下岩石本构特性的研究[J].工程爆破.1999.5(2):6-9.
    [26]杨军.岩石动态损伤特性实验及爆破模型[J].岩石力学与工程学报.2001.20(3):321-322
    [27]夏昌敬.冲击载荷下孔隙岩石能量耗散的实验研究[J].工程力学.2006.23(9):1-4
    [28]蒋金宝.爆炸波对水泥试样损伤破坏的实验研究[J].岩土工程学报.2007.29(6):923-925
    [29]葛涛.坚硬岩石在强冲击荷载作用近区的性状研究[J].爆炸与冲击.2007.27(4):310
    [30]林英松.损伤对爆生气体作用下孔壁岩石开裂规律的影响[J].石油钻探技术.2007.35(4):26-27
    [31]谭成文,王富耻,李树奎等.内爆炸加载条件下圆筒的膨胀、破裂规律研究[J].爆炸与冲击.2003,23(4):602-703
    [32]李永池,李大红,魏志刚等.内爆炸载荷下的圆管变形、损伤和破坏规律性的研究[J].力学学报.1999,31(4):442-449
    [33]康丽霞,王耀华,史长根.内爆炸载荷下薄壁柱壳膨胀断裂的研究[J].爆破器材.2002,31(1):34-37
    [34] Taylor G I. The Fragmentation of Tubular Bombs. Scientific Papers of G I Taylor, III[M]. London: Cambridge University Press,1963:387-389
    [35]封加坡,金属动态延性破坏的损伤函数模型[D].北京:北京理工大学.1992
    [36] Shockey D.A., Seaman L. Material Behavior or Under High Stress and Ultrahigh Loading Rates[M]. New York and London Plenum Press.1983:273
    [37]张莉,张玉凤,霍立兴.加载速率对结构钢力学性能和断裂韧度的影响[J].焊接学报.2003,24(1):94-96
    [38]许泽建,李玉龙,李娜等.加载速率对高强钢40Cr和30CrMnSiNi2AI型动态断裂韧性的影响[J].金属学报.2006,42(9):965-970
    [39] Guduru P R, Singh R P, Avichndran G R. Dynamic Crack Initation in Ductile Stress[J]. J Mech Phys Solids. 1998,(46):1997-2016
    [40] Sumpter J D G, Caudrey A J. Recommended Fracture Toughness for Ship Hull Steel and Weld[J]. Marine Structures. 1995,(8):345-357
    [41]贾江滢,徐家福,富东慧等.加载速率对6020铝合金材料力学性能影响的实验研究[J].实验力学.2008,23(1):86-93
    [42]马秋荣.石油套管的动态断裂韧性[J].机械工程材料.1999,23(3):10-11,49
    [43]新涛,程贵海.岩石爆破破坏机理的四种理论[J] .深部探矿工程.2006,(7):181-182
    [44]陶颂霖.凿岩爆破[M].北京:冶金工业出版社.1992:119-120
    [45]井澜.爆破破岩机理的探讨[J].爆破.1994,(4):1-6
    [46] K. Hino. Fragmentation of Rock Through Blasting & Shock Wave Theory of Blasting[J]. Quarterly Colorado School of Mines.1956.No.3
    [47] H. K. Kutter & C. Fairhurst. On the Fracture Process in Blasting[J]. Int.J. of Rk Mech.& Min.Sci. 1971.5:26-32
    [48]陈建平,高文学.爆破工程地质学[M].北京:科学出版社.2005:217-218
    [49]刘红岩,李俊文,徐留红.机遇综合考虑损伤与断裂的岩石爆破破坏力学模型[J].有色金属.2005,57(1):35-37,40
    [50]杨小林,王梦恕.爆生气体作用下岩石裂纹的扩展机理[J].爆炸与冲击.2001,21(2):111-116
    [51]卢文波,陶振宇.爆生气体驱动的裂纹扩展速度研究[J].爆炸与冲击.1994,14(3):264-267
    [52]陈莉静,李宁,王俊奇.高能复合射孔爆生气体作用下预存裂缝起裂扩展研究[J].石油勘探与开发.2005,32(6):91-93,120
    [53] Nilson R H, Proffer W J, Duff R E. Modeling of Gas Driven Fractures Induced by Propellant Combustion within a Borehole [J]. Int. J. Rock. Mech. Min. Sci. & Geomech. 1985, 22(1):3-19
    [54]曹言光,刘长松,林平等.应用断裂力学理论建立油气井压裂时岩石破裂压力计算模型[J].西安石油学院学报(自然科学版).2003,18(4):36-39
    [55]阿特金森B K.岩石断裂力学[M].尹祥础,修济刚(译).北京:地震出版社,1992:57-62
    [56] George E., Zacharias A. Eleftherios L.. Effect the Fracture Process Zone in Directed Crack Propagation in Borehole Blasting[J]. SPE 28085,1994:463-470
    [57]李永东.理论应用断裂力学[M].北京:兵器工业出版社.2005:82-83
    [58] Tada H, Paris P C, Irwin G R. The Stress Analysis of Crack Handbook[J]. Del Res, Corp. Hellertown, 1973
    [59]张志呈.岩石断裂控制爆破的裂纹扩展[J].西南工学院学报.2000,15(1):60-66
    [60]李文魁.井下封隔区间高能气体压裂的理论计算[J].西安石油学院学报(自然科学版).2000,15(3):11-13
    [61]张杰,李璗,田和金.高能气体压裂流体漏失量的计算[J].河南石油.2004,18(1):43-47
    [62]张烈辉,朱水桥,王坤等.高速气体非达西渗流数学模型[J].新疆石油地质.2004,25(2):165-167
    [63]王鸿勋,张士诚.水力压裂设计数值计算方法[M].北京:石油工业出版社,1998:108-118
    [64]张琪.采油工程原理与设计[M].东营:石油大学出版社,2005:259-260
    [65] Cornell D, Katz D L. Flow of Gases Through Consolidated Porous Media [J]. Industrial and Engineering Chemistry,1953,45:2145
    [66]Geertsma J. Estimating the coefficient of inertial resistance in fluid flow through porous media [J]. SPE, 1974,(10):445-450
    [67]秦发动.聚能效应及其在高能气体压裂中的应用研究[J].石油学院学报,1992,(2):17-22
    [68]秦发动,王安仕等.活塞自击式逐级延时引燃气体发器装置设计及应用[J].西安石油学院学报.1995,(3):42-48
    [69]高建义,陆兴峰,李汝学.无壳体高能气体压裂弹工艺介绍[J].油气井测试.1999,8(1):63-64
    [70]王安仕,刘发喜.高能气体压裂液体火药理论配方优选设计[J].西安石油学院学报.1994,9(4):4-6
    [71]王安仕.高能气体压裂用液体药点火与爆燃研究[J].西安石油学院学报.1995,10(3):55-57
    [72]杨建华,袁根群,钱伟平等.液态火药高能压裂增产机理及应用[J].油气井测试.1999,8(4):59-62
    [73]叶显军,张惠生,田国理.液体火药高能气体压裂技术研究和在深层油气藏中的应用[J].石油勘探与开发.2000,27(3):67-71
    [74]杨永超,付成慧,王渝东.液体火药高能气体压裂研究及应用[J].油气采收率技术.1999,6(2):61-64
    [75]叶显军,郭新河,毛书军.液体火药高能气体压裂在深层油气藏中的应用[J].断块油气田.1999,7(2):41-43
    [76]刘发喜,张新庆.液体药高能气体压裂及其发展方向[J].河南石油.2000,(2):29-31
    [77]田和金,张新庆,张杰.液体药高能气体压裂技术[J].天然气工业.2004,24(9):75-79
    [78]李伟翰,颜红侠,王世英.多脉冲高能气体压裂-热化学解堵综合增产技术[J].油田化学.2005,22(3):223-226
    [79]张杰,张伟峰,宋和平.多脉冲高能气体压裂-二氧化氯复合解堵技术研究[J].西安石油学院学报(自然科学版).2003,18(3):21-24
    [80]张荣,张兰芳,郑勇等.多脉冲造缝与酸化联作技术研究与应用[J].石油钻采工艺.2007,30(2):109-111
    [81]王艳萍,黄寅生,潘永新.复合射孔技术的现状与趋势[J].爆破器材.2002,31(3):30-33
    [82]刁刚田,刘志华,周家驹.复合射孔技术的应用[J].石油钻采工艺.2003,26(6):30-33
    [83]赵开良,罗仁杰,于敬文.复合射孔技术及其应用[J].断块油气田.2000,7(2):62-64
    [84]杨宝君,郭伟.复合射孔技术研究与应用[J].石油钻采工艺.1997,19(6):58-62
    [85] Luo Yong,Shen Zhao-wu. The Experimental Study on the Feasibility of Compound Technique of Perforating in Coal Seams[J]. Energetic Materials.2005,13(4):257-261
    [86]吴晋军,马荣华.复合射孔压裂技术的应用[J].石油矿场机械.2000,29(2):31-34
    [87]王安仕,吴晋军.射孔-高能气体压裂复合技术研究[J].西安石油学院学报,1997,7(4):12-18
    [88]吴晋军,王安仕.射孔-高能气体压裂复合装置的研制[J].钻采工艺,1997,11(6):61-65
    [89]吴晋军,秦发动等.超高压水油不浸入测压器.专利号:ZL93211804.6
    [90]秦发动,吴晋军.我院高能气体压力技术十年发展综述[J].西安石油学院学报,1997,12(3):13-18
    [91]吴飞鹏,蒲春生,任山等.燃爆诱导酸化压裂在川西气井中的先导试验[J].中国石油大学学报.2008,32(6):101-103,108
    [92]房军,谷玉洪,米丰珍.非均匀载荷作用下套管挤压失效数值分析[J].石油机械,1999,27(7):34-37
    [93]房军,赵怀文,岳伯谦.非均匀地应力作用下套管与水泥环的受力分析[J].石油大学学报,1995,19(6):52-57.
    [94] Cheatham J B,Mcever J W. Behavior of casing subjected to Salt Loading [J]. SPE828,1964 .
    [95]练章华,张先普,赵国珍等.岩石、水泥环、套管互作用的粘弹塑性有限元力学模型[J] .西南石油学院学报,1994,16(2):97-103.
    [96]殷有泉,蔡永恩,陈朝伟等.非均匀地应力场中套管载荷理论解[J].石油学报,2006,27(4):133-138.
    [97]殷有泉,陈朝伟,李平恩.套管-水泥环-地层应力分布的理论解[J].力学学报,2006,38(6):15-18.
    [98]张广清,陈勉,赵艳波.新井定向射孔转向压裂裂缝起裂与延伸机理研究[J].石油学报.2008,29(1):116-119
    [99] Grote D L, Park S W, Zhou M. Dynamic Behavior of Concrete at High Strain Rates and Pressures:Experimental Characterization[J] . International Journal of Impact Engineering, 2001, 25(3): 869-886.
    [100]夏昌敬,谢和平,鞠杨,孔隙岩石的SHPB试验研究[J].岩石力学与工程学报.2006,25(5):896-899
    [101]刘剑飞,胡时胜,胡元育等.花岗岩的动态压缩试验和力学性能试验[J].岩石力学与工程学报,2000,19(5):618–621.
    [102]胡时胜,王道荣,刘剑飞.混凝土材料动态力学性能的实验研究[J].工程力学,2001,18(5):115-126
    [103]杨军,高文学,金乾坤.岩石动态损伤特性实验及爆破模型[J].岩石力学与工程学报.2001,20(3):320-323
    [104]李战鲁,王启智.加载速率对岩石动态断裂韧度影响的实验研究[J].岩土工程学报.2006,28(12):2116-2120
    [105]朱万成,唐春安,黄志平等.静态和动态载荷作用下岩石劈裂破坏规律的数值模拟[J].岩石力学与工程学报,2005,24(1):1-7
    [106]左宇军,李夕兵,马春德等.动静组合载荷作用下岩石失稳破坏的突变理论模型与实验研究[J].岩石力学与工程学报,2005,24(5):741-746 [107 ]孟红霞,陈德春,吴飞鹏.岩石冲击开裂试验峰值压力和加压速率计算模型[J].石油钻探技术.2007,35(4):28-30
    [108]黄禹忠.降低压裂井底地层破裂压力的措施[J].断块油气田.2005,12(1):74-76
    [109]黄贺雄,吕桂英,送运东.新型预测地层压力模型及其应用[J].测井技术,1993,17(4):296-301
    [110]扬卫宇,周春虎.高能气体压裂设计关键因素量化分析[J].石油钻采工艺.1992,14(6):75-81
    [111]贺礼清.工程流体力学[M].东营:石油大学出版社.2001:166-167
    [112]王爱华,李璗,赵峰洛.用高能气体压裂模型研究裂缝条数[J].断块油气田.2000,7(5):56-59
    [113]王保国,刘淑艳,黄伟光.气体动力学[M].北京:北京理工大学出版社.2005:184-188
    [114]王新月.气体动力学基础[M].西安:西北大学出版社.2006:37-38
    [115]沈维道,蒋智敏,童钧耕.工程热力学[M].北京:高等教育出版社,2001:91-98
    [116]吴文,徐松林,杨春和等.盐岩冲击特性试验研究[J].岩石力学与工程学报,2004,23(21):3613-3620
    [117] Yang David W.Numerical Modelling and Parametric Analysis for Designing Propellant Gas Fracturing[R].SPE 71641, 2001
    [118] Yang David W, Risne Qasmus.Experiment Study on Fracture Initation by Pressure Pulse[R].SPE 63035, 2001
    [119]杨贡慧,赵旭.复合射孔上部压井液运动机理试验[J].中国石油大学学报(自然科学版).2008,32(6):88-91,95
    [120]王杰详.油水井增产增注技术[M].东营:石油大学出版社.2006:137-139

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700